activation.py 56.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
16
from paddle import _C_ops, _legacy_C_ops, in_dynamic_mode
17
from paddle.framework import core
18
from paddle.utils.inplace_utils import inplace_apis_in_dygraph_only
19 20

from ...fluid.data_feeder import check_dtype, check_variable_and_dtype
21
from ...fluid.framework import convert_np_dtype_to_dtype_, in_dygraph_mode
22 23 24 25 26
from ...fluid.layer_helper import LayerHelper
from ...tensor.manipulation import chunk
from ...tensor.math import tanh  # noqa: F401
from ...tensor.math import tanh_  # noqa: F401
from ...tensor.ops import sigmoid  # noqa: F401
27

28 29
__all__ = []

30

31 32 33 34
def celu(x, alpha=1.0, name=None):
    r"""
    celu activation.

35 36
    Apply the following operation to each element of the input Tensor accroding to the `Continuously Differentiable Exponential Linear Units <https://arxiv.org/abs/1704.07483>`_.

37 38
    .. math::

39
        \operatorname{celu}(x) = \max(0, x) + \min(0, \alpha * (\mathrm{e}^{x/\alpha}-1))
40 41

    Parameters:
42 43
        x (Tensor): The input Tensor with data type float16, float32, or float64.
        alpha (float, optional): The 'alpha' value of the CELU formula. Default is 1.0.
44
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
45 46

    Returns:
47
        A ``Tensor`` with the same data type and shape as ``x`` .
48 49 50 51 52 53 54 55 56 57 58 59 60

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            x = paddle.to_tensor([[-1., 6.], [1., 15.6]])
            out = F.celu(x, alpha=0.2)
            # [[-0.19865242,  6.        ],
            #  [ 1.        , 15.60000038]]
    """
    if alpha == 0:
        raise ZeroDivisionError("alpha cannot be 0 for celu")
61
    if in_dygraph_mode():
62
        return _C_ops.celu(x, alpha)
63 64 65 66 67 68 69 70 71 72 73 74 75
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'celu'
        )
        helper = LayerHelper("celu", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='celu',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'alpha': alpha},
        )
        return out
76 77


78
def elu(x, alpha=1.0, name=None):
79
    r"""
80 81
    elu activation.

82
    .. math::
83

Z
zhupengyang 已提交
84 85 86 87 88 89 90
        elu(x)=
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * (e^{x} - 1),& &\text{if } \ x <= 0
                \end{array}
            \right.
91 92 93 94

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        alpha (float, optional): The 'alpha' value of the ELU formulation. Default is 1.0.
95
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
96

97 98
    Returns:
        A Tensor with the same data type and shape as ``x`` .
99

100 101 102
    Examples:
        .. code-block:: python

103 104
            import paddle
            import paddle.nn.functional as F
105

Z
zhupengyang 已提交
106
            x = paddle.to_tensor([[-1., 6.], [1., 15.6]])
107
            out = F.elu(x, alpha=0.2)
108 109
            # [[-0.12642411  6.        ]
            #  [ 1.          15.6      ]]
110 111
    """

112
    if in_dygraph_mode():
113
        return _C_ops.elu(x, alpha)
114

115 116 117 118 119 120 121 122 123 124 125 126 127
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'elu'
        )
        helper = LayerHelper("elu", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='elu',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'alpha': alpha},
        )
        return out
128 129


130
@inplace_apis_in_dygraph_only
131 132 133 134 135
def elu_(x, alpha=1.0, name=None):
    r"""
    Inplace version of ``elu`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_elu`.
    """
136
    assert alpha >= 0.0, "elu_ only support alpha >= 0, please use elu instead."
137
    if in_dygraph_mode():
138 139
        return _C_ops.elu_(x, alpha)
    return _legacy_C_ops.elu_(x, 'alpha', alpha)
140 141


142
def gelu(x, approximate=False, name=None):
143
    r"""
144 145
    gelu activation.

146 147
    The activation function of Gelu is calculated element by element. More information refers to :ref: `Gaussian Error Linear Units`.

148
    if approximate is True
149 150 151

    .. math::

152
        gelu(x) = 0.5 * x * (1 + tanh(\sqrt{\frac{2}{\pi}} * (x + 0.044715x^{3})))
153

154
    else
155 156 157

    .. math::

158
        gelu(x) = 0.5 * x * (1 + erf(\frac{x}{\sqrt{2}}))
159

160 161
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
162 163
        approximate (bool, optional): Whether to enable approximation. Default is False.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
164

165 166
    Returns:
        A Tensor with the same data type and shape as ``x`` .
167

168 169 170
    Examples:
        .. code-block:: python

171 172
            import paddle
            import paddle.nn.functional as F
173

Z
zhupengyang 已提交
174 175 176 177 178 179 180
            x = paddle.to_tensor([[-1, 0.5], [1, 1.5]])
            out1 = F.gelu(x)
            # [[-0.15865529,  0.34573123],
            #  [ 0.84134471,  1.39978933]]
            out2 = F.gelu(x, True)
            # [[-0.15880799,  0.34571400],
            #  [ 0.84119201,  1.39957154]]
181 182
    """

183
    if in_dygraph_mode():
184
        return _C_ops.gelu(x, approximate)
185 186 187 188 189 190 191 192 193 194 195 196 197
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'gelu'
        )
        helper = LayerHelper("gelu", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='gelu',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'approximate': approximate},
        )
        return out
198 199


200
def hardshrink(x, threshold=0.5, name=None):
201
    r"""
202 203 204 205 206
    hard shrinkage activation

    .. math::

        hardshrink(x)=
207 208 209 210 211 212 213
            \left\{
                \begin{array}{rcl}
                x,&  &if \ {x > threshold}  \\
                x,&  &if \ {x < -threshold}   \\
                0,&  &if \ {others} &
                \end{array}
            \right.
214 215 216

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
217 218
        threshold (float, optional): The value of threshold for hardthrink. Default is 0.5.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
219 220 221 222 223 224 225

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

226 227
            import paddle
            import paddle.nn.functional as F
228

