activation.py 58.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from ...tensor.ops import sigmoid  # noqa: F401
Z
zhiboniu 已提交
16 17
from ...tensor.math import tanh  # noqa: F401
from ...tensor.math import tanh_  # noqa: F401
18

19
from ...fluid.dygraph.inplace_utils import inplace_apis_in_dygraph_only
F
Feiyu Chan 已提交
20 21
from ...tensor.manipulation import chunk
from ...tensor.math import multiply
22

23 24
import warnings
from ...fluid.layer_helper import LayerHelper
J
Jiabin Yang 已提交
25
from ...fluid.framework import convert_np_dtype_to_dtype_
26
from ...fluid.framework import _in_legacy_dygraph, in_dygraph_mode, _non_static_mode
27
from ...fluid.data_feeder import check_variable_and_dtype, check_dtype
28
import paddle
29
from paddle import _C_ops, _legacy_C_ops, in_dynamic_mode
Z
zhiboniu 已提交
30
from paddle.framework import core
31
from paddle.fluid.framework import _in_legacy_dygraph, in_dygraph_mode
32

33 34
__all__ = []

35

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
def celu(x, alpha=1.0, name=None):
    r"""
    celu activation.

    .. math::

        celu(x) = max(0, x) + min(0, \alpha * (e^{x/\alpha}-1))

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        alpha (float, optional): The 'alpha' value of the CELU formulation. Default is 1.0.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            x = paddle.to_tensor([[-1., 6.], [1., 15.6]])
            out = F.celu(x, alpha=0.2)
            # [[-0.19865242,  6.        ],
            #  [ 1.        , 15.60000038]]
    """
    if alpha == 0:
        raise ZeroDivisionError("alpha cannot be 0 for celu")

66
    if _in_legacy_dygraph():
67
        return _legacy_C_ops.celu(x, 'alpha', alpha)
68
    if in_dygraph_mode():
69
        return _C_ops.celu(x, alpha)
70 71 72 73

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'celu')
    helper = LayerHelper("celu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
74 75 76 77
    helper.append_op(type='celu',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'alpha': alpha})
78 79 80
    return out


81
def elu(x, alpha=1.0, name=None):
82
    r"""
83 84
    elu activation.

85
    .. math::
86

Z
zhupengyang 已提交
87 88 89 90 91 92 93
        elu(x)=
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * (e^{x} - 1),& &\text{if } \ x <= 0
                \end{array}
            \right.
94 95 96 97 98 99

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        alpha (float, optional): The 'alpha' value of the ELU formulation. Default is 1.0.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
100

101 102
    Returns:
        A Tensor with the same data type and shape as ``x`` .
103

104 105 106
    Examples:
        .. code-block:: python

107 108
            import paddle
            import paddle.nn.functional as F
109

Z
zhupengyang 已提交
110
            x = paddle.to_tensor([[-1., 6.], [1., 15.6]])
111
            out = F.elu(x, alpha=0.2)
112 113
            # [[-0.12642411  6.        ]
            #  [ 1.          15.6      ]]
114 115
    """

116
    if in_dygraph_mode():
117
        return _C_ops.elu(x, alpha)
118 119

    if _in_legacy_dygraph():
120
        return _legacy_C_ops.elu(x, 'alpha', alpha)
121 122 123 124

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'elu')
    helper = LayerHelper("elu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
125 126 127 128
    helper.append_op(type='elu',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'alpha': alpha})
129 130 131
    return out


132
@inplace_apis_in_dygraph_only
133 134 135 136 137
def elu_(x, alpha=1.0, name=None):
    r"""
    Inplace version of ``elu`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_elu`.
    """
Z
zhupengyang 已提交
138
    assert alpha >= 0., "elu_ only support alpha >= 0, please use elu instead."
139
    if in_dygraph_mode():
140 141
        return _C_ops.elu_(x, alpha)
    return _legacy_C_ops.elu_(x, 'alpha', alpha)
142 143


144
def gelu(x, approximate=False, name=None):
145
    r"""
146 147 148
    gelu activation.

    if approximate is True
149 150 151

    .. math::

152
        gelu(x) = 0.5 * x * (1 + tanh(\sqrt{\frac{2}{\pi}} * (x + 0.044715x^{3})))
153

154
    else
155 156 157

    .. math::

158
        gelu(x) = 0.5 * x * (1 + erf(\frac{x}{\sqrt{2}}))
159

160 161 162 163 164
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        approximate (bool, optional): Wether to enable approximation. Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
165

166 167
    Returns:
        A Tensor with the same data type and shape as ``x`` .
168

169 170 171
    Examples:
        .. code-block:: python

172 173
            import paddle
            import paddle.nn.functional as F
174

Z
zhupengyang 已提交
175 176 177 178 179 180 181
            x = paddle.to_tensor([[-1, 0.5], [1, 1.5]])
            out1 = F.gelu(x)
            # [[-0.15865529,  0.34573123],
            #  [ 0.84134471,  1.39978933]]
            out2 = F.gelu(x, True)
            # [[-0.15880799,  0.34571400],
            #  [ 0.84119201,  1.39957154]]
182 183
    """

184
    if in_dygraph_mode():
185
        return _C_ops.gelu(x, approximate)
186 187

    if _in_legacy_dygraph():
188
        return _legacy_C_ops.gelu(x, 'approximate', approximate)
189 190 191 192

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'gelu')
    helper = LayerHelper("gelu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
193 194 195 196
    helper.append_op(type='gelu',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'approximate': approximate})
197 198 199
    return out


200
def hardshrink(x, threshold=0.5, name=None):
201
    r"""
202 203 204 205 206
    hard shrinkage activation

    .. math::

        hardshrink(x)=
207 208 209 210 211 212 213
            \left\{
                \begin{array}{rcl}
                x,&  &if \ {x > threshold}  \\
                x,&  &if \ {x < -threshold}   \\
                0,&  &if \ {others} &
                \end{array}
            \right.
214 215 216 217 218 219 220 221 222 223 224 225 226

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold for hardthrink. Default is 0.5
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

227 228
            import paddle
            import paddle.nn.functional as F
229

