activation.py 58.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from ...tensor.ops import sigmoid  # noqa: F401
Z
zhiboniu 已提交
16 17
from ...tensor.math import tanh  # noqa: F401
from ...tensor.math import tanh_  # noqa: F401
18

19
from ...fluid.dygraph.inplace_utils import inplace_apis_in_dygraph_only
F
Feiyu Chan 已提交
20 21
from ...tensor.manipulation import chunk
from ...tensor.math import multiply
22

23 24
import warnings
from ...fluid.layer_helper import LayerHelper
J
Jiabin Yang 已提交
25
from ...fluid.framework import convert_np_dtype_to_dtype_
26
from ...fluid.framework import _in_legacy_dygraph, in_dygraph_mode, _non_static_mode
27
from ...fluid.data_feeder import check_variable_and_dtype, check_dtype
28
import paddle
29
from paddle import _C_ops, _legacy_C_ops, in_dynamic_mode
Z
zhiboniu 已提交
30
from paddle.framework import core
31
from paddle.fluid.framework import _in_legacy_dygraph, in_dygraph_mode
32

33 34
__all__ = []

35

36 37 38 39 40 41 42 43 44 45 46
def celu(x, alpha=1.0, name=None):
    r"""
    celu activation.

    .. math::

        celu(x) = max(0, x) + min(0, \alpha * (e^{x/\alpha}-1))

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        alpha (float, optional): The 'alpha' value of the CELU formulation. Default is 1.0.
47
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            x = paddle.to_tensor([[-1., 6.], [1., 15.6]])
            out = F.celu(x, alpha=0.2)
            # [[-0.19865242,  6.        ],
            #  [ 1.        , 15.60000038]]
    """
    if alpha == 0:
        raise ZeroDivisionError("alpha cannot be 0 for celu")

65
    if _in_legacy_dygraph():
66
        return _legacy_C_ops.celu(x, 'alpha', alpha)
67
    if in_dygraph_mode():
68
        return _C_ops.celu(x, alpha)
69 70 71 72

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'celu')
    helper = LayerHelper("celu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
73 74 75 76
    helper.append_op(type='celu',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'alpha': alpha})
77 78 79
    return out


80
def elu(x, alpha=1.0, name=None):
81
    r"""
82 83
    elu activation.

84
    .. math::
85

Z
zhupengyang 已提交
86 87 88 89 90 91 92
        elu(x)=
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * (e^{x} - 1),& &\text{if } \ x <= 0
                \end{array}
            \right.
93 94 95 96

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        alpha (float, optional): The 'alpha' value of the ELU formulation. Default is 1.0.
97
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
98

99 100
    Returns:
        A Tensor with the same data type and shape as ``x`` .
101

102 103 104
    Examples:
        .. code-block:: python

105 106
            import paddle
            import paddle.nn.functional as F
107

Z
zhupengyang 已提交
108
            x = paddle.to_tensor([[-1., 6.], [1., 15.6]])
109
            out = F.elu(x, alpha=0.2)
110 111
            # [[-0.12642411  6.        ]
            #  [ 1.          15.6      ]]
112 113
    """

114
    if in_dygraph_mode():
115
        return _C_ops.elu(x, alpha)
116 117

    if _in_legacy_dygraph():
118
        return _legacy_C_ops.elu(x, 'alpha', alpha)
119 120 121 122

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'elu')
    helper = LayerHelper("elu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
123 124 125 126
    helper.append_op(type='elu',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'alpha': alpha})
127 128 129
    return out


130
@inplace_apis_in_dygraph_only
131 132 133 134 135
def elu_(x, alpha=1.0, name=None):
    r"""
    Inplace version of ``elu`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_elu`.
    """
Z
zhupengyang 已提交
136
    assert alpha >= 0., "elu_ only support alpha >= 0, please use elu instead."
137
    if in_dygraph_mode():
138 139
        return _C_ops.elu_(x, alpha)
    return _legacy_C_ops.elu_(x, 'alpha', alpha)
140 141


142
def gelu(x, approximate=False, name=None):
143
    r"""
144 145
    gelu activation.

146 147
    The activation function of Gelu is calculated element by element. More information refers to :ref: `Gaussian Error Linear Units`.

148
    if approximate is True
149 150 151

    .. math::

152
        gelu(x) = 0.5 * x * (1 + tanh(\sqrt{\frac{2}{\pi}} * (x + 0.044715x^{3})))
153

154
    else
155 156 157

    .. math::

158
        gelu(x) = 0.5 * x * (1 + erf(\frac{x}{\sqrt{2}}))
159

160 161
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
162 163
        approximate (bool, optional): Whether to enable approximation. Default is False.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
164

165 166
    Returns:
        A Tensor with the same data type and shape as ``x`` .
167

168 169 170
    Examples:
        .. code-block:: python

171 172
            import paddle
            import paddle.nn.functional as F
173

Z
zhupengyang 已提交
174 175 176 177 178 179 180
            x = paddle.to_tensor([[-1, 0.5], [1, 1.5]])
            out1 = F.gelu(x)
            # [[-0.15865529,  0.34573123],
            #  [ 0.84134471,  1.39978933]]
            out2 = F.gelu(x, True)
            # [[-0.15880799,  0.34571400],
            #  [ 0.84119201,  1.39957154]]
181 182
    """

183
    if in_dygraph_mode():
184
        return _C_ops.gelu(x, approximate)
185 186

    if _in_legacy_dygraph():
187
        return _legacy_C_ops.gelu(x, 'approximate', approximate)
188 189 190 191

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'gelu')
    helper = LayerHelper("gelu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
192 193 194 195
    helper.append_op(type='gelu',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'approximate': approximate})
196 197 198
    return out


199
def hardshrink(x, threshold=0.5, name=None):
200
    r"""
201 202 203 204 205
    hard shrinkage activation

    .. math::

        hardshrink(x)=
206 207 208 209 210 211 212
            \left\{
                \begin{array}{rcl}
                x,&  &if \ {x > threshold}  \\
                x,&  &if \ {x < -threshold}   \\
                0,&  &if \ {others} &
                \end{array}
            \right.
213 214 215

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
216 217
        threshold (float, optional): The value of threshold for hardthrink. Default is 0.5.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
218 219 220 221 222 223 224

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

225 226
            import paddle
            import paddle.nn.functional as F
227

Z
zhupengyang 已提交
228
            x = paddle.to_tensor([-1, 0.3, 2.5])
229
            out = F.hardshrink(x) # [-1., 0., 2.5]
230 231

