activation.py 57.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from ...tensor.ops import sigmoid  # noqa: F401
Z
zhiboniu 已提交
16 17
from ...tensor.math import tanh  # noqa: F401
from ...tensor.math import tanh_  # noqa: F401
18

19
from ...fluid.dygraph.inplace_utils import inplace_apis_in_dygraph_only
F
Feiyu Chan 已提交
20 21
from ...tensor.manipulation import chunk
from ...tensor.math import multiply
22

23 24
import warnings
from ...fluid.layer_helper import LayerHelper
J
Jiabin Yang 已提交
25
from ...fluid.framework import convert_np_dtype_to_dtype_
26
from ...fluid.framework import _in_legacy_dygraph, in_dygraph_mode, _non_static_mode
27
from ...fluid.data_feeder import check_variable_and_dtype, check_dtype
28
import paddle
Z
zhiboniu 已提交
29 30
from paddle import _C_ops, in_dynamic_mode
from paddle.framework import core
31
from paddle.fluid.framework import _in_legacy_dygraph, in_dygraph_mode
32

33 34
__all__ = []

35

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
def celu(x, alpha=1.0, name=None):
    r"""
    celu activation.

    .. math::

        celu(x) = max(0, x) + min(0, \alpha * (e^{x/\alpha}-1))

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        alpha (float, optional): The 'alpha' value of the CELU formulation. Default is 1.0.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            x = paddle.to_tensor([[-1., 6.], [1., 15.6]])
            out = F.celu(x, alpha=0.2)
            # [[-0.19865242,  6.        ],
            #  [ 1.        , 15.60000038]]
    """
    if alpha == 0:
        raise ZeroDivisionError("alpha cannot be 0 for celu")

66
    if _in_legacy_dygraph():
67
        return _C_ops.celu(x, 'alpha', alpha)
68 69
    if in_dygraph_mode():
        return _C_ops.final_state_celu(x, alpha)
70 71 72 73

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'celu')
    helper = LayerHelper("celu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
74 75 76 77
    helper.append_op(type='celu',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'alpha': alpha})
78 79 80
    return out


81
def elu(x, alpha=1.0, name=None):
82
    r"""
83 84
    elu activation.

85
    .. math::
86

Z
zhupengyang 已提交
87 88 89 90 91 92 93
        elu(x)=
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * (e^{x} - 1),& &\text{if } \ x <= 0
                \end{array}
            \right.
94 95 96 97 98 99

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        alpha (float, optional): The 'alpha' value of the ELU formulation. Default is 1.0.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
100

101 102
    Returns:
        A Tensor with the same data type and shape as ``x`` .
103

104 105 106
    Examples:
        .. code-block:: python

107 108
            import paddle
            import paddle.nn.functional as F
109

Z
zhupengyang 已提交
110
            x = paddle.to_tensor([[-1., 6.], [1., 15.6]])
111
            out = F.elu(x, alpha=0.2)
112 113
            # [[-0.12642411  6.        ]
            #  [ 1.          15.6      ]]
114 115
    """

116 117 118 119
    if in_dygraph_mode():
        return _C_ops.final_state_elu(x, alpha)

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
120
        return _C_ops.elu(x, 'alpha', alpha)
121 122 123 124

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'elu')
    helper = LayerHelper("elu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
125 126 127 128
    helper.append_op(type='elu',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'alpha': alpha})
129 130 131
    return out


132
@inplace_apis_in_dygraph_only
133 134 135 136 137
def elu_(x, alpha=1.0, name=None):
    r"""
    Inplace version of ``elu`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_elu`.
    """
Z
zhupengyang 已提交
138
    assert alpha >= 0., "elu_ only support alpha >= 0, please use elu instead."
139 140
    if in_dygraph_mode():
        return _C_ops.final_state_elu_(x, alpha)
W
wanghuancoder 已提交
141
    return _C_ops.elu_(x, 'alpha', alpha)
142 143


144
def gelu(x, approximate=False, name=None):
145
    r"""
146 147 148
    gelu activation.

    if approximate is True
149 150 151

    .. math::

152
        gelu(x) = 0.5 * x * (1 + tanh(\sqrt{\frac{2}{\pi}} * (x + 0.044715x^{3})))
153

154
    else
155 156 157

    .. math::

158
        gelu(x) = 0.5 * x * (1 + erf(\frac{x}{\sqrt{2}}))
159

160 161 162 163 164
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        approximate (bool, optional): Wether to enable approximation. Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
165

166 167
    Returns:
        A Tensor with the same data type and shape as ``x`` .
168

169 170 171
    Examples:
        .. code-block:: python

172 173
            import paddle
            import paddle.nn.functional as F
174

Z
zhupengyang 已提交
175 176 177 178 179 180 181
            x = paddle.to_tensor([[-1, 0.5], [1, 1.5]])
            out1 = F.gelu(x)
            # [[-0.15865529,  0.34573123],
            #  [ 0.84134471,  1.39978933]]
            out2 = F.gelu(x, True)
            # [[-0.15880799,  0.34571400],
            #  [ 0.84119201,  1.39957154]]
182 183
    """

184 185 186 187
    if in_dygraph_mode():
        return _C_ops.final_state_gelu(x, approximate)

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
188
        return _C_ops.gelu(x, 'approximate', approximate)
189 190 191 192

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'gelu')
    helper = LayerHelper("gelu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
193 194 195 196
    helper.append_op(type='gelu',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'approximate': approximate})
197 198 199
    return out


200
def hardshrink(x, threshold=0.5, name=None):
201
    r"""
202 203 204 205 206
    hard shrinkage activation

    .. math::

        hardshrink(x)=
207 208 209 210 211 212 213
            \left\{
                \begin{array}{rcl}
                x,&  &if \ {x > threshold}  \\
                x,&  &if \ {x < -threshold}   \\
                0,&  &if \ {others} &
                \end{array}
            \right.
214 215 216 217 218 219 220 221 222 223 224 225 226

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold for hardthrink. Default is 0.5
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

