activation.py 57.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
16
from paddle import _C_ops, _legacy_C_ops, in_dynamic_mode
17 18 19 20 21 22 23 24 25 26 27 28 29 30
from paddle.framework import core

from ...fluid.data_feeder import check_dtype, check_variable_and_dtype
from ...fluid.dygraph.inplace_utils import inplace_apis_in_dygraph_only
from ...fluid.framework import (
    _in_legacy_dygraph,
    convert_np_dtype_to_dtype_,
    in_dygraph_mode,
)
from ...fluid.layer_helper import LayerHelper
from ...tensor.manipulation import chunk
from ...tensor.math import tanh  # noqa: F401
from ...tensor.math import tanh_  # noqa: F401
from ...tensor.ops import sigmoid  # noqa: F401
31

32 33
__all__ = []

34

35 36 37 38
def celu(x, alpha=1.0, name=None):
    r"""
    celu activation.

39 40
    Apply the following operation to each element of the input Tensor accroding to the `Continuously Differentiable Exponential Linear Units <https://arxiv.org/abs/1704.07483>`_.

41 42
    .. math::

43
        \operatorname{celu}(x) = \max(0, x) + \min(0, \alpha * (\mathrm{e}^{x/\alpha}-1))
44 45

    Parameters:
46 47
        x (Tensor): The input Tensor with data type float16, float32, or float64.
        alpha (float, optional): The 'alpha' value of the CELU formula. Default is 1.0.
48
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
49 50

    Returns:
51
        A ``Tensor`` with the same data type and shape as ``x`` .
52 53 54 55 56 57 58 59 60 61 62 63 64 65

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            x = paddle.to_tensor([[-1., 6.], [1., 15.6]])
            out = F.celu(x, alpha=0.2)
            # [[-0.19865242,  6.        ],
            #  [ 1.        , 15.60000038]]
    """
    if alpha == 0:
        raise ZeroDivisionError("alpha cannot be 0 for celu")

66
    if _in_legacy_dygraph():
67
        return _legacy_C_ops.celu(x, 'alpha', alpha)
68
    if in_dygraph_mode():
69
        return _C_ops.celu(x, alpha)
70 71 72 73

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'celu')
    helper = LayerHelper("celu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
74 75 76 77 78 79
    helper.append_op(
        type='celu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha},
    )
80 81 82
    return out


83
def elu(x, alpha=1.0, name=None):
84
    r"""
85 86
    elu activation.

87
    .. math::
88

Z
zhupengyang 已提交
89 90 91 92 93 94 95
        elu(x)=
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * (e^{x} - 1),& &\text{if } \ x <= 0
                \end{array}
            \right.
96 97 98 99

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        alpha (float, optional): The 'alpha' value of the ELU formulation. Default is 1.0.
100
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
101

102 103
    Returns:
        A Tensor with the same data type and shape as ``x`` .
104

105 106 107
    Examples:
        .. code-block:: python

108 109
            import paddle
            import paddle.nn.functional as F
110

Z
zhupengyang 已提交
111
            x = paddle.to_tensor([[-1., 6.], [1., 15.6]])
112
            out = F.elu(x, alpha=0.2)
113 114
            # [[-0.12642411  6.        ]
            #  [ 1.          15.6      ]]
115 116
    """

117
    if in_dygraph_mode():
118
        return _C_ops.elu(x, alpha)
119 120

    if _in_legacy_dygraph():
121
        return _legacy_C_ops.elu(x, 'alpha', alpha)
122 123 124 125

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'elu')
    helper = LayerHelper("elu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
126 127 128 129 130 131
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha},
    )
132 133 134
    return out


135
@inplace_apis_in_dygraph_only
136 137 138 139 140
def elu_(x, alpha=1.0, name=None):
    r"""
    Inplace version of ``elu`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_elu`.
    """
141
    assert alpha >= 0.0, "elu_ only support alpha >= 0, please use elu instead."
142
    if in_dygraph_mode():
143 144
        return _C_ops.elu_(x, alpha)
    return _legacy_C_ops.elu_(x, 'alpha', alpha)
145 146


147
def gelu(x, approximate=False, name=None):
148
    r"""
149 150
    gelu activation.

151 152
    The activation function of Gelu is calculated element by element. More information refers to :ref: `Gaussian Error Linear Units`.

153
    if approximate is True
154 155 156

    .. math::

157
        gelu(x) = 0.5 * x * (1 + tanh(\sqrt{\frac{2}{\pi}} * (x + 0.044715x^{3})))
158

159
    else
160 161 162

    .. math::

163
        gelu(x) = 0.5 * x * (1 + erf(\frac{x}{\sqrt{2}}))
164

165 166
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
167 168
        approximate (bool, optional): Whether to enable approximation. Default is False.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
169

170 171
    Returns:
        A Tensor with the same data type and shape as ``x`` .
172

173 174 175
    Examples:
        .. code-block:: python

176 177
            import paddle
            import paddle.nn.functional as F
178

Z
zhupengyang 已提交
179 180 181 182 183 184 185
            x = paddle.to_tensor([[-1, 0.5], [1, 1.5]])
            out1 = F.gelu(x)
            # [[-0.15865529,  0.34573123],
            #  [ 0.84134471,  1.39978933]]
            out2 = F.gelu(x, True)
            # [[-0.15880799,  0.34571400],
            #  [ 0.84119201,  1.39957154]]
186 187
    """

188
    if in_dygraph_mode():
189
        return _C_ops.gelu(x, approximate)
190 191

    if _in_legacy_dygraph():
192
        return _legacy_C_ops.gelu(x, 'approximate', approximate)
193 194 195 196

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'gelu')
    helper = LayerHelper("gelu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
197 198 199 200 201 202
    helper.append_op(
        type='gelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'approximate': approximate},
    )
203 204 205
    return out


206
def hardshrink(x, threshold=0.5, name=None):
207
    r"""
208 209 210 211 212
    hard shrinkage activation

    .. math::

        hardshrink(x)=
213 214 215 216 217 218 219
            \left\{
                \begin{array}{rcl}
                x,&  &if \ {x > threshold}  \\
                x,&  &if \ {x < -threshold}   \\
                0,&  &if \ {others} &
                \end{array}
            \right.
220 221 222

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
223 224
        threshold (float, optional): The value of threshold for hardthrink. Default is 0.5.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
225 226 227 228 229 230 231

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

232 233
            import paddle
            import paddle.nn.functional as F
234

Z
zhupengyang 已提交
235
            x = paddle.to_tensor([-1, 0.3, 2.5])
236
            out = F.hardshrink(x) # [-1., 0., 2.5]
237 238