Z
zhupengyang 已提交
230
            x = paddle.to_tensor([-1, 0.3, 2.5])
231
            out = F.hardshrink(x) # [-1., 0., 2.5]
232 233

    """
H
hong 已提交
234
    if in_dygraph_mode():
235
        return _C_ops.hard_shrink(x, threshold)
H
hong 已提交
236 237

    if _in_legacy_dygraph():
238
        return _legacy_C_ops.hard_shrink(x, 'threshold', threshold)
239 240 241 242 243

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'hardshrink')
    helper = LayerHelper('hardshrink', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
244 245 246 247
    helper.append_op(type='hard_shrink',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'threshold': threshold})
248 249 250
    return out


251
def hardtanh(x, min=-1.0, max=1.0, name=None):
252
    r"""
253 254 255 256
    hardtanh activation

    .. math::

257 258 259 260 261 262 263 264
        hardtanh(x)=
            \left\{
                \begin{array}{cll}
                    max,& & \text{if } x > max \\
                    min,& & \text{if } x < min \\
                    x,& & \text{otherwise}
                \end{array}
            \right.
265

266
    Parameters:
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
        x (Tensor): The input Tensor with data type float32, float64.
        min (float, optional): The minimum value of the linear region range. Default is -1.
        max (float, optional): The maximum value of the linear region range. Default is 1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            import numpy as np

            x = paddle.to_tensor(np.array([-1.5, 0.3, 2.5]))
            out = F.hardtanh(x) # [-1., 0.3, 1.]
    """

H
hong 已提交
287
    if in_dygraph_mode():
288
        return _C_ops.brelu(x, min, max)
H
hong 已提交
289 290

    if _in_legacy_dygraph():
291
        return _legacy_C_ops.brelu(x, 't_min', min, 't_max', max)
292 293 294 295 296 297

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'hardtanh')

    helper = LayerHelper('hardtanh', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
298 299 300 301 302 303 304
    helper.append_op(type='brelu',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={
                         't_min': min,
                         't_max': max
                     })
305 306 307
    return out


308
def hardsigmoid(x, slope=0.1666667, offset=0.5, name=None):
309
    r"""
310 311 312 313 314 315 316 317
    hardsigmoid activation.

    A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
    which is much faster than sigmoid.

    .. math::

        hardsigmoid(x)=
318 319 320 321 322 323 324
            \left\{
                \begin{array}{lcl}
                0, & &\text{if } \ x \leq -3 \\
                1, & &\text{if } \ x \geq 3 \\
                slope * x + offset, & &\text{otherwise}
                \end{array}
            \right.
325 326 327

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
328 329
        slope (float, optional): The slope of hardsigmoid function. Default is 0.1666667.
        offset (float, optional): The offset of hardsigmoid function. Default is 0.5.
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.to_tensor([-4., 5., 1.])
            out = F.hardsigmoid(x) # [0., 1., 0.666667]
    """

H
hong 已提交
346
    if in_dygraph_mode():
347
        return _C_ops.hard_sigmoid(x, slope, offset)
H
hong 已提交
348 349

    if _in_legacy_dygraph():
350
        return _legacy_C_ops.hard_sigmoid(x, 'slope', slope, 'offset', offset)
351 352 353 354 355 356

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'hardsigmoid')

    helper = LayerHelper('hardsigmoid', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
357 358 359 360 361 362 363
    helper.append_op(type='hard_sigmoid',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={
                         'slope': slope,
                         'offset': offset
                     })
364 365 366 367
    return out


def hardswish(x, name=None):
368
    r"""
369 370 371 372 373 374 375 376 377
    hardswish activation

    hardswish is proposed in MobileNetV3, and performs better in computational stability
    and efficiency compared to swish function. For more details please refer
    to: https://arxiv.org/pdf/1905.02244.pdf

    .. math::

        hardswish(x)=
378 379 380 381 382 383 384
            \left\{
                \begin{array}{cll}
                0 &, & \text{if } x \leq -3 \\
                x &, & \text{if } x \geq 3 \\
                \frac{x(x+3)}{6} &, & \text{otherwise}
                \end{array}
            \right.
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.to_tensor([-4., 5., 1.])
            out = F.hardswish(x) # [0., 5., 0.666667]
    """

404
    if _in_legacy_dygraph():
405
        return _legacy_C_ops.hard_swish(x)
406
    if in_dygraph_mode():
407
        return _C_ops.hard_swish(x, 6, 6, 3)
408 409 410 411 412 413 414 415 416 417

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'hardswish')

    helper = LayerHelper('hardswish', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='hard_swish', inputs={'X': x}, outputs={'Out': out})
    return out


418
def leaky_relu(x, negative_slope=0.01, name=None):
419
    r"""
420 421
    leaky_relu activation

422
    .. math::
423 424 425 426 427 428 429
        leaky\_relu(x)=
        \left\{
            \begin{array}{rcl}
                x, & & if \ x >= 0 \\
                negative\_slope * x, & & otherwise \\
            \end{array}
        \right.
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        negative_slope (float, optional): Slope of the activation function at
            :math:`x < 0` . Default is 0.01.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

Z
zhupengyang 已提交
447
            x = paddle.to_tensor([-2., 0., 1.])
448 449 450
            out = F.leaky_relu(x) # [-0.02, 0., 1.]

    """
451
    if in_dygraph_mode():
452
        return _C_ops.leaky_relu(x, negative_slope)
453 454

    if _in_legacy_dygraph():
455
        return _legacy_C_ops.leaky_relu(x, 'alpha', negative_slope)
456 457 458 459 460

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'leaky_relu')
    helper = LayerHelper('leaky_relu', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
461 462 463 464
    helper.append_op(type='leaky_relu',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'alpha': negative_slope})
465 466 467
    return out


468
def prelu(x, weight, data_format="NCHW", name=None):
469 470 471 472 473 474 475 476 477 478 479 480 481
    """
    prelu activation.