227 228
            import paddle
            import paddle.nn.functional as F
229

Z
zhupengyang 已提交
230
            x = paddle.to_tensor([-1, 0.3, 2.5])
231
            out = F.hardshrink(x) # [-1., 0., 2.5]
232 233

    """
Z
zhiboniu 已提交
234
    if in_dynamic_mode():
W
wanghuancoder 已提交
235
        return _C_ops.hard_shrink(x, 'threshold', threshold)
236 237 238 239 240

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'hardshrink')
    helper = LayerHelper('hardshrink', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
241 242 243 244
    helper.append_op(type='hard_shrink',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'threshold': threshold})
245 246 247
    return out


248
def hardtanh(x, min=-1.0, max=1.0, name=None):
249
    r"""
250 251 252 253
    hardtanh activation

    .. math::

254 255 256 257 258 259 260 261
        hardtanh(x)=
            \left\{
                \begin{array}{cll}
                    max,& & \text{if } x > max \\
                    min,& & \text{if } x < min \\
                    x,& & \text{otherwise}
                \end{array}
            \right.
262

263
    Parameters:
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
        x (Tensor): The input Tensor with data type float32, float64.
        min (float, optional): The minimum value of the linear region range. Default is -1.
        max (float, optional): The maximum value of the linear region range. Default is 1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            import numpy as np

            x = paddle.to_tensor(np.array([-1.5, 0.3, 2.5]))
            out = F.hardtanh(x) # [-1., 0.3, 1.]
    """

Z
zhiboniu 已提交
284
    if in_dynamic_mode():
W
wanghuancoder 已提交
285
        return _C_ops.brelu(x, 't_min', min, 't_max', max)
286 287 288 289 290 291

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'hardtanh')

    helper = LayerHelper('hardtanh', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
292 293 294 295 296 297 298
    helper.append_op(type='brelu',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={
                         't_min': min,
                         't_max': max
                     })
299 300 301
    return out


302
def hardsigmoid(x, slope=0.1666667, offset=0.5, name=None):
303
    r"""
304 305 306 307 308 309 310 311
    hardsigmoid activation.

    A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
    which is much faster than sigmoid.

    .. math::

        hardsigmoid(x)=
312 313 314 315 316 317 318
            \left\{
                \begin{array}{lcl}
                0, & &\text{if } \ x \leq -3 \\
                1, & &\text{if } \ x \geq 3 \\
                slope * x + offset, & &\text{otherwise}
                \end{array}
            \right.
319 320 321

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
322 323
        slope (float, optional): The slope of hardsigmoid function. Default is 0.1666667.
        offset (float, optional): The offset of hardsigmoid function. Default is 0.5.
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.to_tensor([-4., 5., 1.])
            out = F.hardsigmoid(x) # [0., 1., 0.666667]
    """

Z
zhiboniu 已提交
340
    if in_dynamic_mode():
W
wanghuancoder 已提交
341
        return _C_ops.hard_sigmoid(x, 'slope', slope, 'offset', offset)
342 343 344 345 346 347

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'hardsigmoid')

    helper = LayerHelper('hardsigmoid', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
348 349 350 351 352 353 354
    helper.append_op(type='hard_sigmoid',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={
                         'slope': slope,
                         'offset': offset
                     })
355 356 357 358
    return out


def hardswish(x, name=None):
359
    r"""
360 361 362 363 364 365 366 367 368
    hardswish activation

    hardswish is proposed in MobileNetV3, and performs better in computational stability
    and efficiency compared to swish function. For more details please refer
    to: https://arxiv.org/pdf/1905.02244.pdf

    .. math::

        hardswish(x)=
369 370 371 372 373 374 375
            \left\{
                \begin{array}{cll}
                0 &, & \text{if } x \leq -3 \\
                x &, & \text{if } x \geq 3 \\
                \frac{x(x+3)}{6} &, & \text{otherwise}
                \end{array}
            \right.
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.to_tensor([-4., 5., 1.])
            out = F.hardswish(x) # [0., 5., 0.666667]
    """

395
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
396
        return _C_ops.hard_swish(x)
397 398
    if in_dygraph_mode():
        return _C_ops.final_state_hard_swish(x, 6, 6, 3)
399 400 401 402 403 404 405 406 407 408

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'hardswish')

    helper = LayerHelper('hardswish', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='hard_swish', inputs={'X': x}, outputs={'Out': out})
    return out


409
def leaky_relu(x, negative_slope=0.01, name=None):
410
    r"""
411 412
    leaky_relu activation

413
    .. math::
414 415 416 417 418 419 420
        leaky\_relu(x)=
        \left\{
            \begin{array}{rcl}
                x, & & if \ x >= 0 \\
                negative\_slope * x, & & otherwise \\
            \end{array}
        \right.
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        negative_slope (float, optional): Slope of the activation function at
            :math:`x < 0` . Default is 0.01.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

Z
zhupengyang 已提交
438
            x = paddle.to_tensor([-2., 0., 1.])
439 440 441
            out = F.leaky_relu(x) # [-0.02, 0., 1.]

    """
442 443 444 445
    if in_dygraph_mode():
        return _C_ops.final_state_leaky_relu(x, negative_slope)

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
446
        return _C_ops.leaky_relu(x, 'alpha', negative_slope)
447 448 449 450 451

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'leaky_relu')
    helper = LayerHelper('leaky_relu', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
452 453 454 455
    helper.append_op(type='leaky_relu',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'alpha': negative_slope})
456 457 458
    return out


459
def prelu(x, weight, data_format="NCHW", name=None):
460 461 462 463 464 465 466 467 468 469 470 471 472
    """
    prelu activation.