    """
H
hong 已提交
239
    if in_dygraph_mode():
240
        return _C_ops.hardshrink(x, threshold)
H
hong 已提交
241 242

    if _in_legacy_dygraph():
243
        return _legacy_C_ops.hard_shrink(x, 'threshold', threshold)
244

245 246 247
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'hardshrink'
    )
248 249
    helper = LayerHelper('hardshrink', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
250 251 252 253 254 255
    helper.append_op(
        type='hard_shrink',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold},
    )
256 257 258
    return out


259
def hardtanh(x, min=-1.0, max=1.0, name=None):
260
    r"""
261
    hardtanh activation. Calculate the `hardtanh` of input `x`.
262 263 264

    .. math::

265 266 267 268 269 270 271 272
        hardtanh(x)=
            \left\{
                \begin{array}{cll}
                    max,& & \text{if } x > max \\
                    min,& & \text{if } x < min \\
                    x,& & \text{otherwise}
                \end{array}
            \right.
273

274
    Parameters:
275 276 277
        x (Tensor): The input Tensor with data type float32, float64.
        min (float, optional): The minimum value of the linear region range. Default is -1.
        max (float, optional): The maximum value of the linear region range. Default is 1.
278
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
279 280 281 282 283 284 285 286 287 288

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

289
            x = paddle.to_tensor([-1.5, 0.3, 2.5])
290 291 292
            out = F.hardtanh(x) # [-1., 0.3, 1.]
    """

H
hong 已提交
293
    if in_dygraph_mode():
294
        return _C_ops.hardtanh(x, min, max)
H
hong 已提交
295 296

    if _in_legacy_dygraph():
297
        return _legacy_C_ops.brelu(x, 't_min', min, 't_max', max)
298

299 300 301
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'hardtanh'
    )
302 303 304

    helper = LayerHelper('hardtanh', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
305 306 307 308 309 310
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': min, 't_max': max},
    )
311 312 313
    return out


314
def hardsigmoid(x, slope=0.1666667, offset=0.5, name=None):
315
    r"""
316
    hardsigmoid activation. Calculate the `hardsigmoid` of input `x`.
317 318 319 320 321 322
    A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
    which is much faster than sigmoid.

    .. math::

        hardsigmoid(x)=
323 324 325 326 327 328 329
            \left\{
                \begin{array}{lcl}
                0, & &\text{if } \ x \leq -3 \\
                1, & &\text{if } \ x \geq 3 \\
                slope * x + offset, & &\text{otherwise}
                \end{array}
            \right.
330 331 332

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
333 334
        slope (float, optional): The slope of hardsigmoid function. Default is 0.1666667.
        offset (float, optional): The offset of hardsigmoid function. Default is 0.5.
335
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
336 337 338 339 340 341 342 343 344 345 346 347 348 349

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.to_tensor([-4., 5., 1.])
            out = F.hardsigmoid(x) # [0., 1., 0.666667]
    """

H
hong 已提交
350
    if in_dygraph_mode():
351
        return _C_ops.hardsigmoid(x, slope, offset)
H
hong 已提交
352 353

    if _in_legacy_dygraph():
354
        return _legacy_C_ops.hard_sigmoid(x, 'slope', slope, 'offset', offset)
355

356 357 358
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'hardsigmoid'
    )
359 360 361

    helper = LayerHelper('hardsigmoid', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
362 363 364 365 366 367
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope, 'offset': offset},
    )
368 369 370 371
    return out


def hardswish(x, name=None):
372
    r"""
373 374 375
    hardswish activation. hardswish is proposed in MobileNetV3, and performs
    better in computational stability and efficiency compared to swish function.
    For more details please refer to: https://arxiv.org/pdf/1905.02244.pdf
376 377 378 379

    .. math::

        hardswish(x)=
380 381 382 383 384 385 386
            \left\{
                \begin{array}{cll}
                0 &, & \text{if } x \leq -3 \\
                x &, & \text{if } x \geq 3 \\
                \frac{x(x+3)}{6} &, & \text{otherwise}
                \end{array}
            \right.
387 388 389

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
390
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
391 392 393 394 395 396 397 398 399 400 401 402 403 404

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.to_tensor([-4., 5., 1.])
            out = F.hardswish(x) # [0., 5., 0.666667]
    """

405
    if _in_legacy_dygraph():
406
        return _legacy_C_ops.hard_swish(x)
407
    if in_dygraph_mode():
408
        return _C_ops.hardswish(x)
409

410 411 412
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'hardswish'
    )
413 414 415 416 417 418 419

    helper = LayerHelper('hardswish', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='hard_swish', inputs={'X': x}, outputs={'Out': out})
    return out


420
def leaky_relu(x, negative_slope=0.01, name=None):
421
    r"""
422
    leaky_relu activation. The calculation formula is:
423

424
    .. math::
425 426 427 428 429 430 431
        leaky\_relu(x)=
        \left\{
            \begin{array}{rcl}
                x, & & if \ x >= 0 \\
                negative\_slope * x, & & otherwise \\
            \end{array}
        \right.
432 433 434 435 436

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        negative_slope (float, optional): Slope of the activation function at
            :math:`x < 0` . Default is 0.01.
437
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
438 439 440 441 442 443 444 445 446 447

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

Z
zhupengyang 已提交
448
            x = paddle.to_tensor([-2., 0., 1.])
449 450 451
            out = F.leaky_relu(x)
            print(out)
            # [-0.02, 0., 1.]
452 453

    """
454
    if in_dygraph_mode():
455
        return _C_ops.leaky_relu(x, negative_slope)
456 457

    if _in_legacy_dygraph():
458
        return _legacy_C_ops.leaky_relu(x, 'alpha', negative_slope)
459

460 461 462
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'leaky_relu'
    )
463 464
    helper = LayerHelper('leaky_relu', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
465 466 467 468 469 470
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': negative_slope},
    )
471 472 473
    return out


474
def prelu(x, weight, data_format="NCHW", name=None):
475 476 477 478 479 480 481 482 483 484 485
    """
    prelu activation.