    .. math::

        prelu(x) = max(0, x) + weight * min(0, x)

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        weight (Tensor): The learnable parameter with data type same as ``x``.
            The weight shape is [1] or [in], where `in` is the input channel of ``x``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
482 483
        data_format(str, optional): Data format that specifies the layout of input.
            It may be "NC", "NCL", "NCHW", "NCDHW", "NLC", "NHWC" or "NDHWC". Default: "NCHW".
484 485 486 487 488 489 490 491 492 493 494 495

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            import numpy as np

            data = np.array([[[[-2.0,  3.0, -4.0,  5.0],
Z
zhupengyang 已提交
496 497 498 499 500
                               [ 3.0, -4.0,  5.0, -6.0],
                               [-7.0, -8.0,  8.0,  9.0]],
                              [[ 1.0, -2.0, -3.0,  4.0],
                               [-5.0,  6.0,  7.0, -8.0],
                               [ 6.0,  7.0,  8.0,  9.0]]]], 'float32')
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
            x = paddle.to_tensor(data)
            w = paddle.to_tensor(np.array([0.25]).astype('float32'))
            out = F.prelu(x, w)
            # [[[[-0.5 ,  3.  , -1.  ,  5.  ],
            #    [ 3.  , -1.  ,  5.  , -1.5 ],
            #    [-1.75, -2.  ,  8.  ,  9.  ]],
            #   [[ 1.  , -0.5 , -0.75,  4.  ],
            #    [-1.25,  6.  ,  7.  , -2.  ],
            #    [ 6.  ,  7.  ,  8.  ,  9.  ]]]]
    """
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'prelu')
    check_variable_and_dtype(weight, 'weight',
                             ['float16', 'float32', 'float64'], 'prelu')

    assert len(weight.shape
               ) == 1, "The dim count of weight shape should be 1 in prelu()."

    mode = 'all'
    if weight.shape[0] > 1:
520 521 522 523 524 525 526 527 528 529 530

        true_data_format = [
            'NC', 'NCL', 'NCHW', 'NCDHW', 'NLC', 'NHWC', 'NDHWC'
        ]
        if data_format not in true_data_format:
            raise ValueError(
                "data_format must be one of 'NC', 'NCL', 'NCHW', 'NCDHW', "
                "'NLC', 'NHWC', 'NDHWC' but receive {}".format(data_format))

        data_format = 'NCHW' if data_format[1] == 'C' else 'NHWC'

531 532 533
        assert len(
            x.shape
        ) > 1, "The dim count of x should be equal or larger than 2 in prelu() when weight shape is not [1]."
534 535 536 537 538 539 540 541

        #NOTE(GuoxiaWang): support NHWC data format
        if data_format == 'NHWC':
            assert weight.shape[0] == x.shape[
                -1], "The weight size should be equal to x input channel in prelu() when weight shape is not [1]."
        else:
            assert weight.shape[0] == x.shape[
                1], "The weight size should be equal to x input channel in prelu() when weight shape is not [1]."
542 543
        mode = 'channel'

544
    if in_dygraph_mode():
545
        return _C_ops.prelu(x, weight, data_format, mode)
546
    if _in_legacy_dygraph():
547 548
        return _legacy_C_ops.prelu(x, weight, 'mode', mode, 'data_format',
                                   data_format)
549

550
    helper = LayerHelper('prelu', **locals())
551
    out = helper.create_variable_for_type_inference(x.dtype)
552 553 554 555 556 557 558 559 560 561
    helper.append_op(type="prelu",
                     inputs={
                         "X": x,
                         "Alpha": weight
                     },
                     outputs={"Out": out},
                     attrs={
                         "mode": mode,
                         "data_format": data_format
                     })
562 563 564
    return out


565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
def rrelu(x, lower=1. / 8., upper=1. / 3., training=True, name=None):
    r"""
    rrelu activation.

    Applies the randomized leaky rectified liner unit function to improve generalization performance,
    as described in the paper:
    `Empirical Evaluation of Rectified Activations in Convolutional Network <https://arxiv.org/abs/1505.00853>`_

    During training, randomly samples the negative slope for activation values as described below:

    .. math::

        rrelu(x)=
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    a * x, & & otherwise \\
                \end{array}
            \right.

    where :math:`x` is the input tensor,
    :math:`a` is randomly sampled from uniform distribution in range (:math:`lower`, :math:`upper`),

    In the test phase, the negative slope will take the average value of :math:`lower` and :math:`upper`:

    .. math::

        rrelu(x)=
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    (lower + upper) * 0.5 * x, & & otherwise \\
                \end{array}
            \right.

    where :math:`x` is the input tensor,
    :math:`lower` and :math:`upper` are the bounds of uniform distribution.

    Parameters:
        x (Tensor): The input Tensor with data type float16, float32, float64.
        lower (float, optional): The lower bound of uniform distribution. Default: 0.125.
        upper (float, optional): The upper bound of uniform distribution. Default: 0.333.
        training (bool, optional): Current mode is in training or others.  Default is True.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input_tensor = paddle.to_tensor([[[[-2.0,  3.0, -4.0,  5.0],
                                            [ 3.0, -4.0,  5.0, -6.0],
                                            [-7.0, -8.0,  8.0,  9.0]],
                                            [[ 1.0, -2.0, -3.0,  4.0],
                                            [-5.0,  6.0,  7.0, -8.0],
                                            [ 6.0,  7.0,  8.0,  9.0]]]], dtype='float32')

            out = F.rrelu(input_tensor, 0.1, 0.3)
            #[[[[-0.20000899  3.         -0.8810822   5.        ]
            #   [ 3.         -0.55175185  5.         -1.0776101 ]
            #   [-1.0680687  -1.9896201   8.          9.        ]]
            #  [[ 1.         -0.5238267  -0.65515125  4.        ]
            #   [-1.3766339   6.          7.         -2.3465784 ]
            #   [ 6.          7.          8.          9.        ]]]]
    """

    if not in_dynamic_mode():
        check_variable_and_dtype(x, 'X', ['float16', 'float32', 'float64'],
                                 'rrelu')

    if not isinstance(lower, float) or not isinstance(upper, float):
        raise TypeError(
642 643
            "The lower and upper values must be float type. Received: lower {}, upper {}."
            .format(lower, upper))
644 645 646

    if lower < 0 or lower > 1:
        raise ValueError(
647 648
            "The lower value must be no less than zero or greater than one. Received: {}."
            .format(lower))
649 650 651