    .. math::

        prelu(x) = max(0, x) + weight * min(0, x)

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        weight (Tensor): The learnable parameter with data type same as ``x``.
            The weight shape is [1] or [in], where `in` is the input channel of ``x``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
473 474
        data_format(str, optional): Data format that specifies the layout of input.
            It may be "NC", "NCL", "NCHW", "NCDHW", "NLC", "NHWC" or "NDHWC". Default: "NCHW".
475 476 477 478 479 480 481 482 483 484 485 486

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            import numpy as np

            data = np.array([[[[-2.0,  3.0, -4.0,  5.0],
Z
zhupengyang 已提交
487 488 489 490 491
                               [ 3.0, -4.0,  5.0, -6.0],
                               [-7.0, -8.0,  8.0,  9.0]],
                              [[ 1.0, -2.0, -3.0,  4.0],
                               [-5.0,  6.0,  7.0, -8.0],
                               [ 6.0,  7.0,  8.0,  9.0]]]], 'float32')
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
            x = paddle.to_tensor(data)
            w = paddle.to_tensor(np.array([0.25]).astype('float32'))
            out = F.prelu(x, w)
            # [[[[-0.5 ,  3.  , -1.  ,  5.  ],
            #    [ 3.  , -1.  ,  5.  , -1.5 ],
            #    [-1.75, -2.  ,  8.  ,  9.  ]],
            #   [[ 1.  , -0.5 , -0.75,  4.  ],
            #    [-1.25,  6.  ,  7.  , -2.  ],
            #    [ 6.  ,  7.  ,  8.  ,  9.  ]]]]
    """
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'prelu')
    check_variable_and_dtype(weight, 'weight',
                             ['float16', 'float32', 'float64'], 'prelu')

    assert len(weight.shape
               ) == 1, "The dim count of weight shape should be 1 in prelu()."

    mode = 'all'
    if weight.shape[0] > 1:
511 512 513 514 515 516 517 518 519 520 521

        true_data_format = [
            'NC', 'NCL', 'NCHW', 'NCDHW', 'NLC', 'NHWC', 'NDHWC'
        ]
        if data_format not in true_data_format:
            raise ValueError(
                "data_format must be one of 'NC', 'NCL', 'NCHW', 'NCDHW', "
                "'NLC', 'NHWC', 'NDHWC' but receive {}".format(data_format))

        data_format = 'NCHW' if data_format[1] == 'C' else 'NHWC'

522 523 524
        assert len(
            x.shape
        ) > 1, "The dim count of x should be equal or larger than 2 in prelu() when weight shape is not [1]."
525 526 527 528 529 530 531 532

        #NOTE(GuoxiaWang): support NHWC data format
        if data_format == 'NHWC':
            assert weight.shape[0] == x.shape[
                -1], "The weight size should be equal to x input channel in prelu() when weight shape is not [1]."
        else:
            assert weight.shape[0] == x.shape[
                1], "The weight size should be equal to x input channel in prelu() when weight shape is not [1]."
533 534
        mode = 'channel'

535 536 537
    if in_dygraph_mode():
        return _C_ops.final_state_prelu(x, weight, data_format, mode)
    if _in_legacy_dygraph():
538
        return _C_ops.prelu(x, weight, 'mode', mode, 'data_format', data_format)
539

540
    helper = LayerHelper('prelu', **locals())
541
    out = helper.create_variable_for_type_inference(x.dtype)
542 543 544 545 546 547 548 549 550 551
    helper.append_op(type="prelu",
                     inputs={
                         "X": x,
                         "Alpha": weight
                     },
                     outputs={"Out": out},
                     attrs={
                         "mode": mode,
                         "data_format": data_format
                     })
552 553 554
    return out


555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
def rrelu(x, lower=1. / 8., upper=1. / 3., training=True, name=None):
    r"""
    rrelu activation.

    Applies the randomized leaky rectified liner unit function to improve generalization performance,
    as described in the paper:
    `Empirical Evaluation of Rectified Activations in Convolutional Network <https://arxiv.org/abs/1505.00853>`_

    During training, randomly samples the negative slope for activation values as described below:

    .. math::

        rrelu(x)=
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    a * x, & & otherwise \\
                \end{array}
            \right.

    where :math:`x` is the input tensor,
    :math:`a` is randomly sampled from uniform distribution in range (:math:`lower`, :math:`upper`),

    In the test phase, the negative slope will take the average value of :math:`lower` and :math:`upper`:

    .. math::

        rrelu(x)=
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    (lower + upper) * 0.5 * x, & & otherwise \\
                \end{array}
            \right.

    where :math:`x` is the input tensor,
    :math:`lower` and :math:`upper` are the bounds of uniform distribution.

    Parameters:
        x (Tensor): The input Tensor with data type float16, float32, float64.
        lower (float, optional): The lower bound of uniform distribution. Default: 0.125.
        upper (float, optional): The upper bound of uniform distribution. Default: 0.333.
        training (bool, optional): Current mode is in training or others.  Default is True.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input_tensor = paddle.to_tensor([[[[-2.0,  3.0, -4.0,  5.0],
                                            [ 3.0, -4.0,  5.0, -6.0],
                                            [-7.0, -8.0,  8.0,  9.0]],
                                            [[ 1.0, -2.0, -3.0,  4.0],
                                            [-5.0,  6.0,  7.0, -8.0],
                                            [ 6.0,  7.0,  8.0,  9.0]]]], dtype='float32')

            out = F.rrelu(input_tensor, 0.1, 0.3)
            #[[[[-0.20000899  3.         -0.8810822   5.        ]
            #   [ 3.         -0.55175185  5.         -1.0776101 ]
            #   [-1.0680687  -1.9896201   8.          9.        ]]
            #  [[ 1.         -0.5238267  -0.65515125  4.        ]
            #   [-1.3766339   6.          7.         -2.3465784 ]
            #   [ 6.          7.          8.          9.        ]]]]
    """

    if not in_dynamic_mode():
        check_variable_and_dtype(x, 'X', ['float16', 'float32', 'float64'],
                                 'rrelu')

    if not isinstance(lower, float) or not isinstance(upper, float):
        raise TypeError(
632 633
            "The lower and upper values must be float type. Received: lower {}, upper {}."
            .format(lower, upper))
634 635 636