Z
zhupengyang 已提交
229
            x = paddle.to_tensor([-1, 0.3, 2.5])
230
            out = F.hardshrink(x) # [-1., 0., 2.5]
231 232

    """
H
hong 已提交
233
    if in_dygraph_mode():
234
        return _C_ops.hardshrink(x, threshold)
235 236 237 238 239 240 241 242 243 244 245 246 247
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'hardshrink'
        )
        helper = LayerHelper('hardshrink', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='hard_shrink',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'threshold': threshold},
        )
        return out
248 249


250
def hardtanh(x, min=-1.0, max=1.0, name=None):
251
    r"""
252
    hardtanh activation. Calculate the `hardtanh` of input `x`.
253 254 255

    .. math::

256 257 258 259 260 261 262 263
        hardtanh(x)=
            \left\{
                \begin{array}{cll}
                    max,& & \text{if } x > max \\
                    min,& & \text{if } x < min \\
                    x,& & \text{otherwise}
                \end{array}
            \right.
264

265
    Parameters:
266 267 268
        x (Tensor): The input Tensor with data type float32, float64.
        min (float, optional): The minimum value of the linear region range. Default is -1.
        max (float, optional): The maximum value of the linear region range. Default is 1.
269
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
270 271 272 273 274 275 276 277 278 279

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

280
            x = paddle.to_tensor([-1.5, 0.3, 2.5])
281 282 283
            out = F.hardtanh(x) # [-1., 0.3, 1.]
    """

H
hong 已提交
284
    if in_dygraph_mode():
285
        return _C_ops.hardtanh(x, min, max)
286 287 288 289
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'hardtanh'
        )
H
hong 已提交
290

291 292 293 294 295 296 297 298 299
        helper = LayerHelper('hardtanh', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='brelu',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'t_min': min, 't_max': max},
        )
        return out
300 301


302
def hardsigmoid(x, slope=0.1666667, offset=0.5, name=None):
303
    r"""
304
    hardsigmoid activation. Calculate the `hardsigmoid` of input `x`.
305 306 307 308 309 310
    A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
    which is much faster than sigmoid.

    .. math::

        hardsigmoid(x)=
311 312 313 314 315 316 317
            \left\{
                \begin{array}{lcl}
                0, & &\text{if } \ x \leq -3 \\
                1, & &\text{if } \ x \geq 3 \\
                slope * x + offset, & &\text{otherwise}
                \end{array}
            \right.
318 319 320

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
321 322
        slope (float, optional): The slope of hardsigmoid function. Default is 0.1666667.
        offset (float, optional): The offset of hardsigmoid function. Default is 0.5.
323
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
324 325 326 327 328 329 330 331 332 333 334 335 336 337

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.to_tensor([-4., 5., 1.])
            out = F.hardsigmoid(x) # [0., 1., 0.666667]
    """

H
hong 已提交
338
    if in_dygraph_mode():
339
        return _C_ops.hardsigmoid(x, slope, offset)
340 341 342 343
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'hardsigmoid'
        )
H
hong 已提交
344

345 346 347 348 349 350 351 352 353
        helper = LayerHelper('hardsigmoid', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='hard_sigmoid',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'slope': slope, 'offset': offset},
        )
        return out
354 355 356


def hardswish(x, name=None):
357
    r"""
358 359 360
    hardswish activation. hardswish is proposed in MobileNetV3, and performs
    better in computational stability and efficiency compared to swish function.
    For more details please refer to: https://arxiv.org/pdf/1905.02244.pdf
361 362 363 364

    .. math::

        hardswish(x)=
365 366 367 368 369 370 371
            \left\{
                \begin{array}{cll}
                0 &, & \text{if } x \leq -3 \\
                x &, & \text{if } x \geq 3 \\
                \frac{x(x+3)}{6} &, & \text{otherwise}
                \end{array}
            \right.
372 373 374

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
375
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
376 377 378 379 380 381 382 383 384 385 386 387 388

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.to_tensor([-4., 5., 1.])
            out = F.hardswish(x) # [0., 5., 0.666667]
    """
389
    if in_dygraph_mode():
390
        return _C_ops.hardswish(x)
391 392 393 394
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'hardswish'
        )
395

396 397 398 399 400 401
        helper = LayerHelper('hardswish', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='hard_swish', inputs={'X': x}, outputs={'Out': out}
        )
        return out
402 403


404
def leaky_relu(x, negative_slope=0.01, name=None):
405
    r"""
406
    leaky_relu activation. The calculation formula is:
407

408
    .. math::
409 410 411 412 413 414 415
        leaky\_relu(x)=
        \left\{
            \begin{array}{rcl}
                x, & & if \ x >= 0 \\
                negative\_slope * x, & & otherwise \\
            \end{array}
        \right.
416 417 418 419 420

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        negative_slope (float, optional): Slope of the activation function at
            :math:`x < 0` . Default is 0.01.
421
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
422 423 424 425 426 427 428 429 430 431

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

Z
zhupengyang 已提交
432
            x = paddle.to_tensor([-2., 0., 1.])
433 434 435
            out = F.leaky_relu(x)
            print(out)
            # [-0.02, 0., 1.]
436 437

    """
438
    if in_dygraph_mode():
439
        return _C_ops.leaky_relu(x, negative_slope)
440 441 442 443 444 445 446 447 448 449 450 451 452
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'leaky_relu'
        )
        helper = LayerHelper('leaky_relu', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='leaky_relu',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'alpha': negative_slope},
        )
        return out
453 454


455
def prelu(x, weight, data_format="NCHW", name=None):
456 457 458 459 460 461 462 463 464 465
    """
    prelu activation.