    """
H
hong 已提交
232
    if in_dygraph_mode():
233
        return _C_ops.hard_shrink(x, threshold)
H
hong 已提交
234 235

    if _in_legacy_dygraph():
236
        return _legacy_C_ops.hard_shrink(x, 'threshold', threshold)
237 238 239 240 241

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'hardshrink')
    helper = LayerHelper('hardshrink', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
242 243 244 245
    helper.append_op(type='hard_shrink',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'threshold': threshold})
246 247 248
    return out


249
def hardtanh(x, min=-1.0, max=1.0, name=None):
250
    r"""
251
    hardtanh activation. Calculate the `hardtanh` of input `x`.
252 253 254

    .. math::

255 256 257 258 259 260 261 262
        hardtanh(x)=
            \left\{
                \begin{array}{cll}
                    max,& & \text{if } x > max \\
                    min,& & \text{if } x < min \\
                    x,& & \text{otherwise}
                \end{array}
            \right.
263

264
    Parameters:
265 266 267
        x (Tensor): The input Tensor with data type float32, float64.
        min (float, optional): The minimum value of the linear region range. Default is -1.
        max (float, optional): The maximum value of the linear region range. Default is 1.
268
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
269 270 271 272 273 274 275 276 277 278

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

279
            x = paddle.to_tensor([-1.5, 0.3, 2.5])
280 281 282
            out = F.hardtanh(x) # [-1., 0.3, 1.]
    """

H
hong 已提交
283
    if in_dygraph_mode():
284
        return _C_ops.brelu(x, min, max)
H
hong 已提交
285 286

    if _in_legacy_dygraph():
287
        return _legacy_C_ops.brelu(x, 't_min', min, 't_max', max)
288 289 290 291 292 293

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'hardtanh')

    helper = LayerHelper('hardtanh', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
294 295 296 297 298 299 300
    helper.append_op(type='brelu',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={
                         't_min': min,
                         't_max': max
                     })
301 302 303
    return out


304
def hardsigmoid(x, slope=0.1666667, offset=0.5, name=None):
305
    r"""
306
    hardsigmoid activation. Calculate the `hardsigmoid` of input `x`.
307 308 309 310 311 312
    A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
    which is much faster than sigmoid.

    .. math::

        hardsigmoid(x)=
313 314 315 316 317 318 319
            \left\{
                \begin{array}{lcl}
                0, & &\text{if } \ x \leq -3 \\
                1, & &\text{if } \ x \geq 3 \\
                slope * x + offset, & &\text{otherwise}
                \end{array}
            \right.
320 321 322

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
323 324
        slope (float, optional): The slope of hardsigmoid function. Default is 0.1666667.
        offset (float, optional): The offset of hardsigmoid function. Default is 0.5.
325
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
326 327 328 329 330 331 332 333 334 335 336 337 338 339

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.to_tensor([-4., 5., 1.])
            out = F.hardsigmoid(x) # [0., 1., 0.666667]
    """

H
hong 已提交
340
    if in_dygraph_mode():
341
        return _C_ops.hard_sigmoid(x, slope, offset)
H
hong 已提交
342 343

    if _in_legacy_dygraph():
344
        return _legacy_C_ops.hard_sigmoid(x, 'slope', slope, 'offset', offset)
345 346 347 348 349 350

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'hardsigmoid')

    helper = LayerHelper('hardsigmoid', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
351 352 353 354 355 356 357
    helper.append_op(type='hard_sigmoid',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={
                         'slope': slope,
                         'offset': offset
                     })
358 359 360 361
    return out


def hardswish(x, name=None):
362
    r"""
363 364 365
    hardswish activation. hardswish is proposed in MobileNetV3, and performs
    better in computational stability and efficiency compared to swish function.
    For more details please refer to: https://arxiv.org/pdf/1905.02244.pdf
366 367 368 369

    .. math::

        hardswish(x)=
370 371 372 373 374 375 376
            \left\{
                \begin{array}{cll}
                0 &, & \text{if } x \leq -3 \\
                x &, & \text{if } x \geq 3 \\
                \frac{x(x+3)}{6} &, & \text{otherwise}
                \end{array}
            \right.
377 378 379

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
380
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
381 382 383 384 385 386 387 388 389 390 391 392 393 394

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.to_tensor([-4., 5., 1.])
            out = F.hardswish(x) # [0., 5., 0.666667]
    """

395
    if _in_legacy_dygraph():
396
        return _legacy_C_ops.hard_swish(x)
397
    if in_dygraph_mode():
398
        return _C_ops.hard_swish(x, 6, 6, 3)
399 400 401 402 403 404 405 406 407 408

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'hardswish')

    helper = LayerHelper('hardswish', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='hard_swish', inputs={'X': x}, outputs={'Out': out})
    return out


409
def leaky_relu(x, negative_slope=0.01, name=None):
410
    r"""
411
    leaky_relu activation. The calculation formula is:
412

413
    .. math::
414 415 416 417 418 419 420
        leaky\_relu(x)=
        \left\{
            \begin{array}{rcl}
                x, & & if \ x >= 0 \\
                negative\_slope * x, & & otherwise \\
            \end{array}
        \right.
421 422 423 424 425

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        negative_slope (float, optional): Slope of the activation function at
            :math:`x < 0` . Default is 0.01.
426
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
427 428 429 430 431 432 433 434 435 436

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

Z
zhupengyang 已提交
437
            x = paddle.to_tensor([-2., 0., 1.])
438 439 440
            out = F.leaky_relu(x)
            print(out)
            # [-0.02, 0., 1.]
441 442

    """
443
    if in_dygraph_mode():
444
        return _C_ops.leaky_relu(x, negative_slope)
445 446

    if _in_legacy_dygraph():
447
        return _legacy_C_ops.leaky_relu(x, 'alpha', negative_slope)
448 449 450 451 452

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'leaky_relu')
    helper = LayerHelper('leaky_relu', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
453 454 455 456
    helper.append_op(type='leaky_relu',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'alpha': negative_slope})
457 458 459
    return out


460
def prelu(x, weight, data_format="NCHW", name=None):
461 462 463 464 465 466 467 468 469 470 471
    """
    prelu activation.