    .. math::

        prelu(x) = max(0, x) + weight * min(0, x)

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        weight (Tensor): The learnable parameter with data type same as ``x``.
            The weight shape is [1] or [in], where `in` is the input channel of ``x``.
486
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
487 488
        data_format(str, optional): Data format that specifies the layout of input.
            It may be "NC", "NCL", "NCHW", "NCDHW", "NLC", "NHWC" or "NDHWC". Default: "NCHW".
489 490 491 492 493 494 495 496 497 498

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

499
            data = paddle.to_tensor([[[[-2.0,  3.0, -4.0,  5.0],
Z
zhupengyang 已提交
500 501 502 503
                               [ 3.0, -4.0,  5.0, -6.0],
                               [-7.0, -8.0,  8.0,  9.0]],
                              [[ 1.0, -2.0, -3.0,  4.0],
                               [-5.0,  6.0,  7.0, -8.0],
504 505 506 507 508
                               [ 6.0,  7.0,  8.0,  9.0]]]], dtype='float32')

            w = paddle.to_tensor([0.25], dtype='float32')
            out = F.prelu(data, w)
            print(out)
509 510 511 512 513 514 515 516
            # [[[[-0.5 ,  3.  , -1.  ,  5.  ],
            #    [ 3.  , -1.  ,  5.  , -1.5 ],
            #    [-1.75, -2.  ,  8.  ,  9.  ]],
            #   [[ 1.  , -0.5 , -0.75,  4.  ],
            #    [-1.25,  6.  ,  7.  , -2.  ],
            #    [ 6.  ,  7.  ,  8.  ,  9.  ]]]]
    """
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'prelu')
517 518 519
    check_variable_and_dtype(
        weight, 'weight', ['float16', 'float32', 'float64'], 'prelu'
    )
520

521 522 523
    assert (
        len(weight.shape) == 1
    ), "The dim count of weight shape should be 1 in prelu()."
524 525 526

    mode = 'all'
    if weight.shape[0] > 1:
527 528

        true_data_format = [
529 530 531 532 533 534 535
            'NC',
            'NCL',
            'NCHW',
            'NCDHW',
            'NLC',
            'NHWC',
            'NDHWC',
536 537 538 539
        ]
        if data_format not in true_data_format:
            raise ValueError(
                "data_format must be one of 'NC', 'NCL', 'NCHW', 'NCDHW', "
540 541
                "'NLC', 'NHWC', 'NDHWC' but receive {}".format(data_format)
            )
542 543 544

        data_format = 'NCHW' if data_format[1] == 'C' else 'NHWC'

545 546 547
        assert (
            len(x.shape) > 1
        ), "The dim count of x should be equal or larger than 2 in prelu() when weight shape is not [1]."
548

549
        # NOTE(GuoxiaWang): support NHWC data format
550
        if data_format == 'NHWC':
551 552 553
            assert (
                weight.shape[0] == x.shape[-1]
            ), "The weight size should be equal to x input channel in prelu() when weight shape is not [1]."
554
        else:
555 556 557
            assert (
                weight.shape[0] == x.shape[1]
            ), "The weight size should be equal to x input channel in prelu() when weight shape is not [1]."
558 559
        mode = 'channel'

560
    if in_dygraph_mode():
561
        return _C_ops.prelu(x, weight, data_format, mode)
562
    if _in_legacy_dygraph():
563 564 565
        return _legacy_C_ops.prelu(
            x, weight, 'mode', mode, 'data_format', data_format
        )
566

567
    helper = LayerHelper('prelu', **locals())
568
    out = helper.create_variable_for_type_inference(x.dtype)
569 570 571 572 573 574
    helper.append_op(
        type="prelu",
        inputs={"X": x, "Alpha": weight},
        outputs={"Out": out},
        attrs={"mode": mode, "data_format": data_format},
    )
575 576 577
    return out


578
def rrelu(x, lower=1.0 / 8.0, upper=1.0 / 3.0, training=True, name=None):
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
    r"""
    rrelu activation.

    Applies the randomized leaky rectified liner unit function to improve generalization performance,
    as described in the paper:
    `Empirical Evaluation of Rectified Activations in Convolutional Network <https://arxiv.org/abs/1505.00853>`_

    During training, randomly samples the negative slope for activation values as described below:

    .. math::

        rrelu(x)=
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    a * x, & & otherwise \\
                \end{array}
            \right.

    where :math:`x` is the input tensor,
    :math:`a` is randomly sampled from uniform distribution in range (:math:`lower`, :math:`upper`),

    In the test phase, the negative slope will take the average value of :math:`lower` and :math:`upper`:

    .. math::

        rrelu(x)=
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    (lower + upper) * 0.5 * x, & & otherwise \\
                \end{array}
            \right.

    where :math:`x` is the input tensor,
    :math:`lower` and :math:`upper` are the bounds of uniform distribution.

    Parameters:
        x (Tensor): The input Tensor with data type float16, float32, float64.
        lower (float, optional): The lower bound of uniform distribution. Default: 0.125.
        upper (float, optional): The upper bound of uniform distribution. Default: 0.333.
        training (bool, optional): Current mode is in training or others.  Default is True.
621
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input_tensor = paddle.to_tensor([[[[-2.0,  3.0, -4.0,  5.0],
                                            [ 3.0, -4.0,  5.0, -6.0],
                                            [-7.0, -8.0,  8.0,  9.0]],
                                            [[ 1.0, -2.0, -3.0,  4.0],
                                            [-5.0,  6.0,  7.0, -8.0],
                                            [ 6.0,  7.0,  8.0,  9.0]]]], dtype='float32')

            out = F.rrelu(input_tensor, 0.1, 0.3)
640
            print(out)
641 642 643 644 645 646 647 648 649
            #[[[[-0.20000899  3.         -0.8810822   5.        ]
            #   [ 3.         -0.55175185  5.         -1.0776101 ]
            #   [-1.0680687  -1.9896201   8.          9.        ]]
            #  [[ 1.         -0.5238267  -0.65515125  4.        ]
            #   [-1.3766339   6.          7.         -2.3465784 ]
            #   [ 6.          7.          8.          9.        ]]]]
    """

    if not in_dynamic_mode():
650 651 652
        check_variable_and_dtype(
            x, 'X', ['float16', 'float32', 'float64'], 'rrelu'
        )
653 654 655

    if not isinstance(lower, float) or not isinstance(upper, float):
        raise TypeError(
656 657 658 659
            "The lower and upper values must be float type. Received: lower {}, upper {}.".format(
                lower, upper
            )
        )
660 661 662

    if lower < 0 or lower > 1:
        raise ValueError(
663 664 665 666
            "The lower value must be no less than zero or greater than one. Received: {}.".format(
                lower
            )
        )
667 668 669

    if upper < lower:
        raise ValueError(
670 671 672 673
            "The upper value must be greater than lower value. Received: lower {}, upper {}.".format(
                lower, upper
            )
        )
674 675 676 677

    if upper > 1:
        raise ValueError(
            "The upper value must be no greater than one. Received: {}.".format(
678 679 680
                upper
            )
        )
681 682 683 684

    is_test = not training

    if _in_legacy_dygraph():
685 686 687
        out, noise = _legacy_C_ops.rrelu(
            x, 'lower', lower, 'upper', upper, 'is_test', is_test
        )
688 689 690 691 692 693
        return out

    helper = LayerHelper('rrelu', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    noise = helper.create_variable_for_type_inference(dtype=x.dtype)
    attrs = {'lower': lower, 'upper': upper, 'is_test': is_test}
694 695 696 697 698 699
    helper.append_op(
        type='rrelu',
        inputs={"X": x},
        outputs={"Out": out, "Noise": noise},
        attrs=attrs,
    )
700 701 702
    return out