    if lower < 0 or lower > 1:
        raise ValueError(
637 638
            "The lower value must be no less than zero or greater than one. Received: {}."
            .format(lower))
639 640 641

    if upper < lower:
        raise ValueError(
642 643
            "The upper value must be greater than lower value. Received: lower {}, upper {}."
            .format(lower, upper))
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660

    if upper > 1:
        raise ValueError(
            "The upper value must be no greater than one. Received: {}.".format(
                upper))

    is_test = not training

    if _in_legacy_dygraph():
        out, noise = _C_ops.rrelu(x, 'lower', lower, 'upper', upper, 'is_test',
                                  is_test)
        return out

    helper = LayerHelper('rrelu', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    noise = helper.create_variable_for_type_inference(dtype=x.dtype)
    attrs = {'lower': lower, 'upper': upper, 'is_test': is_test}
661 662 663 664 665 666 667
    helper.append_op(type='rrelu',
                     inputs={"X": x},
                     outputs={
                         "Out": out,
                         "Noise": noise
                     },
                     attrs=attrs)
668 669 670
    return out


671
def relu(x, name=None):
672
    """
673
    relu activation.
674

675
    .. math::
676 677 678 679

        out = max(x, 0)

    Parameters:
680 681 682
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
683 684

    Returns:
685
        A Tensor with the same data type and shape as ``x`` .
686 687 688 689

    Examples:
        .. code-block:: python

690 691 692
            import paddle
            import paddle.nn.functional as F
            import numpy as np
693

694 695
            x = paddle.to_tensor(np.array([-2, 0, 1]).astype('float32'))
            out = F.relu(x) # [0., 0., 1.]
696 697
    """

698 699 700
    if in_dygraph_mode():
        return _C_ops.final_state_relu(x)
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
701
        return _C_ops.relu(x)
702
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'relu')
703
    helper = LayerHelper('relu', **locals())
704 705 706 707 708
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='relu', inputs={'X': x}, outputs={'Out': out})
    return out


709
@inplace_apis_in_dygraph_only
710 711 712 713 714
def relu_(x, name=None):
    """
    Inplace version of ``relu`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_relu`.
    """
715
    if in_dygraph_mode():
716
        return _C_ops.final_state_relu_(x)
717 718
    if _in_legacy_dygraph():
        return _C_ops.relu_(x)
719 720


721
def log_sigmoid(x, name=None):
722
    r"""
723
    log_sigmoid activation.
724

725
    .. math::
726

727
        log\_sigmoid(x) = log \frac{1}{1 + e^{-x}}
728

729 730 731 732
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
733

734 735
    Returns:
        A Tensor with the same data type and shape as ``x`` .
736

737 738 739
    Examples:
        .. code-block:: python

740 741
            import paddle
            import paddle.nn.functional as F
742

743 744
            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = F.log_sigmoid(x) # [-0.313262 -0.126928 -0.0485874 -0.0181499]
745 746
    """

Z
zhiboniu 已提交
747
    if in_dynamic_mode():
W
wanghuancoder 已提交
748
        return _C_ops.logsigmoid(x)
749 750

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
751 752
                             'log_sigmoid')
    helper = LayerHelper("log_sigmoid", **locals())
753 754 755
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='logsigmoid', inputs={'X': x}, outputs={'Out': out})
    return out
756 757


758
def maxout(x, groups, axis=1, name=None):
759
    r"""
760 761 762 763 764 765 766 767
    maxout activation.

    Assumed the input shape is (N, Ci, H, W).
    The output shape is (N, Co, H, W).
    Then Co = Ci/groups and the operator formula is as follows:

    .. math::

768 769 770 771 772 773 774 775 776
        \begin{array}{l}
        &out_{si+j} = \max_{k} x_{gsi + sk + j} \\
        &g = groups \\
        &s = \frac{input.size}{num\_channels} \\
        &0 \le i < \frac{num\_channels}{groups} \\
        &0 \le j < s \\
        &0 \le k < groups
        \end{array}

777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812

    Parameters:
        x (Tensor): The input is 4-D Tensor with shape [N, C, H, W] or [N, H, W, C], the data type
            of input is float32 or float64.
        groups (int, optional): The groups number of maxout. `groups` specifies the
            index of channel dimension where maxout will be performed. This must be
            a factor of number of features. Default is 1.
        axis (int, optional): The axis along which to perform maxout calculations.
            It should be 1 when data format is NCHW, be -1 or 3 when data format
            is NHWC. If ``axis`` < 0, it works the same way as :math:`axis + D` ,
            where D is the dimensions of ``x`` . ``axis`` only supports 1, 3 or -1.
            Default is 1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.rand([1, 2, 3, 4])
            # [[[[0.5002636  0.22272532 0.17402348 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.02879342 0.88725346 0.61093384 0.38833922]]
            #   [[0.5231306  0.03807496 0.91661984 0.15602879]
            #    [0.666127   0.616567   0.30741522 0.24044901]
            #    [0.7142536  0.7351477  0.31588817 0.23782359]]]]
            out = F.maxout(x, groups=2)
            # [[[[0.5231306  0.22272532 0.91661984 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.7142536  0.88725346 0.61093384 0.38833922]]]]
    """
813
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
814
        return _C_ops.maxout(x, 'groups', groups, 'axis', axis)
815 816
    if in_dygraph_mode():
        return _C_ops.final_state_maxout(x, groups, axis)
817 818 819 820 821 822 823 824 825 826
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'maxout')
    if axis not in [1, -1, 3]:
        raise ValueError(
            "Attr(axis) should be 1 when data format is NCHW, -1 or 3 when data format is NHWC. Received "
            "Attr(axis): %s." % str(axis))
    if axis == -1:
        axis = 3

    helper = LayerHelper('maxout', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
827 828 829 830 831 832 833
    helper.append_op(type='maxout',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={
                         'groups': groups,
                         'axis': axis
                     })
834 835 836
    return out


837 838 839 840 841 842
def relu6(x, name=None):
    """
    relu6 activation

    .. math::