    .. math::

        prelu(x) = max(0, x) + weight * min(0, x)

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        weight (Tensor): The learnable parameter with data type same as ``x``.
466
            The weight shape is [], [1] or [in], where `in` is the input channel of ``x``.
467
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
468 469
        data_format(str, optional): Data format that specifies the layout of input.
            It may be "NC", "NCL", "NCHW", "NCDHW", "NLC", "NHWC" or "NDHWC". Default: "NCHW".
470 471 472 473 474 475 476 477 478 479

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

480
            data = paddle.to_tensor([[[[-2.0,  3.0, -4.0,  5.0],
Z
zhupengyang 已提交
481 482 483 484
                               [ 3.0, -4.0,  5.0, -6.0],
                               [-7.0, -8.0,  8.0,  9.0]],
                              [[ 1.0, -2.0, -3.0,  4.0],
                               [-5.0,  6.0,  7.0, -8.0],
485 486 487 488 489
                               [ 6.0,  7.0,  8.0,  9.0]]]], dtype='float32')

            w = paddle.to_tensor([0.25], dtype='float32')
            out = F.prelu(data, w)
            print(out)
490 491 492 493 494 495 496
            # [[[[-0.5 ,  3.  , -1.  ,  5.  ],
            #    [ 3.  , -1.  ,  5.  , -1.5 ],
            #    [-1.75, -2.  ,  8.  ,  9.  ]],
            #   [[ 1.  , -0.5 , -0.75,  4.  ],
            #    [-1.25,  6.  ,  7.  , -2.  ],
            #    [ 6.  ,  7.  ,  8.  ,  9.  ]]]]
    """
497
    assert (
498 499
        len(weight.shape) == 0 or len(weight.shape) == 1
    ), "The dim count of weight shape should be 0 or 1 in prelu()."
500 501

    mode = 'all'
502
    if len(weight.shape) == 1 and weight.shape[0] > 1:
503
        true_data_format = [
504 505 506 507 508 509 510
            'NC',
            'NCL',
            'NCHW',
            'NCDHW',
            'NLC',
            'NHWC',
            'NDHWC',
511 512 513 514
        ]
        if data_format not in true_data_format:
            raise ValueError(
                "data_format must be one of 'NC', 'NCL', 'NCHW', 'NCDHW', "
515 516
                "'NLC', 'NHWC', 'NDHWC' but receive {}".format(data_format)
            )
517 518 519

        data_format = 'NCHW' if data_format[1] == 'C' else 'NHWC'

520 521 522
        assert (
            len(x.shape) > 1
        ), "The dim count of x should be equal or larger than 2 in prelu() when weight shape is not [1]."
523

524
        # NOTE(GuoxiaWang): support NHWC data format
525
        if data_format == 'NHWC':
526 527 528
            assert (
                weight.shape[0] == x.shape[-1]
            ), "The weight size should be equal to x input channel in prelu() when weight shape is not [1]."
529
        else:
530 531 532
            assert (
                weight.shape[0] == x.shape[1]
            ), "The weight size should be equal to x input channel in prelu() when weight shape is not [1]."
533 534
        mode = 'channel'

535
    if in_dygraph_mode():
536
        return _C_ops.prelu(x, weight, data_format, mode)
537
    else:
W
Weilong Wu 已提交
538 539 540 541 542 543
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'prelu'
        )
        check_variable_and_dtype(
            weight, 'weight', ['float16', 'float32', 'float64'], 'prelu'
        )
544 545 546 547 548 549 550
        helper = LayerHelper('prelu', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type="prelu",
            inputs={"X": x, "Alpha": weight},
            outputs={"Out": out},
            attrs={"mode": mode, "data_format": data_format},
551
        )
552
        return out
553 554


555
def rrelu(x, lower=1.0 / 8.0, upper=1.0 / 3.0, training=True, name=None):
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
    r"""
    rrelu activation.

    Applies the randomized leaky rectified liner unit function to improve generalization performance,
    as described in the paper:
    `Empirical Evaluation of Rectified Activations in Convolutional Network <https://arxiv.org/abs/1505.00853>`_

    During training, randomly samples the negative slope for activation values as described below:

    .. math::

        rrelu(x)=
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    a * x, & & otherwise \\
                \end{array}
            \right.

    where :math:`x` is the input tensor,
    :math:`a` is randomly sampled from uniform distribution in range (:math:`lower`, :math:`upper`),

    In the test phase, the negative slope will take the average value of :math:`lower` and :math:`upper`:

    .. math::

        rrelu(x)=
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    (lower + upper) * 0.5 * x, & & otherwise \\
                \end{array}
            \right.

    where :math:`x` is the input tensor,
    :math:`lower` and :math:`upper` are the bounds of uniform distribution.

    Parameters:
        x (Tensor): The input Tensor with data type float16, float32, float64.
        lower (float, optional): The lower bound of uniform distribution. Default: 0.125.
        upper (float, optional): The upper bound of uniform distribution. Default: 0.333.
        training (bool, optional): Current mode is in training or others.  Default is True.
598
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input_tensor = paddle.to_tensor([[[[-2.0,  3.0, -4.0,  5.0],
                                            [ 3.0, -4.0,  5.0, -6.0],
                                            [-7.0, -8.0,  8.0,  9.0]],
                                            [[ 1.0, -2.0, -3.0,  4.0],
                                            [-5.0,  6.0,  7.0, -8.0],
                                            [ 6.0,  7.0,  8.0,  9.0]]]], dtype='float32')

            out = F.rrelu(input_tensor, 0.1, 0.3)
617
            print(out)
618 619 620 621 622 623 624 625 626
            #[[[[-0.20000899  3.         -0.8810822   5.        ]
            #   [ 3.         -0.55175185  5.         -1.0776101 ]
            #   [-1.0680687  -1.9896201   8.          9.        ]]
            #  [[ 1.         -0.5238267  -0.65515125  4.        ]
            #   [-1.3766339   6.          7.         -2.3465784 ]
            #   [ 6.          7.          8.          9.        ]]]]
    """
    if not isinstance(lower, float) or not isinstance(upper, float):
        raise TypeError(
627 628 629 630
            "The lower and upper values must be float type. Received: lower {}, upper {}.".format(
                lower, upper
            )
        )
631 632 633

    if lower < 0 or lower > 1:
        raise ValueError(
634 635 636 637
            "The lower value must be no less than zero or greater than one. Received: {}.".format(
                lower
            )
        )
638 639 640