703
def relu(x, name=None):
704
    """
705
    relu activation.
706

707
    .. math::
708 709 710 711

        out = max(x, 0)

    Parameters:
712
        x (Tensor): The input Tensor with data type float32, float64.
713
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
714 715

    Returns:
716
        A Tensor with the same data type and shape as ``x`` .
717 718 719 720

    Examples:
        .. code-block:: python

721 722
            import paddle
            import paddle.nn.functional as F
723

724 725 726 727
            x = paddle.to_tensor([-2, 0, 1], dtype='float32')
            out = F.relu(x)
            print(out)
            # [0., 0., 1.]
728 729
    """

730
    if in_dygraph_mode():
W
wanghuancoder 已提交
731
        return _C_ops.relu(x)
732 733
    if _in_legacy_dygraph():
        return _legacy_C_ops.relu(x)
734
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'relu')
735
    helper = LayerHelper('relu', **locals())
736 737 738 739 740
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='relu', inputs={'X': x}, outputs={'Out': out})
    return out


741
@inplace_apis_in_dygraph_only
742 743 744 745 746
def relu_(x, name=None):
    """
    Inplace version of ``relu`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_relu`.
    """
747 748
    if in_dygraph_mode():
        return _C_ops.relu_(x)
749 750
    if _in_legacy_dygraph():
        return _legacy_C_ops.relu_(x)
751 752


753
def log_sigmoid(x, name=None):
754
    r"""
755
    log_sigmoid activation.
756

757
    .. math::
758

759
        log\_sigmoid(x) = log \frac{1}{1 + e^{-x}}
760

761 762
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
763
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
764

765 766
    Returns:
        A Tensor with the same data type and shape as ``x`` .
767

768 769 770
    Examples:
        .. code-block:: python

771 772
            import paddle
            import paddle.nn.functional as F
773

774 775
            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = F.log_sigmoid(x) # [-0.313262 -0.126928 -0.0485874 -0.0181499]
776 777
    """

H
hong 已提交
778
    if in_dygraph_mode():
779
        return _C_ops.logsigmoid(x)
H
hong 已提交
780 781

    if _in_legacy_dygraph():
782
        return _legacy_C_ops.logsigmoid(x)
783

784 785 786
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'log_sigmoid'
    )
787
    helper = LayerHelper("log_sigmoid", **locals())
788 789 790
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='logsigmoid', inputs={'X': x}, outputs={'Out': out})
    return out
791 792


793
def maxout(x, groups, axis=1, name=None):
794
    r"""
795 796 797 798 799 800 801 802
    maxout activation.

    Assumed the input shape is (N, Ci, H, W).
    The output shape is (N, Co, H, W).
    Then Co = Ci/groups and the operator formula is as follows:

    .. math::

803 804 805 806 807 808 809 810 811
        \begin{array}{l}
        &out_{si+j} = \max_{k} x_{gsi + sk + j} \\
        &g = groups \\
        &s = \frac{input.size}{num\_channels} \\
        &0 \le i < \frac{num\_channels}{groups} \\
        &0 \le j < s \\
        &0 \le k < groups
        \end{array}

812 813 814 815 816 817 818 819 820 821 822 823

    Parameters:
        x (Tensor): The input is 4-D Tensor with shape [N, C, H, W] or [N, H, W, C], the data type
            of input is float32 or float64.
        groups (int, optional): The groups number of maxout. `groups` specifies the
            index of channel dimension where maxout will be performed. This must be
            a factor of number of features. Default is 1.
        axis (int, optional): The axis along which to perform maxout calculations.
            It should be 1 when data format is NCHW, be -1 or 3 when data format
            is NHWC. If ``axis`` < 0, it works the same way as :math:`axis + D` ,
            where D is the dimensions of ``x`` . ``axis`` only supports 1, 3 or -1.
            Default is 1.
824
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846

    Returns:
        A Tensor with the same data type as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.rand([1, 2, 3, 4])
            # [[[[0.5002636  0.22272532 0.17402348 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.02879342 0.88725346 0.61093384 0.38833922]]
            #   [[0.5231306  0.03807496 0.91661984 0.15602879]
            #    [0.666127   0.616567   0.30741522 0.24044901]
            #    [0.7142536  0.7351477  0.31588817 0.23782359]]]]
            out = F.maxout(x, groups=2)
            # [[[[0.5231306  0.22272532 0.91661984 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.7142536  0.88725346 0.61093384 0.38833922]]]]
    """
847
    if _in_legacy_dygraph():
848
        return _legacy_C_ops.maxout(x, 'groups', groups, 'axis', axis)
849
    if in_dygraph_mode():
850
        return _C_ops.maxout(x, groups, axis)
851 852 853 854
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'maxout')
    if axis not in [1, -1, 3]:
        raise ValueError(
            "Attr(axis) should be 1 when data format is NCHW, -1 or 3 when data format is NHWC. Received "
855 856
            "Attr(axis): %s." % str(axis)
        )
857 858 859 860 861
    if axis == -1:
        axis = 3

    helper = LayerHelper('maxout', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
862 863 864 865 866 867
    helper.append_op(
        type='maxout',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'groups': groups, 'axis': axis},
    )
868 869 870
    return out


871 872 873 874 875 876
def relu6(x, name=None):
    """
    relu6 activation

    .. math::

877
        relu6(x) = min(max(0,x), 6)
878

879
    Parameters:
880
        x (Tensor): The input Tensor with data type float32, float64.
881
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
882 883 884 885 886 887 888

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

889 890
            import paddle
            import paddle.nn.functional as F
891

892 893 894 895
            x = paddle.to_tensor([-1, 0.3, 6.5])
            out = F.relu6(x)
            print(out)
            # [0, 0.3, 6]
896 897
    """
    threshold = 6.0
898
    if in_dygraph_mode():
899
        return _C_ops.relu6(x)
Z
zhiboniu 已提交
900
    if in_dynamic_mode():
901
        return _legacy_C_ops.relu6(x, 'threshold', threshold)
902 903 904 905