    if upper < lower:
        raise ValueError(
652 653
            "The upper value must be greater than lower value. Received: lower {}, upper {}."
            .format(lower, upper))
654 655 656 657 658 659 660 661 662

    if upper > 1:
        raise ValueError(
            "The upper value must be no greater than one. Received: {}.".format(
                upper))

    is_test = not training

    if _in_legacy_dygraph():
663 664
        out, noise = _legacy_C_ops.rrelu(x, 'lower', lower, 'upper', upper,
                                         'is_test', is_test)
665 666 667 668 669 670
        return out

    helper = LayerHelper('rrelu', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    noise = helper.create_variable_for_type_inference(dtype=x.dtype)
    attrs = {'lower': lower, 'upper': upper, 'is_test': is_test}
671 672 673 674 675 676 677
    helper.append_op(type='rrelu',
                     inputs={"X": x},
                     outputs={
                         "Out": out,
                         "Noise": noise
                     },
                     attrs=attrs)
678 679 680
    return out


681
def relu(x, name=None):
682
    """
683
    relu activation.
684

685
    .. math::
686 687 688 689

        out = max(x, 0)

    Parameters:
690 691 692
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
693 694

    Returns:
695
        A Tensor with the same data type and shape as ``x`` .
696 697 698 699

    Examples:
        .. code-block:: python

700 701 702
            import paddle
            import paddle.nn.functional as F
            import numpy as np
703

704 705
            x = paddle.to_tensor(np.array([-2, 0, 1]).astype('float32'))
            out = F.relu(x) # [0., 0., 1.]
706 707
    """

708
    if in_dygraph_mode():
W
wanghuancoder 已提交
709
        return _C_ops.relu(x)
710 711
    if _in_legacy_dygraph():
        return _legacy_C_ops.relu(x)
712
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'relu')
713
    helper = LayerHelper('relu', **locals())
714 715 716 717 718
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='relu', inputs={'X': x}, outputs={'Out': out})
    return out


719
@inplace_apis_in_dygraph_only
720 721 722 723 724
def relu_(x, name=None):
    """
    Inplace version of ``relu`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_relu`.
    """
725 726
    if in_dygraph_mode():
        return _C_ops.relu_(x)
727 728
    if _in_legacy_dygraph():
        return _legacy_C_ops.relu_(x)
729 730


731
def log_sigmoid(x, name=None):
732
    r"""
733
    log_sigmoid activation.
734

735
    .. math::
736

737
        log\_sigmoid(x) = log \frac{1}{1 + e^{-x}}
738

739 740 741 742
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
743

744 745
    Returns:
        A Tensor with the same data type and shape as ``x`` .
746

747 748 749
    Examples:
        .. code-block:: python

750 751
            import paddle
            import paddle.nn.functional as F
752

753 754
            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = F.log_sigmoid(x) # [-0.313262 -0.126928 -0.0485874 -0.0181499]
755 756
    """

H
hong 已提交
757
    if in_dygraph_mode():
758
        return _C_ops.logsigmoid(x)
H
hong 已提交
759 760

    if _in_legacy_dygraph():
761
        return _legacy_C_ops.logsigmoid(x)
762 763

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
764 765
                             'log_sigmoid')
    helper = LayerHelper("log_sigmoid", **locals())
766 767 768
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='logsigmoid', inputs={'X': x}, outputs={'Out': out})
    return out
769 770


771
def maxout(x, groups, axis=1, name=None):
772
    r"""
773 774 775 776 777 778 779 780
    maxout activation.

    Assumed the input shape is (N, Ci, H, W).
    The output shape is (N, Co, H, W).
    Then Co = Ci/groups and the operator formula is as follows:

    .. math::

781 782 783 784 785 786 787 788 789
        \begin{array}{l}
        &out_{si+j} = \max_{k} x_{gsi + sk + j} \\
        &g = groups \\
        &s = \frac{input.size}{num\_channels} \\
        &0 \le i < \frac{num\_channels}{groups} \\
        &0 \le j < s \\
        &0 \le k < groups
        \end{array}

790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825

    Parameters:
        x (Tensor): The input is 4-D Tensor with shape [N, C, H, W] or [N, H, W, C], the data type
            of input is float32 or float64.
        groups (int, optional): The groups number of maxout. `groups` specifies the
            index of channel dimension where maxout will be performed. This must be
            a factor of number of features. Default is 1.
        axis (int, optional): The axis along which to perform maxout calculations.
            It should be 1 when data format is NCHW, be -1 or 3 when data format
            is NHWC. If ``axis`` < 0, it works the same way as :math:`axis + D` ,
            where D is the dimensions of ``x`` . ``axis`` only supports 1, 3 or -1.
            Default is 1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.rand([1, 2, 3, 4])
            # [[[[0.5002636  0.22272532 0.17402348 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.02879342 0.88725346 0.61093384 0.38833922]]
            #   [[0.5231306  0.03807496 0.91661984 0.15602879]
            #    [0.666127   0.616567   0.30741522 0.24044901]
            #    [0.7142536  0.7351477  0.31588817 0.23782359]]]]
            out = F.maxout(x, groups=2)
            # [[[[0.5231306  0.22272532 0.91661984 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.7142536  0.88725346 0.61093384 0.38833922]]]]
    """
826
    if _in_legacy_dygraph():
827
        return _legacy_C_ops.maxout(x, 'groups', groups, 'axis', axis)
828
    if in_dygraph_mode():
829
        return _C_ops.maxout(x, groups, axis)
830 831 832 833 834 835 836 837 838 839
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'maxout')
    if axis not in [1, -1, 3]:
        raise ValueError(
            "Attr(axis) should be 1 when data format is NCHW, -1 or 3 when data format is NHWC. Received "
            "Attr(axis): %s." % str(axis))
    if axis == -1:
        axis = 3

    helper = LayerHelper('maxout', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
840 841 842 843 844 845 846
    helper.append_op(type='maxout',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={
                         'groups': groups,
                         'axis': axis
                     })
847 848 849
    return out


850 851 852 853 854 855
def relu6(x, name=None):
    """
    relu6 activation

    .. math::