843
        relu6(x) = min(max(0,x), 6)
844

845
    Parameters:
846 847 848 849 850 851 852 853 854 855
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

856 857 858
            import paddle
            import paddle.nn.functional as F
            import numpy as np
859

860 861
            x = paddle.to_tensor(np.array([-1, 0.3, 6.5]))
            out = F.relu6(x) # [0, 0.3, 6]
862 863
    """
    threshold = 6.0
864 865
    if in_dygraph_mode():
        return _C_ops.final_state_relu6(x, threshold)
Z
zhiboniu 已提交
866
    if in_dynamic_mode():
W
wanghuancoder 已提交
867
        return _C_ops.relu6(x, 'threshold', threshold)
868 869 870 871

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'relu6')
    helper = LayerHelper('relu6', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
872 873 874 875
    helper.append_op(type='relu6',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'threshold': threshold})
876 877 878 879 880 881 882
    return out


def selu(x,
         scale=1.0507009873554804934193349852946,
         alpha=1.6732632423543772848170429916717,
         name=None):
883
    r"""
884 885 886 887
    selu activation

    .. math::

888
        selu(x)= scale *
889 890 891 892 893 894
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * e^{x} - alpha,& &\text{if } \ x <= 0
                \end{array}
            \right.
895

896
    Parameters:
897
        x (Tensor): The input Tensor with data type float32, float64.
898 899
        scale (float, optional): The value of scale(must be greater than 1.0) for selu. Default is 1.0507009873554804934193349852946
        alpha (float, optional): The value of alpha(must be no less than zero) for selu. Default is 1.6732632423543772848170429916717
900 901 902 903 904 905 906 907 908
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

909 910 911
            import paddle
            import paddle.nn.functional as F
            import numpy as np
912

913
            x = paddle.to_tensor(np.array([[0.0, 1.0],[2.0, 3.0]]))
914
            out = F.selu(x) # [[0, 1.050701],[2.101402, 3.152103]]
915
    """
916 917 918 919 920 921 922 923
    if scale <= 1.0:
        raise ValueError(
            "The scale must be greater than 1.0. Received: {}.".format(scale))

    if alpha < 0:
        raise ValueError(
            "The alpha must be no less than zero. Received: {}.".format(alpha))

H
hong 已提交
924 925 926
    if in_dygraph_mode():
        return _C_ops.final_state_selu(x, scale, alpha)
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
927
        return _C_ops.selu(x, 'scale', scale, 'alpha', alpha)
928 929 930 931

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'selu')
    helper = LayerHelper('selu', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
932 933 934 935 936 937 938
    helper.append_op(type='selu',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={
                         'scale': scale,
                         'alpha': alpha
                     })
939 940 941
    return out


M
minghaoBD 已提交
942
def silu(x, name=None):
943 944 945 946 947
    r"""
    silu activation

    .. math::

M
minghaoBD 已提交
948 949 950 951 952 953 954 955 956 957 958 959
        silu(x) = \frac{x}{1 + e^{-x}}
    
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        A Tensor with the same data type and shape as ``x`` .
    
    Examples:
        .. code-block:: python
960 961 962 963 964 965

            import paddle
            import paddle.nn.functional as F
            
            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = F.silu(x) # [ 0.731059, 1.761594, 2.857722, 3.928055 ]
M
minghaoBD 已提交
966 967
    """

968 969 970
    if in_dygraph_mode():
        return _C_ops.final_state_silu(x)
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
971
        return _C_ops.silu(x)
M
minghaoBD 已提交
972 973 974 975 976 977 978 979

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'silu')
    helper = LayerHelper("silu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='silu', inputs={'X': x}, outputs={'Out': out})
    return out


980
def softmax(x, axis=-1, dtype=None, name=None):
981
    r"""
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
    This operator implements the softmax layer. The calculation process is as follows:

    1. The dimension :attr:`axis` of ``x`` will be permuted to the last.

    2. Then ``x`` will be logically flattened to a 2-D matrix. The matrix's second
    dimension(row length) is the same as the dimension :attr:`axis` of ``x``,
    and the first dimension(column length) is the product of all other dimensions
    of ``x``. For each row of the matrix, the softmax operator squashes the
    K-dimensional(K is the width of the matrix, which is also the size of ``x``'s
    dimension :attr:`axis`) vector of arbitrary real values to a K-dimensional
    vector of real values in the range [0, 1] that add up to 1.

    3. After the softmax operation is completed, the inverse operations of steps 1 and 2
    are performed to restore the two-dimensional matrix to the same dimension as the ``x`` .

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

    For each row :math:`i` and each column :math:`j` in the matrix, we have:

    .. math::

1007
        softmax[i, j] = \frac{\exp(x[i, j])}{\sum_j(exp(x[i, j])}
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055

    Example:

    .. code-block:: text

        Case 1:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]

          Attrs:
            axis = -1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
                        [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]

        Case 2:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]
          Attrs:
            axis = 1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
                         [0.01786798, 0.01786798, 0.04661262, 0.04661262],
                         [0.97555875, 0.97555875, 0.93623955, 0.93623955]],
                        [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
                         [0.26762315, 0.26762315, 0.26762315, 0.26762315],
                         [0.72747516, 0.72747516, 0.72747516, 0.72747516]]]

1056 1057 1058 1059 1060 1061
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` < 0, it works the same way as
            :math:`axis + D` . Default is -1.
1062
        dtype (str, optional): The data type of the output tensor, can be float32, float64.
1063 1064 1065 1066
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
1067 1068
        A Tensor with the same shape and data type (use ``dtype`` if it is
        specified) as x.
1069 1070 1071 1072

    Examples:
        .. code-block:: python

1073 1074 1075
            import paddle
            import paddle.nn.functional as F
            import numpy as np
1076