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'relu6')
    helper = LayerHelper('relu6', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
906 907 908 909 910 911
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold},
    )
912 913 914
    return out


915 916 917 918 919 920
def selu(
    x,
    scale=1.0507009873554804934193349852946,
    alpha=1.6732632423543772848170429916717,
    name=None,
):
921
    r"""
922 923 924 925
    selu activation

    .. math::

926
        selu(x)= scale *
927 928 929 930 931 932
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * e^{x} - alpha,& &\text{if } \ x <= 0
                \end{array}
            \right.
933

934
    Parameters:
935
        x (Tensor): The input Tensor with data type float32, float64.
936 937
        scale (float, optional): The value of scale(must be greater than 1.0) for selu. Default is 1.0507009873554804934193349852946
        alpha (float, optional): The value of alpha(must be no less than zero) for selu. Default is 1.6732632423543772848170429916717
938
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
939 940 941 942 943 944 945

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

946 947
            import paddle
            import paddle.nn.functional as F
948

949 950 951 952
            x = paddle.to_tensor([[0.0, 1.0],[2.0, 3.0]])
            out = F.selu(x)
            print(out)
            # [[0, 1.050701],[2.101402, 3.152103]]
953
    """
954 955
    if scale <= 1.0:
        raise ValueError(
956 957
            "The scale must be greater than 1.0. Received: {}.".format(scale)
        )
958 959 960

    if alpha < 0:
        raise ValueError(
961 962
            "The alpha must be no less than zero. Received: {}.".format(alpha)
        )
963

H
hong 已提交
964
    if in_dygraph_mode():
965
        return _C_ops.selu(x, scale, alpha)
H
hong 已提交
966
    if _in_legacy_dygraph():
967
        return _legacy_C_ops.selu(x, 'scale', scale, 'alpha', alpha)
968 969 970 971

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'selu')
    helper = LayerHelper('selu', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
972 973 974 975 976 977
    helper.append_op(
        type='selu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale': scale, 'alpha': alpha},
    )
978 979 980
    return out


M
minghaoBD 已提交
981
def silu(x, name=None):
982 983 984 985 986
    r"""
    silu activation

    .. math::

M
minghaoBD 已提交
987
        silu(x) = \frac{x}{1 + e^{-x}}
988

989 990
    Where :math:`x` is the input Tensor.

M
minghaoBD 已提交
991 992
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
993
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
994

M
minghaoBD 已提交
995
    Returns:
996
        A Tensor with the same data type and shape as :attr:`x`.
997

M
minghaoBD 已提交
998 999
    Examples:
        .. code-block:: python
1000 1001 1002

            import paddle
            import paddle.nn.functional as F
1003

1004 1005
            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = F.silu(x) # [ 0.731059, 1.761594, 2.857722, 3.928055 ]
M
minghaoBD 已提交
1006 1007
    """

1008
    if in_dygraph_mode():
W
wanghuancoder 已提交
1009
        return _C_ops.silu(x)
1010 1011
    if _in_legacy_dygraph():
        return _legacy_C_ops.silu(x)
M
minghaoBD 已提交
1012 1013 1014 1015 1016 1017 1018 1019

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'silu')
    helper = LayerHelper("silu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='silu', inputs={'X': x}, outputs={'Out': out})
    return out


1020
def softmax(x, axis=-1, dtype=None, name=None):
1021
    r"""
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
    This operator implements the softmax layer. The calculation process is as follows:

    1. The dimension :attr:`axis` of ``x`` will be permuted to the last.

    2. Then ``x`` will be logically flattened to a 2-D matrix. The matrix's second
    dimension(row length) is the same as the dimension :attr:`axis` of ``x``,
    and the first dimension(column length) is the product of all other dimensions
    of ``x``. For each row of the matrix, the softmax operator squashes the
    K-dimensional(K is the width of the matrix, which is also the size of ``x``'s
    dimension :attr:`axis`) vector of arbitrary real values to a K-dimensional
    vector of real values in the range [0, 1] that add up to 1.

    3. After the softmax operation is completed, the inverse operations of steps 1 and 2
    are performed to restore the two-dimensional matrix to the same dimension as the ``x`` .

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

    For each row :math:`i` and each column :math:`j` in the matrix, we have:

    .. math::

1047
        softmax[i, j] = \frac{\exp(x[i, j])}{\sum_j(exp(x[i, j])}
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095

    Example:

    .. code-block:: text

        Case 1:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]

          Attrs:
            axis = -1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
                        [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]

        Case 2:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]
          Attrs:
            axis = 1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
                         [0.01786798, 0.01786798, 0.04661262, 0.04661262],
                         [0.97555875, 0.97555875, 0.93623955, 0.93623955]],
                        [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
                         [0.26762315, 0.26762315, 0.26762315, 0.26762315],
                         [0.72747516, 0.72747516, 0.72747516, 0.72747516]]]

1096 1097
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
1098
        axis (int, optional): The axis along which to perform softmax
1099
            calculations. It should be in range [-D, D), where D is the
1100
            rank of ``x`` . If ``axis`` < 0, it works the same way as
1101
            :math:`axis + D` . Default is -1.
1102
        dtype (str, optional): The data type of the output tensor, can be float32, float64.
1103
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1104 1105

    Returns:
1106 1107
        A Tensor with the same shape and data type (use ``dtype`` if it is
        specified) as x.
1108 1109 1110 1111

    Examples:
        .. code-block:: python

1112 1113
            import paddle
            import paddle.nn.functional as F
1114

1115
            x = paddle.to_tensor([[[2.0, 3.0, 4.0, 5.0],
1116 1117 1118 1119
                        [3.0, 4.0, 5.0, 6.0],
                        [7.0, 8.0, 8.0, 9.0]],
                        [[1.0, 2.0, 3.0, 4.0],
                        [5.0, 6.0, 7.0, 8.0],
1120
                        [6.0, 7.0, 8.0, 9.0]]],dtype='float32')
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
            out1 = F.softmax(x)
            out2 = F.softmax(x, dtype='float64')
            # out1's data type is float32; out2's data type is float64
            # out1 and out2's value is as follows:
            # [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
            # [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]
1131
    """
1132 1133 1134

    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
1135
    use_cudnn = True
1136