    .. math::

        prelu(x) = max(0, x) + weight * min(0, x)

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        weight (Tensor): The learnable parameter with data type same as ``x``.
            The weight shape is [1] or [in], where `in` is the input channel of ``x``.
472
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
473 474
        data_format(str, optional): Data format that specifies the layout of input.
            It may be "NC", "NCL", "NCHW", "NCDHW", "NLC", "NHWC" or "NDHWC". Default: "NCHW".
475 476 477 478 479 480 481 482 483 484

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

485
            data = paddle.to_tensor([[[[-2.0,  3.0, -4.0,  5.0],
Z
zhupengyang 已提交
486 487 488 489
                               [ 3.0, -4.0,  5.0, -6.0],
                               [-7.0, -8.0,  8.0,  9.0]],
                              [[ 1.0, -2.0, -3.0,  4.0],
                               [-5.0,  6.0,  7.0, -8.0],
490 491 492 493 494
                               [ 6.0,  7.0,  8.0,  9.0]]]], dtype='float32')

            w = paddle.to_tensor([0.25], dtype='float32')
            out = F.prelu(data, w)
            print(out)
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
            # [[[[-0.5 ,  3.  , -1.  ,  5.  ],
            #    [ 3.  , -1.  ,  5.  , -1.5 ],
            #    [-1.75, -2.  ,  8.  ,  9.  ]],
            #   [[ 1.  , -0.5 , -0.75,  4.  ],
            #    [-1.25,  6.  ,  7.  , -2.  ],
            #    [ 6.  ,  7.  ,  8.  ,  9.  ]]]]
    """
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'prelu')
    check_variable_and_dtype(weight, 'weight',
                             ['float16', 'float32', 'float64'], 'prelu')

    assert len(weight.shape
               ) == 1, "The dim count of weight shape should be 1 in prelu()."

    mode = 'all'
    if weight.shape[0] > 1:
511 512 513 514 515 516 517 518 519 520 521

        true_data_format = [
            'NC', 'NCL', 'NCHW', 'NCDHW', 'NLC', 'NHWC', 'NDHWC'
        ]
        if data_format not in true_data_format:
            raise ValueError(
                "data_format must be one of 'NC', 'NCL', 'NCHW', 'NCDHW', "
                "'NLC', 'NHWC', 'NDHWC' but receive {}".format(data_format))

        data_format = 'NCHW' if data_format[1] == 'C' else 'NHWC'

522 523 524
        assert len(
            x.shape
        ) > 1, "The dim count of x should be equal or larger than 2 in prelu() when weight shape is not [1]."
525 526 527 528 529 530 531 532

        #NOTE(GuoxiaWang): support NHWC data format
        if data_format == 'NHWC':
            assert weight.shape[0] == x.shape[
                -1], "The weight size should be equal to x input channel in prelu() when weight shape is not [1]."
        else:
            assert weight.shape[0] == x.shape[
                1], "The weight size should be equal to x input channel in prelu() when weight shape is not [1]."
533 534
        mode = 'channel'

535
    if in_dygraph_mode():
536
        return _C_ops.prelu(x, weight, data_format, mode)
537
    if _in_legacy_dygraph():
538 539
        return _legacy_C_ops.prelu(x, weight, 'mode', mode, 'data_format',
                                   data_format)
540

541
    helper = LayerHelper('prelu', **locals())
542
    out = helper.create_variable_for_type_inference(x.dtype)
543 544 545 546 547 548 549 550 551 552
    helper.append_op(type="prelu",
                     inputs={
                         "X": x,
                         "Alpha": weight
                     },
                     outputs={"Out": out},
                     attrs={
                         "mode": mode,
                         "data_format": data_format
                     })
553 554 555
    return out


556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
def rrelu(x, lower=1. / 8., upper=1. / 3., training=True, name=None):
    r"""
    rrelu activation.

    Applies the randomized leaky rectified liner unit function to improve generalization performance,
    as described in the paper:
    `Empirical Evaluation of Rectified Activations in Convolutional Network <https://arxiv.org/abs/1505.00853>`_

    During training, randomly samples the negative slope for activation values as described below:

    .. math::

        rrelu(x)=
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    a * x, & & otherwise \\
                \end{array}
            \right.

    where :math:`x` is the input tensor,
    :math:`a` is randomly sampled from uniform distribution in range (:math:`lower`, :math:`upper`),

    In the test phase, the negative slope will take the average value of :math:`lower` and :math:`upper`:

    .. math::

        rrelu(x)=
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    (lower + upper) * 0.5 * x, & & otherwise \\
                \end{array}
            \right.

    where :math:`x` is the input tensor,
    :math:`lower` and :math:`upper` are the bounds of uniform distribution.

    Parameters:
        x (Tensor): The input Tensor with data type float16, float32, float64.
        lower (float, optional): The lower bound of uniform distribution. Default: 0.125.
        upper (float, optional): The upper bound of uniform distribution. Default: 0.333.
        training (bool, optional): Current mode is in training or others.  Default is True.
599
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input_tensor = paddle.to_tensor([[[[-2.0,  3.0, -4.0,  5.0],
                                            [ 3.0, -4.0,  5.0, -6.0],
                                            [-7.0, -8.0,  8.0,  9.0]],
                                            [[ 1.0, -2.0, -3.0,  4.0],
                                            [-5.0,  6.0,  7.0, -8.0],
                                            [ 6.0,  7.0,  8.0,  9.0]]]], dtype='float32')

            out = F.rrelu(input_tensor, 0.1, 0.3)
618
            print(out)
619 620 621 622 623 624 625 626 627 628 629 630 631 632
            #[[[[-0.20000899  3.         -0.8810822   5.        ]
            #   [ 3.         -0.55175185  5.         -1.0776101 ]
            #   [-1.0680687  -1.9896201   8.          9.        ]]
            #  [[ 1.         -0.5238267  -0.65515125  4.        ]
            #   [-1.3766339   6.          7.         -2.3465784 ]
            #   [ 6.          7.          8.          9.        ]]]]
    """

    if not in_dynamic_mode():
        check_variable_and_dtype(x, 'X', ['float16', 'float32', 'float64'],
                                 'rrelu')

    if not isinstance(lower, float) or not isinstance(upper, float):
        raise TypeError(
633 634
            "The lower and upper values must be float type. Received: lower {}, upper {}."
            .format(lower, upper))
635 636 637

    if lower < 0 or lower > 1:
        raise ValueError(
638 639
            "The lower value must be no less than zero or greater than one. Received: {}."
            .format(lower))
640 641 642

    if upper < lower:
        raise ValueError(
643 644
            "The upper value must be greater than lower value. Received: lower {}, upper {}."
            .format(lower, upper))
645 646 647 648 649 650 651 652 653

    if upper > 1:
        raise ValueError(
            "The upper value must be no greater than one. Received: {}.".format(
                upper))

    is_test = not training

    if _in_legacy_dygraph():
654 655
        out, noise = _legacy_C_ops.rrelu(x, 'lower', lower, 'upper', upper,
                                         'is_test', is_test)
656 657 658 659 660 661
        return out

    helper = LayerHelper('rrelu', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    noise = helper.create_variable_for_type_inference(dtype=x.dtype)
    attrs = {'lower': lower, 'upper': upper, 'is_test': is_test}
662 663 664 665 666 667 668
    helper.append_op(type='rrelu',
                     inputs={"X": x},
                     outputs={
                         "Out": out,
                         "Noise": noise
                     },
                     attrs=attrs)
669 670 671
    return out