1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
            x = np.array([[[2.0, 3.0, 4.0, 5.0],
                        [3.0, 4.0, 5.0, 6.0],
                        [7.0, 8.0, 8.0, 9.0]],
                        [[1.0, 2.0, 3.0, 4.0],
                        [5.0, 6.0, 7.0, 8.0],
                        [6.0, 7.0, 8.0, 9.0]]], 'float32')
            x = paddle.to_tensor(x)
            out1 = F.softmax(x)
            out2 = F.softmax(x, dtype='float64')
            # out1's data type is float32; out2's data type is float64
            # out1 and out2's value is as follows:
            # [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
            # [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]
1094
    """
1095 1096 1097

    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
1098
    use_cudnn = True
1099

H
hong 已提交
1100 1101 1102 1103 1104 1105
    if in_dygraph_mode():
        outs_cast = x if dtype is None \
            else _C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
        return _C_ops.final_state_softmax(outs_cast, axis)

    if _in_legacy_dygraph():
1106
        outs_cast = x if dtype is None \
W
wanghuancoder 已提交
1107 1108
            else _C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
        return _C_ops.softmax(outs_cast, 'axis', axis, 'use_cudnn', use_cudnn)
1109 1110 1111 1112 1113

    if dtype is None:
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'softmax')
    else:
1114 1115 1116
        check_dtype(
            dtype, 'dtype', ['float32', 'float64'], 'softmax',
            'If dtype is not None, it only support float32 or float64.')
1117 1118 1119 1120 1121

    helper = LayerHelper("softmax", **locals())
    outs_cast = x
    if dtype is not None:
        outs_cast = helper.create_variable_for_type_inference(dtype)
1122 1123 1124 1125 1126 1127 1128
        helper.append_op(type='cast',
                         inputs={'X': x},
                         outputs={'Out': outs_cast},
                         attrs={
                             'in_dtype': x.dtype,
                             'out_dtype': dtype
                         })
1129 1130

    outs_softmax = helper.create_variable_for_type_inference(outs_cast.dtype)
1131 1132 1133 1134 1135 1136 1137
    helper.append_op(type='softmax',
                     inputs={'X': outs_cast},
                     outputs={'Out': outs_softmax},
                     attrs={
                         'axis': axis,
                         'use_cudnn': use_cudnn
                     })
1138 1139

    return outs_softmax
1140 1141


1142
@inplace_apis_in_dygraph_only
1143 1144 1145 1146 1147 1148 1149 1150
def softmax_(x, axis=-1, dtype=None, name=None):
    r"""
    Inplace version of ``softmax`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_softmax`.
    """
    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
    use_cudnn = True
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160

    if in_dygraph_mode():
        outs_cast = x if dtype is None \
            else _C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
        return _C_ops.final_state_softmax_(outs_cast, axis)

    if _in_legacy_dygraph():
        outs_cast = x if dtype is None \
            else _C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
        return _C_ops.softmax_(outs_cast, 'axis', axis, 'use_cudnn', use_cudnn)
1161 1162


1163
def softplus(x, beta=1, threshold=20, name=None):
1164
    r"""
1165 1166 1167 1168
    softplus activation

    .. math::

1169 1170
        softplus(x) = \frac{1}{beta} * \log(1 + e^{beta * x}) \\
        \text{For numerical stability, the implementation reverts to the linear function when: beta * x > threshold.}
1171

1172
    Parameters:
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
        x (Tensor): The input Tensor with data type float32, float64.
        beta (float, optional): The value of beta for softplus. Default is 1
        threshold (float, optional): The value of threshold for softplus. Default is 20
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1185 1186 1187
            import paddle
            import paddle.nn.functional as F
            import numpy as np
1188

1189 1190
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            out = F.softplus(x) # [0.513015, 0.598139, 0.744397, 0.854355]
1191
    """
W
Wang Bojun 已提交
1192 1193 1194 1195 1196

    if in_dygraph_mode():
        return _C_ops.final_state_softplus(x, beta, threshold)

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
1197
        return _C_ops.softplus(x, 'beta', beta, 'threshold', threshold)
1198 1199 1200 1201 1202

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'softplus')
    helper = LayerHelper('softplus', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
1203 1204 1205 1206 1207 1208 1209
    helper.append_op(type='softplus',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={
                         'beta': beta,
                         'threshold': threshold
                     })
1210 1211 1212 1213
    return out


def softshrink(x, threshold=0.5, name=None):
1214
    r"""
1215 1216 1217 1218
    softshrink activation

    .. math::

1219 1220 1221 1222 1223 1224 1225 1226
        softshrink(x)= 
            \left\{
                \begin{array}{rcl}
                x - threshold,& & \text{if } x > threshold \\
                x + threshold,& & \text{if } x < -threshold \\
                0,& &  \text{otherwise}
            \end{array}
            \right.
1227

1228
    Parameters:
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold(must be no less than zero) for softplus. Default is 0.5
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1240 1241 1242
            import paddle
            import paddle.nn.functional as F
            import numpy as np
1243

1244 1245
            x = paddle.to_tensor(np.array([-0.9, -0.2, 0.1, 0.8]))
            out = F.softshrink(x) # [-0.4, 0, 0, 0.3]
1246
    """
1247 1248 1249 1250 1251
    if threshold < 0:
        raise ValueError(
            "The threshold must be no less than zero. Received: {}.".format(
                threshold))

1252 1253 1254
    if in_dygraph_mode():
        return _C_ops.final_state_soft_shrink(x, threshold)
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
1255
        return _C_ops.softshrink(x, 'lambda', threshold)
1256 1257 1258 1259 1260

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'softshrink')
    helper = LayerHelper('softshrink', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
1261 1262 1263 1264
    helper.append_op(type='softshrink',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'lambda': threshold})
1265 1266 1267 1268
    return out


def softsign(x, name=None):
1269
    r"""
1270 1271 1272 1273
    softsign activation

    .. math::

1274
        softsign(x) = \frac{x}{1 + |x|}
1275

1276
    Parameters:
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1287 1288 1289
            import paddle
            import paddle.nn.functional as F
            import numpy as np
1290

1291 1292
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            out = F.softsign(x) # [-0.285714, -0.166667, 0.0909091, 0.230769]
1293
    """
1294 1295
    if in_dygraph_mode():
        return _C_ops.final_state_softsign(x)
Z
zhiboniu 已提交
1296
    if in_dynamic_mode():
W
wanghuancoder 已提交
1297
        return _C_ops.softsign(x)
1298 1299 1300 1301 1302 1303 1304 1305 1306

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'softsign')
    helper = LayerHelper('softsign', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='softsign', inputs={'X': x}, outputs={'Out': out})
    return out


1307
def swish(x, name=None):
1308
    r"""
1309 1310 1311 1312
    swish activation.