    if upper < lower:
        raise ValueError(
641 642 643 644
            "The upper value must be greater than lower value. Received: lower {}, upper {}.".format(
                lower, upper
            )
        )
645 646 647 648

    if upper > 1:
        raise ValueError(
            "The upper value must be no greater than one. Received: {}.".format(
649 650 651
                upper
            )
        )
652 653 654

    is_test = not training

655
    if in_dygraph_mode():
W
Weilong Wu 已提交
656
        return _C_ops.rrelu(x, lower, upper, is_test)
657
    else:
W
Weilong Wu 已提交
658 659 660
        check_variable_and_dtype(
            x, 'X', ['float16', 'float32', 'float64'], 'rrelu'
        )
661 662 663 664 665 666 667 668 669 670 671
        helper = LayerHelper('rrelu', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        noise = helper.create_variable_for_type_inference(dtype=x.dtype)
        attrs = {'lower': lower, 'upper': upper, 'is_test': is_test}
        helper.append_op(
            type='rrelu',
            inputs={"X": x},
            outputs={"Out": out, "Noise": noise},
            attrs=attrs,
        )
        return out
672 673


674
def relu(x, name=None):
675
    """
676
    relu activation.
677

678
    .. math::
679 680 681 682

        out = max(x, 0)

    Parameters:
683
        x (Tensor): The input Tensor with data type float32, float64.
684
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
685 686

    Returns:
687
        A Tensor with the same data type and shape as ``x`` .
688 689 690 691

    Examples:
        .. code-block:: python

692 693
            import paddle
            import paddle.nn.functional as F
694

695 696 697 698
            x = paddle.to_tensor([-2, 0, 1], dtype='float32')
            out = F.relu(x)
            print(out)
            # [0., 0., 1.]
699 700
    """

701
    if in_dygraph_mode():
W
wanghuancoder 已提交
702
        return _C_ops.relu(x)
703 704 705 706 707 708 709 710
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'relu'
        )
        helper = LayerHelper('relu', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='relu', inputs={'X': x}, outputs={'Out': out})
        return out
711 712


713
@inplace_apis_in_dygraph_only
714 715 716 717 718
def relu_(x, name=None):
    """
    Inplace version of ``relu`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_relu`.
    """
719
    return _C_ops.relu_(x)
720 721


722
def log_sigmoid(x, name=None):
723
    r"""
724
    log_sigmoid activation.
725

726
    .. math::
727

728
        log\_sigmoid(x) = log \frac{1}{1 + e^{-x}}
729

730 731
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
732
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
733

734 735
    Returns:
        A Tensor with the same data type and shape as ``x`` .
736

737 738 739
    Examples:
        .. code-block:: python

740 741
            import paddle
            import paddle.nn.functional as F
742

743 744
            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = F.log_sigmoid(x) # [-0.313262 -0.126928 -0.0485874 -0.0181499]
745 746
    """

H
hong 已提交
747
    if in_dygraph_mode():
748
        return _C_ops.logsigmoid(x)
749 750 751 752 753 754 755 756 757 758
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'log_sigmoid'
        )
        helper = LayerHelper("log_sigmoid", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='logsigmoid', inputs={'X': x}, outputs={'Out': out}
        )
        return out
759 760


761
def maxout(x, groups, axis=1, name=None):
762
    r"""
763 764 765 766 767 768 769 770
    maxout activation.

    Assumed the input shape is (N, Ci, H, W).
    The output shape is (N, Co, H, W).
    Then Co = Ci/groups and the operator formula is as follows:

    .. math::

771 772 773 774 775 776 777 778 779
        \begin{array}{l}
        &out_{si+j} = \max_{k} x_{gsi + sk + j} \\
        &g = groups \\
        &s = \frac{input.size}{num\_channels} \\
        &0 \le i < \frac{num\_channels}{groups} \\
        &0 \le j < s \\
        &0 \le k < groups
        \end{array}

780 781 782 783

    Parameters:
        x (Tensor): The input is 4-D Tensor with shape [N, C, H, W] or [N, H, W, C], the data type
            of input is float32 or float64.
784
        groups (int): The groups number of maxout. `groups` specifies the
785
            index of channel dimension where maxout will be performed. This must be
786
            a factor of number of features.
787 788 789 790 791
        axis (int, optional): The axis along which to perform maxout calculations.
            It should be 1 when data format is NCHW, be -1 or 3 when data format
            is NHWC. If ``axis`` < 0, it works the same way as :math:`axis + D` ,
            where D is the dimensions of ``x`` . ``axis`` only supports 1, 3 or -1.
            Default is 1.
792
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814

    Returns:
        A Tensor with the same data type as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.rand([1, 2, 3, 4])
            # [[[[0.5002636  0.22272532 0.17402348 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.02879342 0.88725346 0.61093384 0.38833922]]
            #   [[0.5231306  0.03807496 0.91661984 0.15602879]
            #    [0.666127   0.616567   0.30741522 0.24044901]
            #    [0.7142536  0.7351477  0.31588817 0.23782359]]]]
            out = F.maxout(x, groups=2)
            # [[[[0.5231306  0.22272532 0.91661984 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.7142536  0.88725346 0.61093384 0.38833922]]]]
    """
815
    if in_dygraph_mode():
816
        return _C_ops.maxout(x, groups, axis)
817 818 819 820 821 822 823 824 825
    else:
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'maxout')
        if axis not in [1, -1, 3]:
            raise ValueError(
                "Attr(axis) should be 1 when data format is NCHW, -1 or 3 when data format is NHWC. Received "
                "Attr(axis): %s." % str(axis)
            )
        if axis == -1:
            axis = 3
826

827 828 829 830 831 832 833 834 835
        helper = LayerHelper('maxout', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='maxout',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'groups': groups, 'axis': axis},
        )
        return out
836 837


838 839 840 841 842 843
def relu6(x, name=None):
    """
    relu6 activation

    .. math::

844
        relu6(x) = min(max(0,x), 6)
845

846
    Parameters:
847
        x (Tensor): The input Tensor with data type float32, float64.
848
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
849 850 851 852 853 854 855