672
def relu(x, name=None):
673
    """
674
    relu activation.
675

676
    .. math::
677 678 679 680

        out = max(x, 0)

    Parameters:
681
        x (Tensor): The input Tensor with data type float32, float64.
682
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
683 684

    Returns:
685
        A Tensor with the same data type and shape as ``x`` .
686 687 688 689

    Examples:
        .. code-block:: python

690 691
            import paddle
            import paddle.nn.functional as F
692

693 694 695 696
            x = paddle.to_tensor([-2, 0, 1], dtype='float32')
            out = F.relu(x)
            print(out)
            # [0., 0., 1.]
697 698
    """

699
    if in_dygraph_mode():
W
wanghuancoder 已提交
700
        return _C_ops.relu(x)
701 702
    if _in_legacy_dygraph():
        return _legacy_C_ops.relu(x)
703
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'relu')
704
    helper = LayerHelper('relu', **locals())
705 706 707 708 709
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='relu', inputs={'X': x}, outputs={'Out': out})
    return out


710
@inplace_apis_in_dygraph_only
711 712 713 714 715
def relu_(x, name=None):
    """
    Inplace version of ``relu`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_relu`.
    """
716 717
    if in_dygraph_mode():
        return _C_ops.relu_(x)
718 719
    if _in_legacy_dygraph():
        return _legacy_C_ops.relu_(x)
720 721


722
def log_sigmoid(x, name=None):
723
    r"""
724
    log_sigmoid activation.
725

726
    .. math::
727

728
        log\_sigmoid(x) = log \frac{1}{1 + e^{-x}}
729

730 731
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
732
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
733

734 735
    Returns:
        A Tensor with the same data type and shape as ``x`` .
736

737 738 739
    Examples:
        .. code-block:: python

740 741
            import paddle
            import paddle.nn.functional as F
742

743 744
            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = F.log_sigmoid(x) # [-0.313262 -0.126928 -0.0485874 -0.0181499]
745 746
    """

H
hong 已提交
747
    if in_dygraph_mode():
748
        return _C_ops.logsigmoid(x)
H
hong 已提交
749 750

    if _in_legacy_dygraph():
751
        return _legacy_C_ops.logsigmoid(x)
752 753

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
754 755
                             'log_sigmoid')
    helper = LayerHelper("log_sigmoid", **locals())
756 757 758
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='logsigmoid', inputs={'X': x}, outputs={'Out': out})
    return out
759 760


761
def maxout(x, groups, axis=1, name=None):
762
    r"""
763 764 765 766 767 768 769 770
    maxout activation.

    Assumed the input shape is (N, Ci, H, W).
    The output shape is (N, Co, H, W).
    Then Co = Ci/groups and the operator formula is as follows:

    .. math::

771 772 773 774 775 776 777 778 779
        \begin{array}{l}
        &out_{si+j} = \max_{k} x_{gsi + sk + j} \\
        &g = groups \\
        &s = \frac{input.size}{num\_channels} \\
        &0 \le i < \frac{num\_channels}{groups} \\
        &0 \le j < s \\
        &0 \le k < groups
        \end{array}

780 781 782 783 784 785 786 787 788 789 790 791

    Parameters:
        x (Tensor): The input is 4-D Tensor with shape [N, C, H, W] or [N, H, W, C], the data type
            of input is float32 or float64.
        groups (int, optional): The groups number of maxout. `groups` specifies the
            index of channel dimension where maxout will be performed. This must be
            a factor of number of features. Default is 1.
        axis (int, optional): The axis along which to perform maxout calculations.
            It should be 1 when data format is NCHW, be -1 or 3 when data format
            is NHWC. If ``axis`` < 0, it works the same way as :math:`axis + D` ,
            where D is the dimensions of ``x`` . ``axis`` only supports 1, 3 or -1.
            Default is 1.
792
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814

    Returns:
        A Tensor with the same data type as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.rand([1, 2, 3, 4])
            # [[[[0.5002636  0.22272532 0.17402348 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.02879342 0.88725346 0.61093384 0.38833922]]
            #   [[0.5231306  0.03807496 0.91661984 0.15602879]
            #    [0.666127   0.616567   0.30741522 0.24044901]
            #    [0.7142536  0.7351477  0.31588817 0.23782359]]]]
            out = F.maxout(x, groups=2)
            # [[[[0.5231306  0.22272532 0.91661984 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.7142536  0.88725346 0.61093384 0.38833922]]]]
    """
815
    if _in_legacy_dygraph():
816
        return _legacy_C_ops.maxout(x, 'groups', groups, 'axis', axis)
817
    if in_dygraph_mode():
818
        return _C_ops.maxout(x, groups, axis)
819 820 821 822 823 824 825 826 827 828
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'maxout')
    if axis not in [1, -1, 3]:
        raise ValueError(
            "Attr(axis) should be 1 when data format is NCHW, -1 or 3 when data format is NHWC. Received "
            "Attr(axis): %s." % str(axis))
    if axis == -1:
        axis = 3

    helper = LayerHelper('maxout', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
829 830 831 832 833 834 835
    helper.append_op(type='maxout',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={
                         'groups': groups,
                         'axis': axis
                     })
836 837 838
    return out


839 840 841 842 843 844
def relu6(x, name=None):
    """
    relu6 activation

    .. math::

845
        relu6(x) = min(max(0,x), 6)
846

847
    Parameters:
848
        x (Tensor): The input Tensor with data type float32, float64.
849
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
850 851 852 853 854 855 856

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

857 858
            import paddle
            import paddle.nn.functional as F
859