856
        relu6(x) = min(max(0,x), 6)
857

858
    Parameters:
859 860 861 862 863 864 865 866 867 868
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

869 870 871
            import paddle
            import paddle.nn.functional as F
            import numpy as np
872

873 874
            x = paddle.to_tensor(np.array([-1, 0.3, 6.5]))
            out = F.relu6(x) # [0, 0.3, 6]
875 876
    """
    threshold = 6.0
877
    if in_dygraph_mode():
878
        return _C_ops.relu6(x, threshold)
Z
zhiboniu 已提交
879
    if in_dynamic_mode():
880
        return _legacy_C_ops.relu6(x, 'threshold', threshold)
881 882 883 884

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'relu6')
    helper = LayerHelper('relu6', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
885 886 887 888
    helper.append_op(type='relu6',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'threshold': threshold})
889 890 891 892 893 894 895
    return out


def selu(x,
         scale=1.0507009873554804934193349852946,
         alpha=1.6732632423543772848170429916717,
         name=None):
896
    r"""
897 898 899 900
    selu activation

    .. math::

901
        selu(x)= scale *
902 903 904 905 906 907
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * e^{x} - alpha,& &\text{if } \ x <= 0
                \end{array}
            \right.
908

909
    Parameters:
910
        x (Tensor): The input Tensor with data type float32, float64.
911 912
        scale (float, optional): The value of scale(must be greater than 1.0) for selu. Default is 1.0507009873554804934193349852946
        alpha (float, optional): The value of alpha(must be no less than zero) for selu. Default is 1.6732632423543772848170429916717
913 914 915 916 917 918 919 920 921
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

922 923 924
            import paddle
            import paddle.nn.functional as F
            import numpy as np
925

926
            x = paddle.to_tensor(np.array([[0.0, 1.0],[2.0, 3.0]]))
927
            out = F.selu(x) # [[0, 1.050701],[2.101402, 3.152103]]
928
    """
929 930 931 932 933 934 935 936
    if scale <= 1.0:
        raise ValueError(
            "The scale must be greater than 1.0. Received: {}.".format(scale))

    if alpha < 0:
        raise ValueError(
            "The alpha must be no less than zero. Received: {}.".format(alpha))

H
hong 已提交
937
    if in_dygraph_mode():
938
        return _C_ops.selu(x, scale, alpha)
H
hong 已提交
939
    if _in_legacy_dygraph():
940
        return _legacy_C_ops.selu(x, 'scale', scale, 'alpha', alpha)
941 942 943 944

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'selu')
    helper = LayerHelper('selu', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
945 946 947 948 949 950 951
    helper.append_op(type='selu',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={
                         'scale': scale,
                         'alpha': alpha
                     })
952 953 954
    return out


M
minghaoBD 已提交
955
def silu(x, name=None):
956 957 958 959 960
    r"""
    silu activation

    .. math::

M
minghaoBD 已提交
961 962 963 964 965 966 967 968 969 970 971 972
        silu(x) = \frac{x}{1 + e^{-x}}
    
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        A Tensor with the same data type and shape as ``x`` .
    
    Examples:
        .. code-block:: python
973 974 975 976 977 978

            import paddle
            import paddle.nn.functional as F
            
            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = F.silu(x) # [ 0.731059, 1.761594, 2.857722, 3.928055 ]
M
minghaoBD 已提交
979 980
    """

981
    if in_dygraph_mode():
W
wanghuancoder 已提交
982
        return _C_ops.silu(x)
983 984
    if _in_legacy_dygraph():
        return _legacy_C_ops.silu(x)
M
minghaoBD 已提交
985 986 987 988 989 990 991 992

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'silu')
    helper = LayerHelper("silu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='silu', inputs={'X': x}, outputs={'Out': out})
    return out


993
def softmax(x, axis=-1, dtype=None, name=None):
994
    r"""
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
    This operator implements the softmax layer. The calculation process is as follows:

    1. The dimension :attr:`axis` of ``x`` will be permuted to the last.

    2. Then ``x`` will be logically flattened to a 2-D matrix. The matrix's second
    dimension(row length) is the same as the dimension :attr:`axis` of ``x``,
    and the first dimension(column length) is the product of all other dimensions
    of ``x``. For each row of the matrix, the softmax operator squashes the
    K-dimensional(K is the width of the matrix, which is also the size of ``x``'s
    dimension :attr:`axis`) vector of arbitrary real values to a K-dimensional
    vector of real values in the range [0, 1] that add up to 1.

    3. After the softmax operation is completed, the inverse operations of steps 1 and 2
    are performed to restore the two-dimensional matrix to the same dimension as the ``x`` .

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

    For each row :math:`i` and each column :math:`j` in the matrix, we have:

    .. math::

1020
        softmax[i, j] = \frac{\exp(x[i, j])}{\sum_j(exp(x[i, j])}
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068

    Example:

    .. code-block:: text

        Case 1:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]

          Attrs:
            axis = -1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
                        [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]

        Case 2:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]
          Attrs:
            axis = 1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
                         [0.01786798, 0.01786798, 0.04661262, 0.04661262],
                         [0.97555875, 0.97555875, 0.93623955, 0.93623955]],
                        [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
                         [0.26762315, 0.26762315, 0.26762315, 0.26762315],
                         [0.72747516, 0.72747516, 0.72747516, 0.72747516]]]

1069 1070 1071 1072 1073 1074
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` < 0, it works the same way as
            :math:`axis + D` . Default is -1.
1075
        dtype (str, optional): The data type of the output tensor, can be float32, float64.
1076 1077 1078 1079
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
1080 1081
        A Tensor with the same shape and data type (use ``dtype`` if it is
        specified) as x.
1082 1083 1084 1085

    Examples:
        .. code-block:: python

1086 1087 1088
            import paddle
            import paddle.nn.functional as F
            import numpy as np
1089

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
            x = np.array([[[2.0, 3.0, 4.0, 5.0],
                        [3.0, 4.0, 5.0, 6.0],
                        [7.0, 8.0, 8.0, 9.0]],
                        [[1.0, 2.0, 3.0, 4.0],
                        [5.0, 6.0, 7.0, 8.0],
                        [6.0, 7.0, 8.0, 9.0]]], 'float32')
            x = paddle.to_tensor(x)
            out1 = F.softmax(x)
            out2 = F.softmax(x, dtype='float64')
            # out1's data type is float32; out2's data type is float64
            # out1 and out2's value is as follows:
            # [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
            # [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]
1107
    """
1108 1109 1110