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

856 857
            import paddle
            import paddle.nn.functional as F
858

859 860 861 862
            x = paddle.to_tensor([-1, 0.3, 6.5])
            out = F.relu6(x)
            print(out)
            # [0, 0.3, 6]
863 864
    """
    threshold = 6.0
865
    if in_dygraph_mode():
866
        return _C_ops.relu6(x)
Z
zhiboniu 已提交
867
    if in_dynamic_mode():
868
        return _legacy_C_ops.relu6(x, 'threshold', threshold)
869 870 871 872

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'relu6')
    helper = LayerHelper('relu6', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
873 874 875 876 877 878
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold},
    )
879 880 881
    return out


882 883 884 885 886 887
def selu(
    x,
    scale=1.0507009873554804934193349852946,
    alpha=1.6732632423543772848170429916717,
    name=None,
):
888
    r"""
889 890 891 892
    selu activation

    .. math::

893
        selu(x)= scale *
894 895 896 897 898 899
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * e^{x} - alpha,& &\text{if } \ x <= 0
                \end{array}
            \right.
900

901
    Parameters:
902
        x (Tensor): The input Tensor with data type float32, float64.
903 904
        scale (float, optional): The value of scale(must be greater than 1.0) for selu. Default is 1.0507009873554804934193349852946
        alpha (float, optional): The value of alpha(must be no less than zero) for selu. Default is 1.6732632423543772848170429916717
905
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
906 907 908 909 910 911 912

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

913 914
            import paddle
            import paddle.nn.functional as F
915

916 917 918 919
            x = paddle.to_tensor([[0.0, 1.0],[2.0, 3.0]])
            out = F.selu(x)
            print(out)
            # [[0, 1.050701],[2.101402, 3.152103]]
920
    """
921 922
    if scale <= 1.0:
        raise ValueError(
923 924
            "The scale must be greater than 1.0. Received: {}.".format(scale)
        )
925 926 927

    if alpha < 0:
        raise ValueError(
928 929
            "The alpha must be no less than zero. Received: {}.".format(alpha)
        )
930

H
hong 已提交
931
    if in_dygraph_mode():
932
        return _C_ops.selu(x, scale, alpha)
933 934 935 936 937 938 939 940 941 942 943 944 945
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'selu'
        )
        helper = LayerHelper('selu', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='selu',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'scale': scale, 'alpha': alpha},
        )
        return out
946 947


M
minghaoBD 已提交
948
def silu(x, name=None):
949 950 951 952 953
    r"""
    silu activation

    .. math::

M
minghaoBD 已提交
954
        silu(x) = \frac{x}{1 + e^{-x}}
955

956 957
    Where :math:`x` is the input Tensor.

M
minghaoBD 已提交
958 959
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
960
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
961

M
minghaoBD 已提交
962
    Returns:
963
        A Tensor with the same data type and shape as :attr:`x`.
964

M
minghaoBD 已提交
965 966
    Examples:
        .. code-block:: python
967 968 969

            import paddle
            import paddle.nn.functional as F
970

971 972
            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = F.silu(x) # [ 0.731059, 1.761594, 2.857722, 3.928055 ]
M
minghaoBD 已提交
973 974
    """

975
    if in_dygraph_mode():
W
wanghuancoder 已提交
976
        return _C_ops.silu(x)
977 978 979 980 981 982 983 984
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'silu'
        )
        helper = LayerHelper("silu", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='silu', inputs={'X': x}, outputs={'Out': out})
        return out
M
minghaoBD 已提交
985 986


987
def softmax(x, axis=-1, dtype=None, name=None):
988
    r"""
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
    This operator implements the softmax layer. The calculation process is as follows:

    1. The dimension :attr:`axis` of ``x`` will be permuted to the last.

    2. Then ``x`` will be logically flattened to a 2-D matrix. The matrix's second
    dimension(row length) is the same as the dimension :attr:`axis` of ``x``,
    and the first dimension(column length) is the product of all other dimensions
    of ``x``. For each row of the matrix, the softmax operator squashes the
    K-dimensional(K is the width of the matrix, which is also the size of ``x``'s
    dimension :attr:`axis`) vector of arbitrary real values to a K-dimensional
    vector of real values in the range [0, 1] that add up to 1.

    3. After the softmax operation is completed, the inverse operations of steps 1 and 2
    are performed to restore the two-dimensional matrix to the same dimension as the ``x`` .

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

    For each row :math:`i` and each column :math:`j` in the matrix, we have:

    .. math::

1014
        softmax[i, j] = \frac{\exp(x[i, j])}{\sum_j(exp(x[i, j])}
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062

    Example:

    .. code-block:: text

        Case 1:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]

          Attrs:
            axis = -1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
                        [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]

        Case 2:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]
          Attrs:
            axis = 1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
                         [0.01786798, 0.01786798, 0.04661262, 0.04661262],
                         [0.97555875, 0.97555875, 0.93623955, 0.93623955]],
                        [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
                         [0.26762315, 0.26762315, 0.26762315, 0.26762315],
                         [0.72747516, 0.72747516, 0.72747516, 0.72747516]]]

1063 1064
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
1065
        axis (int, optional): The axis along which to perform softmax
1066
            calculations. It should be in range [-D, D), where D is the
1067
            rank of ``x`` . If ``axis`` < 0, it works the same way as
1068
            :math:`axis + D` . Default is -1.
1069
        dtype (str, optional): The data type of the output tensor, can be float32, float64.
1070
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1071 1072

    Returns:
1073 1074
        A Tensor with the same shape and data type (use ``dtype`` if it is
        specified) as x.
1075 1076 1077 1078

    Examples:
        .. code-block:: python

1079 1080
            import paddle
            import paddle.nn.functional as F
1081