860 861 862 863
            x = paddle.to_tensor([-1, 0.3, 6.5])
            out = F.relu6(x)
            print(out)
            # [0, 0.3, 6]
864 865
    """
    threshold = 6.0
866
    if in_dygraph_mode():
867
        return _C_ops.relu6(x, threshold)
Z
zhiboniu 已提交
868
    if in_dynamic_mode():
869
        return _legacy_C_ops.relu6(x, 'threshold', threshold)
870 871 872 873

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'relu6')
    helper = LayerHelper('relu6', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
874 875 876 877
    helper.append_op(type='relu6',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'threshold': threshold})
878 879 880 881 882 883 884
    return out


def selu(x,
         scale=1.0507009873554804934193349852946,
         alpha=1.6732632423543772848170429916717,
         name=None):
885
    r"""
886 887 888 889
    selu activation

    .. math::

890
        selu(x)= scale *
891 892 893 894 895 896
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * e^{x} - alpha,& &\text{if } \ x <= 0
                \end{array}
            \right.
897

898
    Parameters:
899
        x (Tensor): The input Tensor with data type float32, float64.
900 901
        scale (float, optional): The value of scale(must be greater than 1.0) for selu. Default is 1.0507009873554804934193349852946
        alpha (float, optional): The value of alpha(must be no less than zero) for selu. Default is 1.6732632423543772848170429916717
902
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
903 904 905 906 907 908 909

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

910 911
            import paddle
            import paddle.nn.functional as F
912

913 914 915 916
            x = paddle.to_tensor([[0.0, 1.0],[2.0, 3.0]])
            out = F.selu(x)
            print(out)
            # [[0, 1.050701],[2.101402, 3.152103]]
917
    """
918 919 920 921 922 923 924 925
    if scale <= 1.0:
        raise ValueError(
            "The scale must be greater than 1.0. Received: {}.".format(scale))

    if alpha < 0:
        raise ValueError(
            "The alpha must be no less than zero. Received: {}.".format(alpha))

H
hong 已提交
926
    if in_dygraph_mode():
927
        return _C_ops.selu(x, scale, alpha)
H
hong 已提交
928
    if _in_legacy_dygraph():
929
        return _legacy_C_ops.selu(x, 'scale', scale, 'alpha', alpha)
930 931 932 933

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'selu')
    helper = LayerHelper('selu', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
934 935 936 937 938 939 940
    helper.append_op(type='selu',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={
                         'scale': scale,
                         'alpha': alpha
                     })
941 942 943
    return out


M
minghaoBD 已提交
944
def silu(x, name=None):
945 946 947 948 949
    r"""
    silu activation

    .. math::

M
minghaoBD 已提交
950
        silu(x) = \frac{x}{1 + e^{-x}}
951

M
minghaoBD 已提交
952 953
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
954
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
955

M
minghaoBD 已提交
956 957
    Returns:
        A Tensor with the same data type and shape as ``x`` .
958

M
minghaoBD 已提交
959 960
    Examples:
        .. code-block:: python
961 962 963

            import paddle
            import paddle.nn.functional as F
964

965 966
            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = F.silu(x) # [ 0.731059, 1.761594, 2.857722, 3.928055 ]
M
minghaoBD 已提交
967 968
    """

969
    if in_dygraph_mode():
W
wanghuancoder 已提交
970
        return _C_ops.silu(x)
971 972
    if _in_legacy_dygraph():
        return _legacy_C_ops.silu(x)
M
minghaoBD 已提交
973 974 975 976 977 978 979 980

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'silu')
    helper = LayerHelper("silu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='silu', inputs={'X': x}, outputs={'Out': out})
    return out


981
def softmax(x, axis=-1, dtype=None, name=None):
982
    r"""
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
    This operator implements the softmax layer. The calculation process is as follows:

    1. The dimension :attr:`axis` of ``x`` will be permuted to the last.

    2. Then ``x`` will be logically flattened to a 2-D matrix. The matrix's second
    dimension(row length) is the same as the dimension :attr:`axis` of ``x``,
    and the first dimension(column length) is the product of all other dimensions
    of ``x``. For each row of the matrix, the softmax operator squashes the
    K-dimensional(K is the width of the matrix, which is also the size of ``x``'s
    dimension :attr:`axis`) vector of arbitrary real values to a K-dimensional
    vector of real values in the range [0, 1] that add up to 1.

    3. After the softmax operation is completed, the inverse operations of steps 1 and 2
    are performed to restore the two-dimensional matrix to the same dimension as the ``x`` .

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

    For each row :math:`i` and each column :math:`j` in the matrix, we have:

    .. math::

1008
        softmax[i, j] = \frac{\exp(x[i, j])}{\sum_j(exp(x[i, j])}
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056

    Example:

    .. code-block:: text

        Case 1:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]

          Attrs:
            axis = -1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
                        [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]

        Case 2:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]
          Attrs:
            axis = 1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
                         [0.01786798, 0.01786798, 0.04661262, 0.04661262],
                         [0.97555875, 0.97555875, 0.93623955, 0.93623955]],
                        [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
                         [0.26762315, 0.26762315, 0.26762315, 0.26762315],
                         [0.72747516, 0.72747516, 0.72747516, 0.72747516]]]

1057 1058 1059 1060 1061 1062
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` < 0, it works the same way as
            :math:`axis + D` . Default is -1.
1063
        dtype (str, optional): The data type of the output tensor, can be float32, float64.
1064
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1065 1066

    Returns:
1067 1068
        A Tensor with the same shape and data type (use ``dtype`` if it is
        specified) as x.
1069 1070 1071 1072

    Examples:
        .. code-block:: python

1073 1074 1075
            import paddle
            import paddle.nn.functional as F
            import numpy as np
1076

1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
            x = np.array([[[2.0, 3.0, 4.0, 5.0],
                        [3.0, 4.0, 5.0, 6.0],
                        [7.0, 8.0, 8.0, 9.0]],
                        [[1.0, 2.0, 3.0, 4.0],
                        [5.0, 6.0, 7.0, 8.0],
                        [6.0, 7.0, 8.0, 9.0]]], 'float32')
            x = paddle.to_tensor(x)
            out1 = F.softmax(x)
            out2 = F.softmax(x, dtype='float64')
            # out1's data type is float32; out2's data type is float64
            # out1 and out2's value is as follows:
            # [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
            # [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]
1094
    """
1095 1096 1097

    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
1098
    use_cudnn = True
1099