    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
1111
    use_cudnn = True
1112

H
hong 已提交
1113 1114
    if in_dygraph_mode():
        outs_cast = x if dtype is None \
1115 1116
            else _C_ops.cast(x, dtype)
        return _C_ops.softmax(outs_cast, axis)
H
hong 已提交
1117 1118

    if _in_legacy_dygraph():
1119
        outs_cast = x if dtype is None \
1120 1121 1122
            else _legacy_C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
        return _legacy_C_ops.softmax(outs_cast, 'axis', axis, 'use_cudnn',
                                     use_cudnn)
1123 1124 1125 1126 1127

    if dtype is None:
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'softmax')
    else:
1128 1129 1130
        check_dtype(
            dtype, 'dtype', ['float32', 'float64'], 'softmax',
            'If dtype is not None, it only support float32 or float64.')
1131 1132 1133 1134 1135

    helper = LayerHelper("softmax", **locals())
    outs_cast = x
    if dtype is not None:
        outs_cast = helper.create_variable_for_type_inference(dtype)
1136 1137 1138 1139 1140 1141 1142
        helper.append_op(type='cast',
                         inputs={'X': x},
                         outputs={'Out': outs_cast},
                         attrs={
                             'in_dtype': x.dtype,
                             'out_dtype': dtype
                         })
1143 1144

    outs_softmax = helper.create_variable_for_type_inference(outs_cast.dtype)
1145 1146 1147 1148 1149 1150 1151
    helper.append_op(type='softmax',
                     inputs={'X': outs_cast},
                     outputs={'Out': outs_softmax},
                     attrs={
                         'axis': axis,
                         'use_cudnn': use_cudnn
                     })
1152 1153

    return outs_softmax
1154 1155


1156
@inplace_apis_in_dygraph_only
1157 1158 1159 1160 1161 1162 1163 1164
def softmax_(x, axis=-1, dtype=None, name=None):
    r"""
    Inplace version of ``softmax`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_softmax`.
    """
    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
    use_cudnn = True
1165 1166 1167

    if in_dygraph_mode():
        outs_cast = x if dtype is None \
1168 1169
            else _legacy_C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
        return _C_ops.softmax_(outs_cast, axis)
1170 1171 1172

    if _in_legacy_dygraph():
        outs_cast = x if dtype is None \
1173 1174 1175
            else _legacy_C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
        return _legacy_C_ops.softmax_(outs_cast, 'axis', axis, 'use_cudnn',
                                      use_cudnn)
1176 1177


1178
def softplus(x, beta=1, threshold=20, name=None):
1179
    r"""
1180 1181 1182 1183
    softplus activation

    .. math::

1184 1185
        softplus(x) = \frac{1}{beta} * \log(1 + e^{beta * x}) \\
        \text{For numerical stability, the implementation reverts to the linear function when: beta * x > threshold.}
1186

1187
    Parameters:
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
        x (Tensor): The input Tensor with data type float32, float64.
        beta (float, optional): The value of beta for softplus. Default is 1
        threshold (float, optional): The value of threshold for softplus. Default is 20
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1200 1201 1202
            import paddle
            import paddle.nn.functional as F
            import numpy as np
1203

1204 1205
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            out = F.softplus(x) # [0.513015, 0.598139, 0.744397, 0.854355]
1206
    """
W
Wang Bojun 已提交
1207 1208

    if in_dygraph_mode():
1209
        return _C_ops.softplus(x, beta, threshold)
W
Wang Bojun 已提交
1210 1211

    if _in_legacy_dygraph():
1212
        return _legacy_C_ops.softplus(x, 'beta', beta, 'threshold', threshold)
1213 1214 1215 1216 1217

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'softplus')
    helper = LayerHelper('softplus', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
1218 1219 1220 1221 1222 1223 1224
    helper.append_op(type='softplus',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={
                         'beta': beta,
                         'threshold': threshold
                     })
1225 1226 1227 1228
    return out


def softshrink(x, threshold=0.5, name=None):
1229
    r"""
1230 1231 1232 1233
    softshrink activation

    .. math::

1234 1235 1236 1237 1238 1239 1240 1241
        softshrink(x)= 
            \left\{
                \begin{array}{rcl}
                x - threshold,& & \text{if } x > threshold \\
                x + threshold,& & \text{if } x < -threshold \\
                0,& &  \text{otherwise}
            \end{array}
            \right.
1242

1243
    Parameters:
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold(must be no less than zero) for softplus. Default is 0.5
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1255 1256 1257
            import paddle
            import paddle.nn.functional as F
            import numpy as np
1258

1259 1260
            x = paddle.to_tensor(np.array([-0.9, -0.2, 0.1, 0.8]))
            out = F.softshrink(x) # [-0.4, 0, 0, 0.3]
1261
    """
1262 1263 1264 1265 1266
    if threshold < 0:
        raise ValueError(
            "The threshold must be no less than zero. Received: {}.".format(
                threshold))

1267
    if in_dygraph_mode():
1268
        return _C_ops.soft_shrink(x, threshold)
1269
    if _in_legacy_dygraph():
1270
        return _legacy_C_ops.softshrink(x, 'lambda', threshold)
1271 1272 1273 1274 1275

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'softshrink')
    helper = LayerHelper('softshrink', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
1276 1277 1278 1279
    helper.append_op(type='softshrink',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'lambda': threshold})
1280 1281 1282 1283
    return out


def softsign(x, name=None):
1284
    r"""
1285 1286 1287 1288
    softsign activation

    .. math::

1289
        softsign(x) = \frac{x}{1 + |x|}
1290

1291
    Parameters:
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1302 1303 1304
            import paddle
            import paddle.nn.functional as F
            import numpy as np
1305

1306 1307
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            out = F.softsign(x) # [-0.285714, -0.166667, 0.0909091, 0.230769]
1308
    """
1309
    if in_dygraph_mode():
W
wanghuancoder 已提交
1310
        return _C_ops.softsign(x)
1311 1312
    if in_dynamic_mode():
        return _legacy_C_ops.softsign(x)
1313 1314 1315 1316 1317 1318 1319 1320 1321

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'softsign')
    helper = LayerHelper('softsign', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='softsign', inputs={'X': x}, outputs={'Out': out})
    return out


1322
def swish(x, name=None):
1323
    r"""
1324 1325 1326 1327
    swish activation.