1082
            x = paddle.to_tensor([[[2.0, 3.0, 4.0, 5.0],
1083 1084 1085 1086
                        [3.0, 4.0, 5.0, 6.0],
                        [7.0, 8.0, 8.0, 9.0]],
                        [[1.0, 2.0, 3.0, 4.0],
                        [5.0, 6.0, 7.0, 8.0],
1087
                        [6.0, 7.0, 8.0, 9.0]]],dtype='float32')
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
            out1 = F.softmax(x)
            out2 = F.softmax(x, dtype='float64')
            # out1's data type is float32; out2's data type is float64
            # out1 and out2's value is as follows:
            # [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
            # [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]
1098
    """
1099 1100 1101

    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
H
hong 已提交
1102
    if in_dygraph_mode():
1103
        outs_cast = x if dtype is None else _C_ops.cast(x, dtype)
1104
        return _C_ops.softmax(outs_cast, axis)
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
    else:
        use_cudnn = True
        if dtype is None:
            check_variable_and_dtype(
                x, 'x', ['float16', 'float32', 'float64'], 'softmax'
            )
        else:
            check_dtype(
                dtype,
                'dtype',
                ['float32', 'float64'],
                'softmax',
                'If dtype is not None, it only support float32 or float64.',
            )
H
hong 已提交
1119

1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
        helper = LayerHelper("softmax", **locals())
        outs_cast = x
        if dtype is not None:
            outs_cast = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='cast',
                inputs={'X': x},
                outputs={'Out': outs_cast},
                attrs={'in_dtype': x.dtype, 'out_dtype': dtype},
            )
1130

1131 1132
        outs_softmax = helper.create_variable_for_type_inference(
            outs_cast.dtype
1133 1134
        )
        helper.append_op(
1135 1136 1137 1138
            type='softmax',
            inputs={'X': outs_cast},
            outputs={'Out': outs_softmax},
            attrs={'axis': axis, 'use_cudnn': use_cudnn},
1139
        )
1140

1141
        return outs_softmax
1142 1143


1144
@inplace_apis_in_dygraph_only
1145 1146 1147 1148 1149 1150 1151
def softmax_(x, axis=-1, dtype=None, name=None):
    r"""
    Inplace version of ``softmax`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_softmax`.
    """
    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
1152 1153 1154 1155 1156 1157
    outs_cast = (
        x
        if dtype is None
        else _legacy_C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
    )
    return _C_ops.softmax_(outs_cast, axis)
1158 1159


1160
def softplus(x, beta=1, threshold=20, name=None):
1161
    r"""
1162 1163 1164
    softplus activation

    .. math::
1165 1166 1167 1168
        softplus(x)=\begin{cases}
                \frac{1}{\beta} * \log(1 + e^{\beta * x}),&x\leqslant\frac{\varepsilon}{\beta};\\
                x,&x>\frac{\varepsilon}{\beta}.
            \end{cases}
1169

1170
    Parameters:
1171
        x (Tensor): The input Tensor with data type float32, float64.
1172 1173
        beta (float, optional): The value of :math:`\beta` for softplus. Default is 1
        threshold (float, optional): The value of :math:`\varepsilon` for softplus. Default is 20
1174
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1175 1176 1177 1178 1179 1180 1181

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1182 1183
            import paddle
            import paddle.nn.functional as F
1184

1185
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3], dtype='float32')
1186
            out = F.softplus(x) # [0.513015, 0.598139, 0.744397, 0.854355]
1187
    """
W
Wang Bojun 已提交
1188 1189

    if in_dygraph_mode():
1190
        return _C_ops.softplus(x, beta, threshold)
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'softplus'
        )
        helper = LayerHelper('softplus', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='softplus',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'beta': beta, 'threshold': threshold},
        )
        return out
1204 1205 1206


def softshrink(x, threshold=0.5, name=None):
1207
    r"""
1208 1209 1210 1211
    softshrink activation

    .. math::

1212
        softshrink(x)=
1213 1214 1215 1216 1217 1218 1219
            \left\{
                \begin{array}{rcl}
                x - threshold,& & \text{if } x > threshold \\
                x + threshold,& & \text{if } x < -threshold \\
                0,& &  \text{otherwise}
            \end{array}
            \right.
1220

1221
    Parameters:
1222 1223
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold(must be no less than zero) for softplus. Default is 0.5
1224
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1225 1226 1227 1228 1229 1230 1231

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1232 1233
            import paddle
            import paddle.nn.functional as F
1234

1235 1236 1237 1238 1239
            x = paddle.to_tensor([-0.9, -0.2, 0.1, 0.8])
            out = F.softshrink(x)
            print(out)
            # Tensor(shape=[4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [-0.39999998,  0.        ,  0.        ,  0.30000001])
1240
    """
1241 1242 1243
    if threshold < 0:
        raise ValueError(
            "The threshold must be no less than zero. Received: {}.".format(
1244 1245 1246
                threshold
            )
        )
1247

1248
    if in_dygraph_mode():
1249
        return _C_ops.softshrink(x, threshold)
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'softshrink'
        )
        helper = LayerHelper('softshrink', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='softshrink',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'lambda': threshold},
        )
        return out
1263 1264 1265


def softsign(x, name=None):
1266
    r"""
1267 1268 1269 1270
    softsign activation

    .. math::

1271
        softsign(x) = \frac{x}{1 + |x|}
1272

1273
    Parameters:
1274
        x (Tensor): The input Tensor with data type float32, float64.
1275
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1276 1277 1278 1279 1280 1281 1282

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1283 1284
            import paddle
            import paddle.nn.functional as F
1285

1286 1287 1288 1289 1290
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = F.softsign(x)
            print(out)
            # Tensor(shape=[4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [-0.28571430, -0.16666666,  0.09090909,  0.23076925])
1291
    """
1292
    if in_dygraph_mode():
W
wanghuancoder 已提交
1293
        return _C_ops.softsign(x)
1294 1295
    if in_dynamic_mode():
        return _legacy_C_ops.softsign(x)
1296

1297 1298 1299
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'softsign'
    )
1300 1301 1302 1303 1304 1305
    helper = LayerHelper('softsign', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='softsign', inputs={'X': x}, outputs={'Out': out})
    return out


1306
def swish(x, name=None):
1307
    r"""
1308 1309 1310 1311
    swish activation.