H
hong 已提交
1100 1101
    if in_dygraph_mode():
        outs_cast = x if dtype is None \
1102 1103
            else _C_ops.cast(x, dtype)
        return _C_ops.softmax(outs_cast, axis)
H
hong 已提交
1104 1105

    if _in_legacy_dygraph():
1106
        outs_cast = x if dtype is None \
1107 1108 1109
            else _legacy_C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
        return _legacy_C_ops.softmax(outs_cast, 'axis', axis, 'use_cudnn',
                                     use_cudnn)
1110 1111 1112 1113 1114

    if dtype is None:
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'softmax')
    else:
1115 1116 1117
        check_dtype(
            dtype, 'dtype', ['float32', 'float64'], 'softmax',
            'If dtype is not None, it only support float32 or float64.')
1118 1119 1120 1121 1122

    helper = LayerHelper("softmax", **locals())
    outs_cast = x
    if dtype is not None:
        outs_cast = helper.create_variable_for_type_inference(dtype)
1123 1124 1125 1126 1127 1128 1129
        helper.append_op(type='cast',
                         inputs={'X': x},
                         outputs={'Out': outs_cast},
                         attrs={
                             'in_dtype': x.dtype,
                             'out_dtype': dtype
                         })
1130 1131

    outs_softmax = helper.create_variable_for_type_inference(outs_cast.dtype)
1132 1133 1134 1135 1136 1137 1138
    helper.append_op(type='softmax',
                     inputs={'X': outs_cast},
                     outputs={'Out': outs_softmax},
                     attrs={
                         'axis': axis,
                         'use_cudnn': use_cudnn
                     })
1139 1140

    return outs_softmax
1141 1142


1143
@inplace_apis_in_dygraph_only
1144 1145 1146 1147 1148 1149 1150 1151
def softmax_(x, axis=-1, dtype=None, name=None):
    r"""
    Inplace version of ``softmax`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_softmax`.
    """
    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
    use_cudnn = True
1152 1153 1154

    if in_dygraph_mode():
        outs_cast = x if dtype is None \
1155 1156
            else _legacy_C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
        return _C_ops.softmax_(outs_cast, axis)
1157 1158 1159

    if _in_legacy_dygraph():
        outs_cast = x if dtype is None \
1160 1161 1162
            else _legacy_C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
        return _legacy_C_ops.softmax_(outs_cast, 'axis', axis, 'use_cudnn',
                                      use_cudnn)
1163 1164


1165
def softplus(x, beta=1, threshold=20, name=None):
1166
    r"""
1167 1168 1169 1170
    softplus activation

    .. math::

1171 1172
        softplus(x) = \frac{1}{beta} * \log(1 + e^{beta * x}) \\
        \text{For numerical stability, the implementation reverts to the linear function when: beta * x > threshold.}
1173

1174
    Parameters:
1175 1176 1177
        x (Tensor): The input Tensor with data type float32, float64.
        beta (float, optional): The value of beta for softplus. Default is 1
        threshold (float, optional): The value of threshold for softplus. Default is 20
1178
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1179 1180 1181 1182 1183 1184 1185

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1186 1187 1188
            import paddle
            import paddle.nn.functional as F
            import numpy as np
1189

1190 1191
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            out = F.softplus(x) # [0.513015, 0.598139, 0.744397, 0.854355]
1192
    """
W
Wang Bojun 已提交
1193 1194

    if in_dygraph_mode():
1195
        return _C_ops.softplus(x, beta, threshold)
W
Wang Bojun 已提交
1196 1197

    if _in_legacy_dygraph():
1198
        return _legacy_C_ops.softplus(x, 'beta', beta, 'threshold', threshold)
1199 1200 1201 1202 1203

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'softplus')
    helper = LayerHelper('softplus', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
1204 1205 1206 1207 1208 1209 1210
    helper.append_op(type='softplus',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={
                         'beta': beta,
                         'threshold': threshold
                     })
1211 1212 1213 1214
    return out


def softshrink(x, threshold=0.5, name=None):
1215
    r"""
1216 1217 1218 1219
    softshrink activation

    .. math::

1220
        softshrink(x)=
1221 1222 1223 1224 1225 1226 1227
            \left\{
                \begin{array}{rcl}
                x - threshold,& & \text{if } x > threshold \\
                x + threshold,& & \text{if } x < -threshold \\
                0,& &  \text{otherwise}
            \end{array}
            \right.
1228

1229
    Parameters:
1230 1231
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold(must be no less than zero) for softplus. Default is 0.5
1232
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1233 1234 1235 1236 1237 1238 1239

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1240 1241 1242
            import paddle
            import paddle.nn.functional as F
            import numpy as np
1243

1244 1245
            x = paddle.to_tensor(np.array([-0.9, -0.2, 0.1, 0.8]))
            out = F.softshrink(x) # [-0.4, 0, 0, 0.3]
1246
    """
1247 1248 1249 1250 1251
    if threshold < 0:
        raise ValueError(
            "The threshold must be no less than zero. Received: {}.".format(
                threshold))

1252
    if in_dygraph_mode():
1253
        return _C_ops.soft_shrink(x, threshold)
1254
    if _in_legacy_dygraph():
1255
        return _legacy_C_ops.softshrink(x, 'lambda', threshold)
1256 1257 1258 1259 1260

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'softshrink')
    helper = LayerHelper('softshrink', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
1261 1262 1263 1264
    helper.append_op(type='softshrink',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'lambda': threshold})
1265 1266 1267 1268
    return out


def softsign(x, name=None):
1269
    r"""
1270 1271 1272 1273
    softsign activation

    .. math::

1274
        softsign(x) = \frac{x}{1 + |x|}
1275

1276
    Parameters:
1277
        x (Tensor): The input Tensor with data type float32, float64.
1278
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1279 1280 1281 1282 1283 1284 1285

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1286 1287 1288
            import paddle
            import paddle.nn.functional as F
            import numpy as np
1289

1290 1291
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            out = F.softsign(x) # [-0.285714, -0.166667, 0.0909091, 0.230769]
1292
    """
1293
    if in_dygraph_mode():
W
wanghuancoder 已提交
1294
        return _C_ops.softsign(x)
1295 1296
    if in_dynamic_mode():
        return _legacy_C_ops.softsign(x)
1297 1298 1299 1300 1301 1302 1303 1304 1305

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'softsign')
    helper = LayerHelper('softsign', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='softsign', inputs={'X': x}, outputs={'Out': out})
    return out


1306
def swish(x, name=None):
1307
    r"""
1308 1309 1310 1311
    swish activation.