H
hong 已提交
1137
    if in_dygraph_mode():
1138
        outs_cast = x if dtype is None else _C_ops.cast(x, dtype)
1139
        return _C_ops.softmax(outs_cast, axis)
H
hong 已提交
1140 1141

    if _in_legacy_dygraph():
1142 1143 1144
        outs_cast = (
            x
            if dtype is None
1145
            else _legacy_C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
1146 1147 1148 1149
        )
        return _legacy_C_ops.softmax(
            outs_cast, 'axis', axis, 'use_cudnn', use_cudnn
        )
1150 1151

    if dtype is None:
1152 1153 1154
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'softmax'
        )
1155
    else:
1156
        check_dtype(
1157 1158 1159 1160 1161 1162
            dtype,
            'dtype',
            ['float32', 'float64'],
            'softmax',
            'If dtype is not None, it only support float32 or float64.',
        )
1163 1164 1165 1166 1167

    helper = LayerHelper("softmax", **locals())
    outs_cast = x
    if dtype is not None:
        outs_cast = helper.create_variable_for_type_inference(dtype)
1168 1169 1170 1171 1172 1173
        helper.append_op(
            type='cast',
            inputs={'X': x},
            outputs={'Out': outs_cast},
            attrs={'in_dtype': x.dtype, 'out_dtype': dtype},
        )
1174 1175

    outs_softmax = helper.create_variable_for_type_inference(outs_cast.dtype)
1176 1177 1178 1179 1180 1181
    helper.append_op(
        type='softmax',
        inputs={'X': outs_cast},
        outputs={'Out': outs_softmax},
        attrs={'axis': axis, 'use_cudnn': use_cudnn},
    )
1182 1183

    return outs_softmax
1184 1185


1186
@inplace_apis_in_dygraph_only
1187 1188 1189 1190 1191 1192 1193 1194
def softmax_(x, axis=-1, dtype=None, name=None):
    r"""
    Inplace version of ``softmax`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_softmax`.
    """
    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
    use_cudnn = True
1195 1196

    if in_dygraph_mode():
1197 1198 1199
        outs_cast = (
            x
            if dtype is None
1200
            else _legacy_C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
1201
        )
1202
        return _C_ops.softmax_(outs_cast, axis)
1203 1204

    if _in_legacy_dygraph():
1205 1206 1207
        outs_cast = (
            x
            if dtype is None
1208
            else _legacy_C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
1209 1210 1211 1212
        )
        return _legacy_C_ops.softmax_(
            outs_cast, 'axis', axis, 'use_cudnn', use_cudnn
        )
1213 1214


1215
def softplus(x, beta=1, threshold=20, name=None):
1216
    r"""
1217 1218 1219
    softplus activation

    .. math::
1220 1221 1222 1223
        softplus(x)=\begin{cases}
                \frac{1}{\beta} * \log(1 + e^{\beta * x}),&x\leqslant\frac{\varepsilon}{\beta};\\
                x,&x>\frac{\varepsilon}{\beta}.
            \end{cases}
1224

1225
    Parameters:
1226
        x (Tensor): The input Tensor with data type float32, float64.
1227 1228
        beta (float, optional): The value of :math:`\beta` for softplus. Default is 1
        threshold (float, optional): The value of :math:`\varepsilon` for softplus. Default is 20
1229
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1230 1231 1232 1233 1234 1235 1236

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1237 1238
            import paddle
            import paddle.nn.functional as F
1239

1240
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3], dtype='float32')
1241
            out = F.softplus(x) # [0.513015, 0.598139, 0.744397, 0.854355]
1242
    """
W
Wang Bojun 已提交
1243 1244

    if in_dygraph_mode():
1245
        return _C_ops.softplus(x, beta, threshold)
W
Wang Bojun 已提交
1246 1247

    if _in_legacy_dygraph():
1248
        return _legacy_C_ops.softplus(x, 'beta', beta, 'threshold', threshold)
1249

1250 1251 1252
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'softplus'
    )
1253 1254
    helper = LayerHelper('softplus', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
1255 1256 1257 1258 1259 1260
    helper.append_op(
        type='softplus',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'beta': beta, 'threshold': threshold},
    )
1261 1262 1263 1264
    return out


def softshrink(x, threshold=0.5, name=None):
1265
    r"""
1266 1267 1268 1269
    softshrink activation

    .. math::

1270
        softshrink(x)=
1271 1272 1273 1274 1275 1276 1277
            \left\{
                \begin{array}{rcl}
                x - threshold,& & \text{if } x > threshold \\
                x + threshold,& & \text{if } x < -threshold \\
                0,& &  \text{otherwise}
            \end{array}
            \right.
1278

1279
    Parameters:
1280 1281
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold(must be no less than zero) for softplus. Default is 0.5
1282
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1283 1284 1285 1286 1287 1288 1289

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1290 1291
            import paddle
            import paddle.nn.functional as F
1292

1293 1294 1295 1296 1297
            x = paddle.to_tensor([-0.9, -0.2, 0.1, 0.8])
            out = F.softshrink(x)
            print(out)
            # Tensor(shape=[4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [-0.39999998,  0.        ,  0.        ,  0.30000001])
1298
    """
1299 1300 1301
    if threshold < 0:
        raise ValueError(
            "The threshold must be no less than zero. Received: {}.".format(
1302 1303 1304
                threshold
            )
        )
1305

1306
    if in_dygraph_mode():
1307
        return _C_ops.softshrink(x, threshold)
1308
    if _in_legacy_dygraph():
1309
        return _legacy_C_ops.softshrink(x, 'lambda', threshold)
1310

1311 1312 1313
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'softshrink'
    )
1314 1315
    helper = LayerHelper('softshrink', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
1316 1317 1318 1319 1320 1321
    helper.append_op(
        type='softshrink',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'lambda': threshold},
    )
1322 1323 1324 1325
    return out


def softsign(x, name=None):
1326
    r"""
1327 1328 1329 1330
    softsign activation

    .. math::

1331
        softsign(x) = \frac{x}{1 + |x|}
1332

1333
    Parameters:
1334
        x (Tensor): The input Tensor with data type float32, float64.
1335
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1336 1337 1338 1339 1340 1341 1342

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1343 1344
            import paddle
            import paddle.nn.functional as F
1345

1346 1347 1348 1349 1350
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = F.softsign(x)
            print(out)
            # Tensor(shape=[4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [-0.28571430, -0.16666666,  0.09090909,  0.23076925])
1351
    """
1352
    if in_dygraph_mode():
W
wanghuancoder 已提交
1353
        return _C_ops.softsign(x)
1354 1355
    if in_dynamic_mode():
        return _legacy_C_ops.softsign(x)
1356

1357 1358 1359
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'softsign'
    )
1360 1361 1362 1363 1364 1365
    helper = LayerHelper('softsign', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='softsign', inputs={'X': x}, outputs={'Out': out})
    return out


1366
def swish(x, name=None):
1367
    r"""
1368 1369 1370 1371
    swish activation.