    .. math::

1313
        swish(x) = \frac{x}{1 + e^{-x}}
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            import numpy as np

            x = paddle.to_tensor(np.array([-2., 0., 1.]))
            out = F.swish(x) # [-0.238406, 0., 0.731059]
    """
1333 1334 1335
    if in_dygraph_mode():
        return _C_ops.final_state_swish(x, 1.0)
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
1336
        return _C_ops.swish(x, 'beta', 1.0)
1337 1338 1339 1340

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'swish')
    helper = LayerHelper('swish', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
1341 1342 1343 1344
    helper.append_op(type='swish',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'beta': 1.0})
1345 1346 1347
    return out


1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
def mish(x, name=None):
    r"""
    mish activation.

    ..  math::

        softplus(x) = \begin{cases}
                x, \text{if } x > \text{threshold} \\
                \ln(1 + e^{x}),  \text{otherwise}
            \end{cases}

        mish(x) = x * \tanh(softplus(x))
    
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

W
wangxinxin08 已提交
1375
            x = paddle.to_tensor([-5., 0., 5.])
1376 1377
            out = F.mish(x) # [-0.03357624, 0., 4.99955208]
    """
1378 1379 1380
    if in_dygraph_mode():
        return _C_ops.final_state_mish(x, 20)
    if _in_legacy_dygraph():
1381 1382 1383 1384 1385 1386 1387 1388 1389
        return _C_ops.mish(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'mish')
    helper = LayerHelper('mish', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='mish', inputs={'X': x}, outputs={'Out': out})
    return out


1390 1391 1392 1393 1394 1395
def tanhshrink(x, name=None):
    """
    tanhshrink activation

    .. math::

1396
        tanhshrink(x) = x - tanh(x)
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1409 1410 1411
            import paddle
            import paddle.nn.functional as F
            import numpy as np
1412

1413 1414
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            out = F.tanhshrink(x) # [-0.020051, -0.00262468, 0.000332005, 0.00868739]
1415
    """
Z
zhiboniu 已提交
1416
    if in_dynamic_mode():
W
wanghuancoder 已提交
1417
        return _C_ops.tanh_shrink(x)
1418 1419 1420 1421 1422 1423 1424 1425 1426

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'tanhshrink')
    helper = LayerHelper('tanh_shrink', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='tanh_shrink', inputs={'X': x}, outputs={'Out': out})
    return out


1427
def thresholded_relu(x, threshold=1.0, name=None):
1428
    r"""
1429 1430 1431 1432
    thresholded relu activation.

    .. math::

1433 1434 1435 1436 1437 1438 1439 1440
        thresholded\_relu(x) = 
            \left\{
                \begin{array}{rl}
                x,& \text{if } \ x > threshold \\
                0,& \text{otherwise}
                \end{array}
            \right.

1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold for thresholded_relu. Default is 1.0
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            import numpy as np

            x = paddle.to_tensor(np.array([2., 0., 1.]))
            out = F.thresholded_relu(x) # [2., 0., 0.]
    """

Z
zhiboniu 已提交
1462
    if in_dynamic_mode():
W
wanghuancoder 已提交
1463
        return _C_ops.thresholded_relu(x, 'threshold', threshold)
1464 1465 1466 1467 1468

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'thresholded_relu')
    helper = LayerHelper('thresholded_relu', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
1469 1470 1471 1472
    helper.append_op(type='thresholded_relu',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'threshold': threshold})
1473 1474 1475
    return out


1476
def log_softmax(x, axis=-1, dtype=None, name=None):
1477
    r"""
1478 1479
    This operator implements the log_softmax layer. The calculation process is
    as follows:
1480 1481 1482

    .. math::

1483 1484 1485 1486
        \begin{aligned} 
        log\_softmax[i, j] &= log(softmax(x)) \\
        &= log(\frac{\exp(X[i, j])}{\sum_j(\exp(X[i, j])})
        \end{aligned}
1487 1488

    Parameters:
1489 1490 1491 1492 1493 1494 1495
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` < 0, it works the same way as
            :math:`axis + D` . Default is -1.
        dtype (str|np.dtype|core.VarDesc.VarType, optional): The desired data
            type of the output tensor. If dtype is specified, ``x`` is casted
1496
            to ``dtype`` before the operation is performed. This is useful for
1497 1498 1499 1500 1501
            preventing data type overflows. Supported dtype: float32, float64.
            If ``dtype`` is None, the output Tensor has the same dtype as x.
            Default is None.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
1502

1503
    Returns:
1504 1505
        A Tensor with the same shape and data type (use ``dtype`` if it is
        specified) as x.
1506 1507 1508 1509

    Examples:
        .. code-block:: python

1510 1511 1512
            import paddle
            import paddle.nn.functional as F

Z
zhupengyang 已提交
1513 1514 1515 1516 1517 1518
            x = [[[-2.0, 3.0, -4.0, 5.0],
                  [3.0, -4.0, 5.0, -6.0],
                  [-7.0, -8.0, 8.0, 9.0]],
                 [[1.0, -2.0, -3.0, 4.0],
                  [-5.0, 6.0, 7.0, -8.0],
                  [6.0, 7.0, 8.0, 9.0]]]
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
            x = paddle.to_tensor(x)
            out1 = F.log_softmax(x)
            out2 = F.log_softmax(x, dtype='float64')
            # out1's data type is float32; out2's data type is float64
            # out1 and out2's value is as follows:
            # [[[ -7.1278396   -2.1278396   -9.127839    -0.12783948]
            #   [ -2.1270514   -9.127051    -0.12705144 -11.127051  ]
            #   [-16.313261   -17.313261    -1.3132617   -0.31326184]]
            #  [[ -3.0518122   -6.051812    -7.051812    -0.051812  ]
            #   [-12.313267    -1.3132664   -0.3132665  -15.313267  ]
            #   [ -3.4401896   -2.4401896   -1.4401896   -0.44018966]]]
    """
1531 1532 1533