    .. math::

1312
        swish(x) = \frac{x}{1 + e^{-x}}
1313 1314 1315

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
1316
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            import numpy as np

            x = paddle.to_tensor(np.array([-2., 0., 1.]))
            out = F.swish(x) # [-0.238406, 0., 0.731059]
    """
1331
    if in_dygraph_mode():
1332
        return _C_ops.swish(x, 1.0)
1333
    if _in_legacy_dygraph():
1334
        return _legacy_C_ops.swish(x, 'beta', 1.0)
1335 1336 1337 1338

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'swish')
    helper = LayerHelper('swish', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
1339 1340 1341 1342
    helper.append_op(type='swish',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'beta': 1.0})
1343 1344 1345
    return out


1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
def mish(x, name=None):
    r"""
    mish activation.

    ..  math::

        softplus(x) = \begin{cases}
                x, \text{if } x > \text{threshold} \\
                \ln(1 + e^{x}),  \text{otherwise}
            \end{cases}

        mish(x) = x * \tanh(softplus(x))
1358

1359 1360
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
1361
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

W
wangxinxin08 已提交
1372
            x = paddle.to_tensor([-5., 0., 5.])
1373 1374
            out = F.mish(x) # [-0.03357624, 0., 4.99955208]
    """
1375
    if in_dygraph_mode():
1376
        return _C_ops.mish(x, 20)
1377
    if _in_legacy_dygraph():
1378
        return _legacy_C_ops.mish(x)
1379 1380 1381 1382 1383 1384 1385 1386

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'mish')
    helper = LayerHelper('mish', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='mish', inputs={'X': x}, outputs={'Out': out})
    return out


1387 1388 1389 1390 1391 1392
def tanhshrink(x, name=None):
    """
    tanhshrink activation

    .. math::

1393
        tanhshrink(x) = x - tanh(x)
1394 1395 1396

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
1397
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1398 1399 1400 1401 1402 1403 1404

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1405 1406 1407
            import paddle
            import paddle.nn.functional as F
            import numpy as np
1408

1409 1410
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            out = F.tanhshrink(x) # [-0.020051, -0.00262468, 0.000332005, 0.00868739]
1411
    """
H
hong 已提交
1412
    if in_dygraph_mode():
1413
        return _C_ops.tanh_shrink(x)
H
hong 已提交
1414 1415

    if _in_legacy_dygraph():
1416
        return _legacy_C_ops.tanh_shrink(x)
1417 1418 1419 1420 1421 1422 1423 1424 1425

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'tanhshrink')
    helper = LayerHelper('tanh_shrink', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='tanh_shrink', inputs={'X': x}, outputs={'Out': out})
    return out


1426
def thresholded_relu(x, threshold=1.0, name=None):
1427
    r"""
1428 1429 1430 1431
    thresholded relu activation.

    .. math::

1432
        thresholded\_relu(x) =
1433 1434 1435 1436 1437 1438 1439
            \left\{
                \begin{array}{rl}
                x,& \text{if } \ x > threshold \\
                0,& \text{otherwise}
                \end{array}
            \right.

1440 1441 1442 1443

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold for thresholded_relu. Default is 1.0
1444
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            import numpy as np

            x = paddle.to_tensor(np.array([2., 0., 1.]))
            out = F.thresholded_relu(x) # [2., 0., 0.]
    """

H
hong 已提交
1460
    if in_dygraph_mode():
1461
        return _C_ops.thresholded_relu(x, threshold)
H
hong 已提交
1462 1463

    if _in_legacy_dygraph():
1464
        return _legacy_C_ops.thresholded_relu(x, 'threshold', threshold)
1465 1466 1467 1468 1469

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'thresholded_relu')
    helper = LayerHelper('thresholded_relu', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
1470 1471 1472 1473
    helper.append_op(type='thresholded_relu',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'threshold': threshold})
1474 1475 1476
    return out


1477
def log_softmax(x, axis=-1, dtype=None, name=None):
1478
    r"""
1479 1480
    This operator implements the log_softmax layer. The calculation process is
    as follows:
1481 1482 1483

    .. math::

1484
        \begin{aligned}
1485 1486 1487
        log\_softmax[i, j] &= log(softmax(x)) \\
        &= log(\frac{\exp(X[i, j])}{\sum_j(\exp(X[i, j])})
        \end{aligned}
1488 1489

    Parameters:
1490 1491 1492 1493 1494 1495 1496
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` < 0, it works the same way as
            :math:`axis + D` . Default is -1.
        dtype (str|np.dtype|core.VarDesc.VarType, optional): The desired data
            type of the output tensor. If dtype is specified, ``x`` is casted
1497
            to ``dtype`` before the operation is performed. This is useful for
1498 1499 1500
            preventing data type overflows. Supported dtype: float32, float64.
            If ``dtype`` is None, the output Tensor has the same dtype as x.
            Default is None.
1501
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1502

1503
    Returns:
1504 1505
        A Tensor with the same shape and data type (use ``dtype`` if it is
        specified) as x.
1506 1507 1508 1509

    Examples:
        .. code-block:: python

1510 1511 1512
            import paddle
            import paddle.nn.functional as F

Z
zhupengyang 已提交
1513 1514 1515 1516 1517 1518
            x = [[[-2.0, 3.0, -4.0, 5.0],
                  [3.0, -4.0, 5.0, -6.0],
                  [-7.0, -8.0, 8.0, 9.0]],
                 [[1.0, -2.0, -3.0, 4.0],
                  [-5.0, 6.0, 7.0, -8.0],
                  [6.0, 7.0, 8.0, 9.0]]]
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
            x = paddle.to_tensor(x)
            out1 = F.log_softmax(x)
            out2 = F.log_softmax(x, dtype='float64')
            # out1's data type is float32; out2's data type is float64
            # out1 and out2's value is as follows:
            # [[[ -7.1278396   -2.1278396   -9.127839    -0.12783948]
            #   [ -2.1270514   -9.127051    -0.12705144 -11.127051  ]
            #   [-16.313261   -17.313261    -1.3132617   -0.31326184]]
            #  [[ -3.0518122   -6.051812    -7.051812    -0.051812  ]
            #   [-12.313267    -1.3132664   -0.3132665  -15.313267  ]
            #   [ -3.4401896   -2.4401896   -1.4401896   -0.44018966]]]
    """
1531 1532 1533