    .. math::

1312
        swish(x) = \frac{x}{1 + e^{-x}}
1313 1314 1315

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
1316
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

1327 1328 1329 1330 1331
            x = paddle.to_tensor([-2., 0., 1.])
            out = F.swish(x)
            print(out)
            # Tensor(shape=[3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [-0.23840584,  0.        ,  0.73105854])
1332
    """
1333
    if in_dygraph_mode():
1334
        return _C_ops.swish(x)
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'swish'
        )
        helper = LayerHelper('swish', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='swish',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'beta': 1.0},
        )
        return out
1348 1349


1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
def mish(x, name=None):
    r"""
    mish activation.

    ..  math::

        softplus(x) = \begin{cases}
                x, \text{if } x > \text{threshold} \\
                \ln(1 + e^{x}),  \text{otherwise}
            \end{cases}

        mish(x) = x * \tanh(softplus(x))
1362

1363 1364
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
1365
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

W
wangxinxin08 已提交
1376
            x = paddle.to_tensor([-5., 0., 5.])
1377 1378
            out = F.mish(x) # [-0.03357624, 0., 4.99955208]
    """
1379
    if in_dygraph_mode():
1380
        return _C_ops.mish(x, 20)
1381 1382 1383 1384 1385 1386 1387 1388
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'mish'
        )
        helper = LayerHelper('mish', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='mish', inputs={'X': x}, outputs={'Out': out})
        return out
1389 1390


1391 1392 1393 1394 1395 1396
def tanhshrink(x, name=None):
    """
    tanhshrink activation

    .. math::

1397
        tanhshrink(x) = x - tanh(x)
1398 1399 1400

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
1401
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1402 1403 1404 1405 1406 1407 1408

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1409 1410
            import paddle
            import paddle.nn.functional as F
1411

1412 1413 1414 1415 1416
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = F.tanhshrink(x)
            print(out)
            # Tensor(shape=[4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [-0.02005106, -0.00262468,  0.00033200,  0.00868741])
1417
    """
H
hong 已提交
1418
    if in_dygraph_mode():
1419
        return _C_ops.tanh_shrink(x)
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'tanhshrink'
        )
        helper = LayerHelper('tanh_shrink', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='tanh_shrink', inputs={'X': x}, outputs={'Out': out}
        )
        return out
1430 1431


1432
def thresholded_relu(x, threshold=1.0, name=None):
1433
    r"""
1434 1435 1436 1437
    thresholded relu activation.

    .. math::

1438
        thresholded\_relu(x) =
1439 1440 1441 1442 1443 1444 1445
            \left\{
                \begin{array}{rl}
                x,& \text{if } \ x > threshold \\
                0,& \text{otherwise}
                \end{array}
            \right.

1446 1447 1448 1449

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold for thresholded_relu. Default is 1.0
1450
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

1461 1462 1463 1464 1465
            x = paddle.to_tensor([2., 0., 1.])
            out = F.thresholded_relu(x)
            print(out)
            # Tensor(shape=[3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [2., 0., 0.])
1466 1467
    """

H
hong 已提交
1468
    if in_dygraph_mode():
1469
        return _C_ops.thresholded_relu(x, threshold)
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'thresholded_relu'
        )
        helper = LayerHelper('thresholded_relu', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='thresholded_relu',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'threshold': threshold},
        )
        return out
1483 1484


1485
def log_softmax(x, axis=-1, dtype=None, name=None):
1486
    r"""
1487 1488
    This operator implements the log_softmax layer. The calculation process is
    as follows:
1489 1490 1491

    .. math::

1492
        \begin{aligned}
1493 1494 1495
        log\_softmax[i, j] &= log(softmax(x)) \\
        &= log(\frac{\exp(X[i, j])}{\sum_j(\exp(X[i, j])})
        \end{aligned}
1496 1497

    Parameters:
1498 1499 1500 1501 1502 1503 1504
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` < 0, it works the same way as
            :math:`axis + D` . Default is -1.
        dtype (str|np.dtype|core.VarDesc.VarType, optional): The desired data
            type of the output tensor. If dtype is specified, ``x`` is casted
1505
            to ``dtype`` before the operation is performed. This is useful for
1506 1507 1508
            preventing data type overflows. Supported dtype: float32, float64.
            If ``dtype`` is None, the output Tensor has the same dtype as x.
            Default is None.
1509
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1510

1511
    Returns:
1512 1513
        A Tensor with the same shape and data type (use ``dtype`` if it is
        specified) as x.
1514 1515 1516 1517

    Examples:
        .. code-block:: python

1518 1519 1520
            import paddle
            import paddle.nn.functional as F

Z
zhupengyang 已提交
1521 1522 1523 1524 1525 1526
            x = [[[-2.0, 3.0, -4.0, 5.0],
                  [3.0, -4.0, 5.0, -6.0],
                  [-7.0, -8.0, 8.0, 9.0]],
                 [[1.0, -2.0, -3.0, 4.0],
                  [-5.0, 6.0, 7.0, -8.0],
                  [6.0, 7.0, 8.0, 9.0]]]
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
            x = paddle.to_tensor(x)
            out1 = F.log_softmax(x)
            out2 = F.log_softmax(x, dtype='float64')
            # out1's data type is float32; out2's data type is float64
            # out1 and out2's value is as follows:
            # [[[ -7.1278396   -2.1278396   -9.127839    -0.12783948]
            #   [ -2.1270514   -9.127051    -0.12705144 -11.127051  ]
            #   [-16.313261   -17.313261    -1.3132617   -0.31326184]]
            #  [[ -3.0518122   -6.051812    -7.051812    -0.051812  ]
            #   [-12.313267    -1.3132664   -0.3132665  -15.313267  ]
            #   [ -3.4401896   -2.4401896   -1.4401896   -0.44018966]]]
    """
1539 1540 1541