    .. math::

1328
        swish(x) = \frac{x}{1 + e^{-x}}
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            import numpy as np

            x = paddle.to_tensor(np.array([-2., 0., 1.]))
            out = F.swish(x) # [-0.238406, 0., 0.731059]
    """
1348
    if in_dygraph_mode():
1349
        return _C_ops.swish(x, 1.0)
1350
    if _in_legacy_dygraph():
1351
        return _legacy_C_ops.swish(x, 'beta', 1.0)
1352 1353 1354 1355

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'swish')
    helper = LayerHelper('swish', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
1356 1357 1358 1359
    helper.append_op(type='swish',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'beta': 1.0})
1360 1361 1362
    return out


1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
def mish(x, name=None):
    r"""
    mish activation.

    ..  math::

        softplus(x) = \begin{cases}
                x, \text{if } x > \text{threshold} \\
                \ln(1 + e^{x}),  \text{otherwise}
            \end{cases}

        mish(x) = x * \tanh(softplus(x))
    
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

W
wangxinxin08 已提交
1390
            x = paddle.to_tensor([-5., 0., 5.])
1391 1392
            out = F.mish(x) # [-0.03357624, 0., 4.99955208]
    """
1393
    if in_dygraph_mode():
1394
        return _C_ops.mish(x, 20)
1395
    if _in_legacy_dygraph():
1396
        return _legacy_C_ops.mish(x)
1397 1398 1399 1400 1401 1402 1403 1404

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'mish')
    helper = LayerHelper('mish', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='mish', inputs={'X': x}, outputs={'Out': out})
    return out


1405 1406 1407 1408 1409 1410
def tanhshrink(x, name=None):
    """
    tanhshrink activation

    .. math::

1411
        tanhshrink(x) = x - tanh(x)
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1424 1425 1426
            import paddle
            import paddle.nn.functional as F
            import numpy as np
1427

1428 1429
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            out = F.tanhshrink(x) # [-0.020051, -0.00262468, 0.000332005, 0.00868739]
1430
    """
H
hong 已提交
1431
    if in_dygraph_mode():
1432
        return _C_ops.tanh_shrink(x)
H
hong 已提交
1433 1434

    if _in_legacy_dygraph():
1435
        return _legacy_C_ops.tanh_shrink(x)
1436 1437 1438 1439 1440 1441 1442 1443 1444

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'tanhshrink')
    helper = LayerHelper('tanh_shrink', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='tanh_shrink', inputs={'X': x}, outputs={'Out': out})
    return out


1445
def thresholded_relu(x, threshold=1.0, name=None):
1446
    r"""
1447 1448 1449 1450
    thresholded relu activation.

    .. math::

1451 1452 1453 1454 1455 1456 1457 1458
        thresholded\_relu(x) = 
            \left\{
                \begin{array}{rl}
                x,& \text{if } \ x > threshold \\
                0,& \text{otherwise}
                \end{array}
            \right.

1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold for thresholded_relu. Default is 1.0
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            import numpy as np

            x = paddle.to_tensor(np.array([2., 0., 1.]))
            out = F.thresholded_relu(x) # [2., 0., 0.]
    """

H
hong 已提交
1480
    if in_dygraph_mode():
1481
        return _C_ops.thresholded_relu(x, threshold)
H
hong 已提交
1482 1483

    if _in_legacy_dygraph():
1484
        return _legacy_C_ops.thresholded_relu(x, 'threshold', threshold)
1485 1486 1487 1488 1489

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'thresholded_relu')
    helper = LayerHelper('thresholded_relu', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
1490 1491 1492 1493
    helper.append_op(type='thresholded_relu',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'threshold': threshold})
1494 1495 1496
    return out


1497
def log_softmax(x, axis=-1, dtype=None, name=None):
1498
    r"""
1499 1500
    This operator implements the log_softmax layer. The calculation process is
    as follows:
1501 1502 1503

    .. math::

1504 1505 1506 1507
        \begin{aligned} 
        log\_softmax[i, j] &= log(softmax(x)) \\
        &= log(\frac{\exp(X[i, j])}{\sum_j(\exp(X[i, j])})
        \end{aligned}
1508 1509

    Parameters:
1510 1511 1512 1513 1514 1515 1516
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` < 0, it works the same way as
            :math:`axis + D` . Default is -1.
        dtype (str|np.dtype|core.VarDesc.VarType, optional): The desired data
            type of the output tensor. If dtype is specified, ``x`` is casted
1517
            to ``dtype`` before the operation is performed. This is useful for
1518 1519 1520 1521 1522
            preventing data type overflows. Supported dtype: float32, float64.
            If ``dtype`` is None, the output Tensor has the same dtype as x.
            Default is None.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
1523

1524
    Returns:
1525 1526
        A Tensor with the same shape and data type (use ``dtype`` if it is
        specified) as x.
1527 1528 1529 1530

    Examples:
        .. code-block:: python

1531 1532 1533
            import paddle
            import paddle.nn.functional as F

Z
zhupengyang 已提交
1534 1535 1536 1537 1538 1539
            x = [[[-2.0, 3.0, -4.0, 5.0],
                  [3.0, -4.0, 5.0, -6.0],
                  [-7.0, -8.0, 8.0, 9.0]],
                 [[1.0, -2.0, -3.0, 4.0],
                  [-5.0, 6.0, 7.0, -8.0],
                  [6.0, 7.0, 8.0, 9.0]]]
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
            x = paddle.to_tensor(x)
            out1 = F.log_softmax(x)
            out2 = F.log_softmax(x, dtype='float64')
            # out1's data type is float32; out2's data type is float64
            # out1 and out2's value is as follows:
            # [[[ -7.1278396   -2.1278396   -9.127839    -0.12783948]
            #   [ -2.1270514   -9.127051    -0.12705144 -11.127051  ]
            #   [-16.313261   -17.313261    -1.3132617   -0.31326184]]
            #  [[ -3.0518122   -6.051812    -7.051812    -0.051812  ]
            #   [-12.313267    -1.3132664   -0.3132665  -15.313267  ]
            #   [ -3.4401896   -2.4401896   -1.4401896   -0.44018966]]]
    """
1552 1553 1554