    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
1534

H
hong 已提交
1535
    if in_dygraph_mode():
1536
        if dtype is not None:
1537 1538
            x = _C_ops.cast(x, dtype)
        return _C_ops.log_softmax(x, axis)
1539

H
hong 已提交
1540 1541
    if _in_legacy_dygraph():
        if dtype is not None:
1542 1543
            x = _legacy_C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
        return _legacy_C_ops.log_softmax(x, 'axis', axis)
H
hong 已提交
1544

1545
    if dtype is None:
1546 1547 1548
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'log_softmax')
    else:
1549 1550 1551
        check_dtype(
            dtype, 'dtype', ['float32', 'float64'], 'log_softmax',
            'If dtype is not None, it only support float32 or float64.')
1552

1553
    helper = LayerHelper("log_softmax", **locals())
1554
    out_cast = x
1555
    if dtype is not None:
1556
        out_cast = helper.create_variable_for_type_inference(dtype)
1557 1558 1559 1560 1561 1562 1563
        helper.append_op(type='cast',
                         inputs={'X': x},
                         outputs={'Out': out_cast},
                         attrs={
                             'in_dtype': x.dtype,
                             'out_dtype': dtype
                         })
1564

1565
    out = helper.create_variable_for_type_inference(out_cast.dtype)
1566 1567 1568 1569
    helper.append_op(type='log_softmax',
                     inputs={'X': out_cast},
                     outputs={'Out': out},
                     attrs={'axis': axis})
1570

1571
    return out
F
Feiyu Chan 已提交
1572 1573 1574 1575


def glu(x, axis=-1, name=None):
    r"""
1576
    The gated linear unit. The input is evenly splited into 2 parts along a
F
Feiyu Chan 已提交
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
    given axis. The first part is used as the content, and the second part is
    passed through a sigmoid function then used as the gate. The output is a
    elementwise multiplication of the content and the gate.

    .. math::

        \mathrm{GLU}(a, b) = a \otimes \sigma(b)

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
1587 1588 1589
        axis (int, optional): The axis along which split the input tensor. It
            should be in range [-D, D), where D is the dimensions of ``x`` .
            If ``axis`` < 0, it works the same way as :math:`axis + D` .
F
Feiyu Chan 已提交
1590
            Default is -1.
1591
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1592

F
Feiyu Chan 已提交
1593
    Returns:
1594
        A Tensor with the same data type as x. The size of the given aixs is
F
Feiyu Chan 已提交
1595
        halved.
1596

F
Feiyu Chan 已提交
1597 1598
    Examples:
        .. code-block:: python
1599

F
Feiyu Chan 已提交
1600 1601
            import paddle
            from paddle.nn import functional as F
1602

F
Feiyu Chan 已提交
1603 1604 1605 1606 1607 1608 1609
            x = paddle.to_tensor(
                [[-0.22014759, -1.76358426,  0.80566144,  0.04241343],
                 [-1.94900405, -1.89956081,  0.17134808, -1.11280477]]
            )
            print(F.glu(x).numpy())
            # array([[-0.15216254, -0.9004892 ],
            #        [-1.0577879 , -0.46985325]], dtype=float32)
1610

F
Feiyu Chan 已提交
1611 1612 1613 1614 1615 1616 1617
    """
    check_variable_and_dtype(x, 'input', ['float16', 'float32', 'float64'],
                             "glu")
    a, b = chunk(x, 2, axis=axis, name=name)
    gate = sigmoid(b, name=name)
    out = paddle.multiply(a, gate, name=name)
    return out
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642


def gumbel_softmax(x, temperature=1.0, hard=False, axis=-1, name=None):
    r"""
    Samples from the Gumbel-Softmax distribution and optionally discretizes.
    temperature is denoted by t. The calculation process is as follows:

    First, generate gumbel noise:

    .. math::

        G_i = -log(-log(U_i)), U_i \sim U(0,1)

    Second, add noise to ``x``:

    .. math::

        v = [x_1 + G_1,...,x_n + G_n]

    Finally, calculate gumbel_softmax and generate samples:

    .. math::
        gumbel\_softmax(v_i)=\frac{e^{v_i/t}}{\sum_{j=1}^n{e^{v_j/t}}},i=1,2,3...n

    Parameters:
1643 1644
        x (Tensor): An N-D Tensor, the first N - 1 dimensions index into a batch
            of independent distributions and the last dimension represents
1645 1646 1647
            a vector of probabilities with datatype float32, float64.
        temperature (float, optional): non-negative scalar temperature.
            Default is 1.0.
1648 1649
        hard (bool, optional): if True, the returned samples will be discretized as
            one-hot vectors, but will be differentiated as if it is the soft sample
1650
            in autograd. Default is False.
1651
        axis (int, optional): The axis along will be calculated softmax value.
1652
            Default is -1.
1653
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1654

1655
    Returns:
1656 1657
        Sampled tensor of same shape as ``x`` from the Gumbel-Softmax distribution.
        If ``hard = True``, the returned samples will be one-hot, otherwise they will be
1658
        probability distributions that sum to 1 across ``axis``.
1659

1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            logits = paddle.randn([4, 6])
            temperature = 0.01
            gumbel_softmax = F.gumbel_softmax(logits, temperature)
            print(gumbel_softmax)
            # out's value is as follows:
            # [[0.00000001, 1.        , 0.00000000, 0.00000000, 0.00000006, 0.00000000],
            # [0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 1.        ],
            # [0.00000062, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.99999940],
            # [0.00000000, 0.00000000, 0.00000000, 0.00001258, 0.99998736, 0.00000000]]
1675

1676
    """
H
hong 已提交
1677
    if in_dygraph_mode():
1678
        return _C_ops.gumbel_softmax(x, temperature, hard, axis)
H
hong 已提交
1679

Z
zhiboniu 已提交
1680
    if in_dynamic_mode():
1681 1682
        return _legacy_C_ops.gumbel_softmax(x, 'temperature', temperature,
                                            'hard', hard, 'axis', axis)
1683 1684 1685 1686

    helper = LayerHelper("gumbel_softmax", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'gumbel_softmax')
    out = helper.create_variable_for_type_inference(x.dtype)
1687 1688 1689 1690 1691 1692 1693 1694
    helper.append_op(type='gumbel_softmax',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={
                         'temperature': temperature,
                         'hard': hard,
                         'axis': axis
                     })
1695
    return out