    .. math::

1372
        swish(x) = \frac{x}{1 + e^{-x}}
1373 1374 1375

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
1376
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

1387 1388 1389 1390 1391
            x = paddle.to_tensor([-2., 0., 1.])
            out = F.swish(x)
            print(out)
            # Tensor(shape=[3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [-0.23840584,  0.        ,  0.73105854])
1392
    """
1393
    if in_dygraph_mode():
1394
        return _C_ops.swish(x)
1395
    if _in_legacy_dygraph():
1396
        return _legacy_C_ops.swish(x, 'beta', 1.0)
1397 1398 1399 1400

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'swish')
    helper = LayerHelper('swish', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
1401 1402 1403
    helper.append_op(
        type='swish', inputs={'X': x}, outputs={'Out': out}, attrs={'beta': 1.0}
    )
1404 1405 1406
    return out


1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
def mish(x, name=None):
    r"""
    mish activation.

    ..  math::

        softplus(x) = \begin{cases}
                x, \text{if } x > \text{threshold} \\
                \ln(1 + e^{x}),  \text{otherwise}
            \end{cases}

        mish(x) = x * \tanh(softplus(x))
1419

1420 1421
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
1422
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

W
wangxinxin08 已提交
1433
            x = paddle.to_tensor([-5., 0., 5.])
1434 1435
            out = F.mish(x) # [-0.03357624, 0., 4.99955208]
    """
1436
    if in_dygraph_mode():
1437
        return _C_ops.mish(x, 20)
1438
    if _in_legacy_dygraph():
1439
        return _legacy_C_ops.mish(x)
1440 1441 1442 1443 1444 1445 1446 1447

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'mish')
    helper = LayerHelper('mish', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='mish', inputs={'X': x}, outputs={'Out': out})
    return out


1448 1449 1450 1451 1452 1453
def tanhshrink(x, name=None):
    """
    tanhshrink activation

    .. math::

1454
        tanhshrink(x) = x - tanh(x)
1455 1456 1457

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
1458
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1459 1460 1461 1462 1463 1464 1465

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1466 1467
            import paddle
            import paddle.nn.functional as F
1468

1469 1470 1471 1472 1473
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = F.tanhshrink(x)
            print(out)
            # Tensor(shape=[4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [-0.02005106, -0.00262468,  0.00033200,  0.00868741])
1474
    """
H
hong 已提交
1475
    if in_dygraph_mode():
1476
        return _C_ops.tanh_shrink(x)
H
hong 已提交
1477 1478

    if _in_legacy_dygraph():
1479
        return _legacy_C_ops.tanh_shrink(x)
1480

1481 1482 1483
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'tanhshrink'
    )
1484 1485 1486 1487 1488 1489
    helper = LayerHelper('tanh_shrink', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='tanh_shrink', inputs={'X': x}, outputs={'Out': out})
    return out


1490
def thresholded_relu(x, threshold=1.0, name=None):
1491
    r"""
1492 1493 1494 1495
    thresholded relu activation.

    .. math::

1496
        thresholded\_relu(x) =
1497 1498 1499 1500 1501 1502 1503
            \left\{
                \begin{array}{rl}
                x,& \text{if } \ x > threshold \\
                0,& \text{otherwise}
                \end{array}
            \right.

1504 1505 1506 1507

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold for thresholded_relu. Default is 1.0
1508
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

1519 1520 1521 1522 1523
            x = paddle.to_tensor([2., 0., 1.])
            out = F.thresholded_relu(x)
            print(out)
            # Tensor(shape=[3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [2., 0., 0.])
1524 1525
    """

H
hong 已提交
1526
    if in_dygraph_mode():
1527
        return _C_ops.thresholded_relu(x, threshold)
H
hong 已提交
1528 1529

    if _in_legacy_dygraph():
1530
        return _legacy_C_ops.thresholded_relu(x, 'threshold', threshold)
1531

1532 1533 1534
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'thresholded_relu'
    )
1535 1536
    helper = LayerHelper('thresholded_relu', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
1537 1538 1539 1540 1541 1542
    helper.append_op(
        type='thresholded_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold},
    )
1543 1544 1545
    return out


1546
def log_softmax(x, axis=-1, dtype=None, name=None):
1547
    r"""
1548 1549
    This operator implements the log_softmax layer. The calculation process is
    as follows:
1550 1551 1552

    .. math::

1553
        \begin{aligned}
1554 1555 1556
        log\_softmax[i, j] &= log(softmax(x)) \\
        &= log(\frac{\exp(X[i, j])}{\sum_j(\exp(X[i, j])})
        \end{aligned}
1557 1558

    Parameters:
1559 1560 1561 1562 1563 1564 1565
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` < 0, it works the same way as
            :math:`axis + D` . Default is -1.
        dtype (str|np.dtype|core.VarDesc.VarType, optional): The desired data
            type of the output tensor. If dtype is specified, ``x`` is casted
1566
            to ``dtype`` before the operation is performed. This is useful for
1567 1568 1569
            preventing data type overflows. Supported dtype: float32, float64.
            If ``dtype`` is None, the output Tensor has the same dtype as x.
            Default is None.
1570
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1571

1572
    Returns:
1573 1574
        A Tensor with the same shape and data type (use ``dtype`` if it is
        specified) as x.
1575 1576 1577 1578

    Examples:
        .. code-block:: python

1579 1580 1581
            import paddle
            import paddle.nn.functional as F

Z
zhupengyang 已提交
1582 1583 1584 1585 1586 1587
            x = [[[-2.0, 3.0, -4.0, 5.0],
                  [3.0, -4.0, 5.0, -6.0],
                  [-7.0, -8.0, 8.0, 9.0]],
                 [[1.0, -2.0, -3.0, 4.0],
                  [-5.0, 6.0, 7.0, -8.0],
                  [6.0, 7.0, 8.0, 9.0]]]
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
            x = paddle.to_tensor(x)
            out1 = F.log_softmax(x)
            out2 = F.log_softmax(x, dtype='float64')
            # out1's data type is float32; out2's data type is float64
            # out1 and out2's value is as follows:
            # [[[ -7.1278396   -2.1278396   -9.127839    -0.12783948]
            #   [ -2.1270514   -9.127051    -0.12705144 -11.127051  ]
            #   [-16.313261   -17.313261    -1.3132617   -0.31326184]]
            #  [[ -3.0518122   -6.051812    -7.051812    -0.051812  ]
            #   [-12.313267    -1.3132664   -0.3132665  -15.313267  ]
            #   [ -3.4401896   -2.4401896   -1.4401896   -0.44018966]]]
    """
1600 1601 1602