    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
1555

H
hong 已提交
1556
    if in_dygraph_mode():
1557
        if dtype is not None:
1558 1559
            x = _C_ops.cast(x, dtype)
        return _C_ops.log_softmax(x, axis)
1560

H
hong 已提交
1561 1562
    if _in_legacy_dygraph():
        if dtype is not None:
1563 1564
            x = _legacy_C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
        return _legacy_C_ops.log_softmax(x, 'axis', axis)
H
hong 已提交
1565

1566
    if dtype is None:
1567 1568 1569
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'log_softmax')
    else:
1570 1571 1572
        check_dtype(
            dtype, 'dtype', ['float32', 'float64'], 'log_softmax',
            'If dtype is not None, it only support float32 or float64.')
1573

1574
    helper = LayerHelper("log_softmax", **locals())
1575
    out_cast = x
1576
    if dtype is not None:
1577
        out_cast = helper.create_variable_for_type_inference(dtype)
1578 1579 1580 1581 1582 1583 1584
        helper.append_op(type='cast',
                         inputs={'X': x},
                         outputs={'Out': out_cast},
                         attrs={
                             'in_dtype': x.dtype,
                             'out_dtype': dtype
                         })
1585

1586
    out = helper.create_variable_for_type_inference(out_cast.dtype)
1587 1588 1589 1590
    helper.append_op(type='log_softmax',
                     inputs={'X': out_cast},
                     outputs={'Out': out},
                     attrs={'axis': axis})
1591

1592
    return out
F
Feiyu Chan 已提交
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639


def glu(x, axis=-1, name=None):
    r"""
    The gated linear unit. The input is evenly splited into 2 parts along a 
    given axis. The first part is used as the content, and the second part is
    passed through a sigmoid function then used as the gate. The output is a
    elementwise multiplication of the content and the gate.

    .. math::

        \mathrm{GLU}(a, b) = a \otimes \sigma(b)

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int, optional): The axis along which split the input tensor. It 
            should be in range [-D, D), where D is the dimensions of ``x`` . 
            If ``axis`` < 0, it works the same way as :math:`axis + D` . 
            Default is -1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        A Tensor with the same data type as x. The size of the given aixs is 
        halved.
    
    Examples:
        .. code-block:: python
        
            import paddle
            from paddle.nn import functional as F
            
            x = paddle.to_tensor(
                [[-0.22014759, -1.76358426,  0.80566144,  0.04241343],
                 [-1.94900405, -1.89956081,  0.17134808, -1.11280477]]
            )
            print(F.glu(x).numpy())
            # array([[-0.15216254, -0.9004892 ],
            #        [-1.0577879 , -0.46985325]], dtype=float32)
        
    """
    check_variable_and_dtype(x, 'input', ['float16', 'float32', 'float64'],
                             "glu")
    a, b = chunk(x, 2, axis=axis, name=name)
    gate = sigmoid(b, name=name)
    out = paddle.multiply(a, gate, name=name)
    return out
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699


def gumbel_softmax(x, temperature=1.0, hard=False, axis=-1, name=None):
    r"""
    Samples from the Gumbel-Softmax distribution and optionally discretizes.
    temperature is denoted by t. The calculation process is as follows:

    First, generate gumbel noise:

    .. math::

        G_i = -log(-log(U_i)), U_i \sim U(0,1)

    Second, add noise to ``x``:

    .. math::

        v = [x_1 + G_1,...,x_n + G_n]

    Finally, calculate gumbel_softmax and generate samples:

    .. math::
        gumbel\_softmax(v_i)=\frac{e^{v_i/t}}{\sum_{j=1}^n{e^{v_j/t}}},i=1,2,3...n

    Parameters:
        x (Tensor): An N-D Tensor, the first N - 1 dimensions index into a batch 
            of independent distributions and the last dimension represents 
            a vector of probabilities with datatype float32, float64.
        temperature (float, optional): non-negative scalar temperature.
            Default is 1.0.
        hard (bool, optional): if True, the returned samples will be discretized as 
            one-hot vectors, but will be differentiated as if it is the soft sample 
            in autograd. Default is False.
        axis (int, optional): The axis along will be calculated softmax value. 
            Default is -1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        Sampled tensor of same shape as ``x`` from the Gumbel-Softmax distribution. 
        If ``hard = True``, the returned samples will be one-hot, otherwise they will be 
        probability distributions that sum to 1 across ``axis``.
    
    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            logits = paddle.randn([4, 6])
            temperature = 0.01
            gumbel_softmax = F.gumbel_softmax(logits, temperature)
            print(gumbel_softmax)
            # out's value is as follows:
            # [[0.00000001, 1.        , 0.00000000, 0.00000000, 0.00000006, 0.00000000],
            # [0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 1.        ],
            # [0.00000062, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.99999940],
            # [0.00000000, 0.00000000, 0.00000000, 0.00001258, 0.99998736, 0.00000000]]
        
    """
H
hong 已提交
1700
    if in_dygraph_mode():
1701
        return _C_ops.gumbel_softmax(x, temperature, hard, axis)
H
hong 已提交
1702

Z
zhiboniu 已提交
1703
    if in_dynamic_mode():
1704 1705
        return _legacy_C_ops.gumbel_softmax(x, 'temperature', temperature,
                                            'hard', hard, 'axis', axis)
1706 1707 1708 1709

    helper = LayerHelper("gumbel_softmax", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'gumbel_softmax')
    out = helper.create_variable_for_type_inference(x.dtype)
1710 1711 1712 1713 1714 1715 1716 1717
    helper.append_op(type='gumbel_softmax',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={
                         'temperature': temperature,
                         'hard': hard,
                         'axis': axis
                     })
1718
    return out