    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
1534

1535
    if _non_static_mode():
1536
        if dtype is not None:
W
wanghuancoder 已提交
1537
            x = _C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
1538 1539 1540
        if _in_legacy_dygraph():
            return _C_ops.log_softmax(x, 'axis', axis)
        return _C_ops.final_state_log_softmax(x, axis)
1541

1542
    if dtype is None:
1543 1544 1545
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'log_softmax')
    else:
1546 1547 1548
        check_dtype(
            dtype, 'dtype', ['float32', 'float64'], 'log_softmax',
            'If dtype is not None, it only support float32 or float64.')
1549

1550
    helper = LayerHelper("log_softmax", **locals())
1551
    out_cast = x
1552
    if dtype is not None:
1553
        out_cast = helper.create_variable_for_type_inference(dtype)
1554 1555 1556 1557 1558 1559 1560
        helper.append_op(type='cast',
                         inputs={'X': x},
                         outputs={'Out': out_cast},
                         attrs={
                             'in_dtype': x.dtype,
                             'out_dtype': dtype
                         })
1561

1562
    out = helper.create_variable_for_type_inference(out_cast.dtype)
1563 1564 1565 1566
    helper.append_op(type='log_softmax',
                     inputs={'X': out_cast},
                     outputs={'Out': out},
                     attrs={'axis': axis})
1567

1568
    return out
F
Feiyu Chan 已提交
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615


def glu(x, axis=-1, name=None):
    r"""
    The gated linear unit. The input is evenly splited into 2 parts along a 
    given axis. The first part is used as the content, and the second part is
    passed through a sigmoid function then used as the gate. The output is a
    elementwise multiplication of the content and the gate.

    .. math::

        \mathrm{GLU}(a, b) = a \otimes \sigma(b)

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int, optional): The axis along which split the input tensor. It 
            should be in range [-D, D), where D is the dimensions of ``x`` . 
            If ``axis`` < 0, it works the same way as :math:`axis + D` . 
            Default is -1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        A Tensor with the same data type as x. The size of the given aixs is 
        halved.
    
    Examples:
        .. code-block:: python
        
            import paddle
            from paddle.nn import functional as F
            
            x = paddle.to_tensor(
                [[-0.22014759, -1.76358426,  0.80566144,  0.04241343],
                 [-1.94900405, -1.89956081,  0.17134808, -1.11280477]]
            )
            print(F.glu(x).numpy())
            # array([[-0.15216254, -0.9004892 ],
            #        [-1.0577879 , -0.46985325]], dtype=float32)
        
    """
    check_variable_and_dtype(x, 'input', ['float16', 'float32', 'float64'],
                             "glu")
    a, b = chunk(x, 2, axis=axis, name=name)
    gate = sigmoid(b, name=name)
    out = paddle.multiply(a, gate, name=name)
    return out
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675


def gumbel_softmax(x, temperature=1.0, hard=False, axis=-1, name=None):
    r"""
    Samples from the Gumbel-Softmax distribution and optionally discretizes.
    temperature is denoted by t. The calculation process is as follows:

    First, generate gumbel noise:

    .. math::

        G_i = -log(-log(U_i)), U_i \sim U(0,1)

    Second, add noise to ``x``:

    .. math::

        v = [x_1 + G_1,...,x_n + G_n]

    Finally, calculate gumbel_softmax and generate samples:

    .. math::
        gumbel\_softmax(v_i)=\frac{e^{v_i/t}}{\sum_{j=1}^n{e^{v_j/t}}},i=1,2,3...n

    Parameters:
        x (Tensor): An N-D Tensor, the first N - 1 dimensions index into a batch 
            of independent distributions and the last dimension represents 
            a vector of probabilities with datatype float32, float64.
        temperature (float, optional): non-negative scalar temperature.
            Default is 1.0.
        hard (bool, optional): if True, the returned samples will be discretized as 
            one-hot vectors, but will be differentiated as if it is the soft sample 
            in autograd. Default is False.
        axis (int, optional): The axis along will be calculated softmax value. 
            Default is -1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        Sampled tensor of same shape as ``x`` from the Gumbel-Softmax distribution. 
        If ``hard = True``, the returned samples will be one-hot, otherwise they will be 
        probability distributions that sum to 1 across ``axis``.
    
    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            logits = paddle.randn([4, 6])
            temperature = 0.01
            gumbel_softmax = F.gumbel_softmax(logits, temperature)
            print(gumbel_softmax)
            # out's value is as follows:
            # [[0.00000001, 1.        , 0.00000000, 0.00000000, 0.00000006, 0.00000000],
            # [0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 1.        ],
            # [0.00000062, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.99999940],
            # [0.00000000, 0.00000000, 0.00000000, 0.00001258, 0.99998736, 0.00000000]]
        
    """
H
hong 已提交
1676 1677 1678
    if in_dygraph_mode():
        return _C_ops.final_state_gumbel_softmax(x, temperature, hard, axis)

Z
zhiboniu 已提交
1679
    if in_dynamic_mode():
1680 1681 1682 1683 1684 1685
        return _C_ops.gumbel_softmax(x, 'temperature', temperature, 'hard',
                                     hard, 'axis', axis)

    helper = LayerHelper("gumbel_softmax", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'gumbel_softmax')
    out = helper.create_variable_for_type_inference(x.dtype)
1686 1687 1688 1689 1690 1691 1692 1693
    helper.append_op(type='gumbel_softmax',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={
                         'temperature': temperature,
                         'hard': hard,
                         'axis': axis
                     })
1694
    return out