    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
1603

H
hong 已提交
1604
    if in_dygraph_mode():
1605
        if dtype is not None:
1606 1607
            x = _C_ops.cast(x, dtype)
        return _C_ops.log_softmax(x, axis)
1608

H
hong 已提交
1609 1610
    if _in_legacy_dygraph():
        if dtype is not None:
1611 1612
            x = _legacy_C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
        return _legacy_C_ops.log_softmax(x, 'axis', axis)
H
hong 已提交
1613

1614
    if dtype is None:
1615 1616 1617
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'log_softmax'
        )
1618
    else:
1619
        check_dtype(
1620 1621 1622 1623 1624 1625
            dtype,
            'dtype',
            ['float32', 'float64'],
            'log_softmax',
            'If dtype is not None, it only support float32 or float64.',
        )
1626

1627
    helper = LayerHelper("log_softmax", **locals())
1628
    out_cast = x
1629
    if dtype is not None:
1630
        out_cast = helper.create_variable_for_type_inference(dtype)
1631 1632 1633 1634 1635 1636
        helper.append_op(
            type='cast',
            inputs={'X': x},
            outputs={'Out': out_cast},
            attrs={'in_dtype': x.dtype, 'out_dtype': dtype},
        )
1637

1638
    out = helper.create_variable_for_type_inference(out_cast.dtype)
1639 1640 1641 1642 1643 1644
    helper.append_op(
        type='log_softmax',
        inputs={'X': out_cast},
        outputs={'Out': out},
        attrs={'axis': axis},
    )
1645

1646
    return out
F
Feiyu Chan 已提交
1647 1648 1649 1650


def glu(x, axis=-1, name=None):
    r"""
1651
    The gated linear unit. The input is evenly splited into 2 parts along a
F
Feiyu Chan 已提交
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
    given axis. The first part is used as the content, and the second part is
    passed through a sigmoid function then used as the gate. The output is a
    elementwise multiplication of the content and the gate.

    .. math::

        \mathrm{GLU}(a, b) = a \otimes \sigma(b)

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
1662 1663 1664
        axis (int, optional): The axis along which split the input tensor. It
            should be in range [-D, D), where D is the dimensions of ``x`` .
            If ``axis`` < 0, it works the same way as :math:`axis + D` .
F
Feiyu Chan 已提交
1665
            Default is -1.
1666
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1667

F
Feiyu Chan 已提交
1668
    Returns:
1669
        A Tensor with the same data type as x. The size of the given aixs is
F
Feiyu Chan 已提交
1670
        halved.
1671

F
Feiyu Chan 已提交
1672 1673
    Examples:
        .. code-block:: python
1674

F
Feiyu Chan 已提交
1675 1676
            import paddle
            from paddle.nn import functional as F
1677

F
Feiyu Chan 已提交
1678 1679
            x = paddle.to_tensor(
                [[-0.22014759, -1.76358426,  0.80566144,  0.04241343],
1680
                    [-1.94900405, -1.89956081,  0.17134808, -1.11280477]]
F
Feiyu Chan 已提交
1681
            )
1682 1683 1684 1685
            print(F.glu(x))
            # Tensor(shape=[2, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[-0.15216254, -0.90048921],
            #         [-1.05778778, -0.46985325]])
1686

F
Feiyu Chan 已提交
1687
    """
1688 1689 1690
    check_variable_and_dtype(
        x, 'input', ['float16', 'float32', 'float64'], "glu"
    )
F
Feiyu Chan 已提交
1691 1692 1693 1694
    a, b = chunk(x, 2, axis=axis, name=name)
    gate = sigmoid(b, name=name)
    out = paddle.multiply(a, gate, name=name)
    return out
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719


def gumbel_softmax(x, temperature=1.0, hard=False, axis=-1, name=None):
    r"""
    Samples from the Gumbel-Softmax distribution and optionally discretizes.
    temperature is denoted by t. The calculation process is as follows:

    First, generate gumbel noise:

    .. math::

        G_i = -log(-log(U_i)), U_i \sim U(0,1)

    Second, add noise to ``x``:

    .. math::

        v = [x_1 + G_1,...,x_n + G_n]

    Finally, calculate gumbel_softmax and generate samples:

    .. math::
        gumbel\_softmax(v_i)=\frac{e^{v_i/t}}{\sum_{j=1}^n{e^{v_j/t}}},i=1,2,3...n

    Parameters:
1720 1721
        x (Tensor): An N-D Tensor, the first N - 1 dimensions index into a batch
            of independent distributions and the last dimension represents
1722 1723 1724
            a vector of probabilities with datatype float32, float64.
        temperature (float, optional): non-negative scalar temperature.
            Default is 1.0.
1725 1726
        hard (bool, optional): if True, the returned samples will be discretized as
            one-hot vectors, but will be differentiated as if it is the soft sample
1727
            in autograd. Default is False.
1728
        axis (int, optional): The axis along will be calculated softmax value.
1729
            Default is -1.
1730
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1731

1732
    Returns:
1733 1734
        Sampled tensor of same shape as ``x`` from the Gumbel-Softmax distribution.
        If ``hard = True``, the returned samples will be one-hot, otherwise they will be
1735
        probability distributions that sum to 1 across ``axis``.
1736

1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            logits = paddle.randn([4, 6])
            temperature = 0.01
            gumbel_softmax = F.gumbel_softmax(logits, temperature)
            print(gumbel_softmax)
            # out's value is as follows:
            # [[0.00000001, 1.        , 0.00000000, 0.00000000, 0.00000006, 0.00000000],
            # [0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 1.        ],
            # [0.00000062, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.99999940],
            # [0.00000000, 0.00000000, 0.00000000, 0.00001258, 0.99998736, 0.00000000]]
1752

1753
    """
H
hong 已提交
1754
    if in_dygraph_mode():
1755
        return _C_ops.gumbel_softmax(x, temperature, hard, axis)
H
hong 已提交
1756

Z
zhiboniu 已提交
1757
    if in_dynamic_mode():
1758 1759 1760
        return _legacy_C_ops.gumbel_softmax(
            x, 'temperature', temperature, 'hard', hard, 'axis', axis
        )
1761 1762 1763 1764

    helper = LayerHelper("gumbel_softmax", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'gumbel_softmax')
    out = helper.create_variable_for_type_inference(x.dtype)
1765 1766 1767 1768 1769 1770
    helper.append_op(
        type='gumbel_softmax',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'temperature': temperature, 'hard': hard, 'axis': axis},
    )
1771
    return out