    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
1542

H
hong 已提交
1543
    if in_dygraph_mode():
1544
        if dtype is not None:
1545 1546
            x = _C_ops.cast(x, dtype)
        return _C_ops.log_softmax(x, axis)
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
    else:
        if dtype is None:
            check_variable_and_dtype(
                x, 'x', ['float16', 'float32', 'float64'], 'log_softmax'
            )
        else:
            check_dtype(
                dtype,
                'dtype',
                ['float32', 'float64'],
                'log_softmax',
                'If dtype is not None, it only support float32 or float64.',
            )
1560

1561 1562
        helper = LayerHelper("log_softmax", **locals())
        out_cast = x
H
hong 已提交
1563
        if dtype is not None:
1564 1565 1566 1567 1568 1569 1570
            out_cast = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='cast',
                inputs={'X': x},
                outputs={'Out': out_cast},
                attrs={'in_dtype': x.dtype, 'out_dtype': dtype},
            )
1571

1572
        out = helper.create_variable_for_type_inference(out_cast.dtype)
1573
        helper.append_op(
1574 1575 1576 1577
            type='log_softmax',
            inputs={'X': out_cast},
            outputs={'Out': out},
            attrs={'axis': axis},
1578
        )
1579

1580
        return out
F
Feiyu Chan 已提交
1581 1582 1583 1584


def glu(x, axis=-1, name=None):
    r"""
1585
    The gated linear unit. The input is evenly splited into 2 parts along a
F
Feiyu Chan 已提交
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
    given axis. The first part is used as the content, and the second part is
    passed through a sigmoid function then used as the gate. The output is a
    elementwise multiplication of the content and the gate.

    .. math::

        \mathrm{GLU}(a, b) = a \otimes \sigma(b)

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
1596 1597 1598
        axis (int, optional): The axis along which split the input tensor. It
            should be in range [-D, D), where D is the dimensions of ``x`` .
            If ``axis`` < 0, it works the same way as :math:`axis + D` .
F
Feiyu Chan 已提交
1599
            Default is -1.
1600
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1601

F
Feiyu Chan 已提交
1602
    Returns:
1603
        A Tensor with the same data type as x. The size of the given aixs is
F
Feiyu Chan 已提交
1604
        halved.
1605

F
Feiyu Chan 已提交
1606 1607
    Examples:
        .. code-block:: python
1608

F
Feiyu Chan 已提交
1609 1610
            import paddle
            from paddle.nn import functional as F
1611

F
Feiyu Chan 已提交
1612 1613
            x = paddle.to_tensor(
                [[-0.22014759, -1.76358426,  0.80566144,  0.04241343],
1614
                    [-1.94900405, -1.89956081,  0.17134808, -1.11280477]]
F
Feiyu Chan 已提交
1615
            )
1616 1617 1618 1619
            print(F.glu(x))
            # Tensor(shape=[2, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[-0.15216254, -0.90048921],
            #         [-1.05778778, -0.46985325]])
1620

F
Feiyu Chan 已提交
1621
    """
1622 1623 1624
    check_variable_and_dtype(
        x, 'input', ['float16', 'float32', 'float64'], "glu"
    )
F
Feiyu Chan 已提交
1625 1626 1627 1628
    a, b = chunk(x, 2, axis=axis, name=name)
    gate = sigmoid(b, name=name)
    out = paddle.multiply(a, gate, name=name)
    return out
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653


def gumbel_softmax(x, temperature=1.0, hard=False, axis=-1, name=None):
    r"""
    Samples from the Gumbel-Softmax distribution and optionally discretizes.
    temperature is denoted by t. The calculation process is as follows:

    First, generate gumbel noise:

    .. math::

        G_i = -log(-log(U_i)), U_i \sim U(0,1)

    Second, add noise to ``x``:

    .. math::

        v = [x_1 + G_1,...,x_n + G_n]

    Finally, calculate gumbel_softmax and generate samples:

    .. math::
        gumbel\_softmax(v_i)=\frac{e^{v_i/t}}{\sum_{j=1}^n{e^{v_j/t}}},i=1,2,3...n

    Parameters:
1654 1655
        x (Tensor): An N-D Tensor, the first N - 1 dimensions index into a batch
            of independent distributions and the last dimension represents
1656 1657 1658
            a vector of probabilities with datatype float32, float64.
        temperature (float, optional): non-negative scalar temperature.
            Default is 1.0.
1659 1660
        hard (bool, optional): if True, the returned samples will be discretized as
            one-hot vectors, but will be differentiated as if it is the soft sample
1661
            in autograd. Default is False.
1662
        axis (int, optional): The axis along will be calculated softmax value.
1663
            Default is -1.
1664
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1665

1666
    Returns:
1667 1668
        Sampled tensor of same shape as ``x`` from the Gumbel-Softmax distribution.
        If ``hard = True``, the returned samples will be one-hot, otherwise they will be
1669
        probability distributions that sum to 1 across ``axis``.
1670

1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            logits = paddle.randn([4, 6])
            temperature = 0.01
            gumbel_softmax = F.gumbel_softmax(logits, temperature)
            print(gumbel_softmax)
            # out's value is as follows:
            # [[0.00000001, 1.        , 0.00000000, 0.00000000, 0.00000006, 0.00000000],
            # [0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 1.        ],
            # [0.00000062, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.99999940],
            # [0.00000000, 0.00000000, 0.00000000, 0.00001258, 0.99998736, 0.00000000]]
1686

1687
    """
H
hong 已提交
1688
    if in_dygraph_mode():
1689
        return _C_ops.gumbel_softmax(x, temperature, hard, axis)
H
hong 已提交
1690

Z
zhiboniu 已提交
1691
    if in_dynamic_mode():
1692 1693 1694
        return _legacy_C_ops.gumbel_softmax(
            x, 'temperature', temperature, 'hard', hard, 'axis', axis
        )
1695 1696 1697 1698

    helper = LayerHelper("gumbel_softmax", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'gumbel_softmax')
    out = helper.create_variable_for_type_inference(x.dtype)
1699 1700 1701 1702 1703 1704
    helper.append_op(
        type='gumbel_softmax',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'temperature': temperature, 'hard': hard, 'axis': axis},
    )
1705
    return out