activation.py 57.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from ...tensor.ops import sigmoid  # noqa: F401
Z
zhiboniu 已提交
16 17
from ...tensor.math import tanh  # noqa: F401
from ...tensor.math import tanh_  # noqa: F401
18

19
from ...fluid.dygraph.inplace_utils import inplace_apis_in_dygraph_only
F
Feiyu Chan 已提交
20 21
from ...tensor.manipulation import chunk
from ...tensor.math import multiply
22

23 24
import warnings
from ...fluid.layer_helper import LayerHelper
J
Jiabin Yang 已提交
25
from ...fluid.framework import convert_np_dtype_to_dtype_
26
from ...fluid.framework import _in_legacy_dygraph, in_dygraph_mode, _non_static_mode
27
from ...fluid.data_feeder import check_variable_and_dtype, check_dtype
28
import paddle
Z
zhiboniu 已提交
29 30
from paddle import _C_ops, in_dynamic_mode
from paddle.framework import core
31
from paddle.fluid.framework import _in_legacy_dygraph, in_dygraph_mode
32

33 34
__all__ = []

35

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
def celu(x, alpha=1.0, name=None):
    r"""
    celu activation.

    .. math::

        celu(x) = max(0, x) + min(0, \alpha * (e^{x/\alpha}-1))

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        alpha (float, optional): The 'alpha' value of the CELU formulation. Default is 1.0.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            x = paddle.to_tensor([[-1., 6.], [1., 15.6]])
            out = F.celu(x, alpha=0.2)
            # [[-0.19865242,  6.        ],
            #  [ 1.        , 15.60000038]]
    """
    if alpha == 0:
        raise ZeroDivisionError("alpha cannot be 0 for celu")

66
    if _in_legacy_dygraph():
67
        return _C_ops.celu(x, 'alpha', alpha)
68 69
    if in_dygraph_mode():
        return _C_ops.final_state_celu(x, alpha)
70 71 72 73

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'celu')
    helper = LayerHelper("celu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
74 75 76 77
    helper.append_op(type='celu',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'alpha': alpha})
78 79 80
    return out


81
def elu(x, alpha=1.0, name=None):
82
    r"""
83 84
    elu activation.

85
    .. math::
86

Z
zhupengyang 已提交
87 88 89 90 91 92 93
        elu(x)=
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * (e^{x} - 1),& &\text{if } \ x <= 0
                \end{array}
            \right.
94 95 96 97 98 99

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        alpha (float, optional): The 'alpha' value of the ELU formulation. Default is 1.0.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
100

101 102
    Returns:
        A Tensor with the same data type and shape as ``x`` .
103

104 105 106
    Examples:
        .. code-block:: python

107 108
            import paddle
            import paddle.nn.functional as F
109

Z
zhupengyang 已提交
110
            x = paddle.to_tensor([[-1., 6.], [1., 15.6]])
111
            out = F.elu(x, alpha=0.2)
112 113
            # [[-0.12642411  6.        ]
            #  [ 1.          15.6      ]]
114 115
    """

116 117 118 119
    if in_dygraph_mode():
        return _C_ops.final_state_elu(x, alpha)

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
120
        return _C_ops.elu(x, 'alpha', alpha)
121 122 123 124

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'elu')
    helper = LayerHelper("elu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
125 126 127 128
    helper.append_op(type='elu',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'alpha': alpha})
129 130 131
    return out


132
@inplace_apis_in_dygraph_only
133 134 135 136 137
def elu_(x, alpha=1.0, name=None):
    r"""
    Inplace version of ``elu`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_elu`.
    """
Z
zhupengyang 已提交
138
    assert alpha >= 0., "elu_ only support alpha >= 0, please use elu instead."
W
wanghuancoder 已提交
139
    return _C_ops.elu_(x, 'alpha', alpha)
140 141


142
def gelu(x, approximate=False, name=None):
143
    r"""
144 145 146
    gelu activation.

    if approximate is True
147 148 149

    .. math::

150
        gelu(x) = 0.5 * x * (1 + tanh(\sqrt{\frac{2}{\pi}} * (x + 0.044715x^{3})))
151

152
    else
153 154 155

    .. math::

156
        gelu(x) = 0.5 * x * (1 + erf(\frac{x}{\sqrt{2}}))
157

158 159 160 161 162
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        approximate (bool, optional): Wether to enable approximation. Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
163

164 165
    Returns:
        A Tensor with the same data type and shape as ``x`` .
166

167 168 169
    Examples:
        .. code-block:: python

170 171
            import paddle
            import paddle.nn.functional as F
172

Z
zhupengyang 已提交
173 174 175 176 177 178 179
            x = paddle.to_tensor([[-1, 0.5], [1, 1.5]])
            out1 = F.gelu(x)
            # [[-0.15865529,  0.34573123],
            #  [ 0.84134471,  1.39978933]]
            out2 = F.gelu(x, True)
            # [[-0.15880799,  0.34571400],
            #  [ 0.84119201,  1.39957154]]
180 181
    """

182 183 184 185
    if in_dygraph_mode():
        return _C_ops.final_state_gelu(x, approximate)

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
186
        return _C_ops.gelu(x, 'approximate', approximate)
187 188 189 190

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'gelu')
    helper = LayerHelper("gelu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
191 192 193 194
    helper.append_op(type='gelu',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'approximate': approximate})
195 196 197
    return out


198
def hardshrink(x, threshold=0.5, name=None):
199
    r"""
200 201 202 203 204
    hard shrinkage activation

    .. math::

        hardshrink(x)=
205 206 207 208 209 210 211
            \left\{
                \begin{array}{rcl}
                x,&  &if \ {x > threshold}  \\
                x,&  &if \ {x < -threshold}   \\
                0,&  &if \ {others} &
                \end{array}
            \right.
212 213 214 215 216 217 218 219 220 221 222 223 224

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold for hardthrink. Default is 0.5
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

225 226
            import paddle
            import paddle.nn.functional as F
227

Z
zhupengyang 已提交
228
            x = paddle.to_tensor([-1, 0.3, 2.5])
229
            out = F.hardshrink(x) # [-1., 0., 2.5]
230 231

    """
Z
zhiboniu 已提交
232
    if in_dynamic_mode():
W
wanghuancoder 已提交
233
        return _C_ops.hard_shrink(x, 'threshold', threshold)
234 235 236 237 238

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'hardshrink')
    helper = LayerHelper('hardshrink', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
239 240 241 242
    helper.append_op(type='hard_shrink',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'threshold': threshold})
243 244 245
    return out


246
def hardtanh(x, min=-1.0, max=1.0, name=None):
247
    r"""
248 249 250 251
    hardtanh activation

    .. math::

252 253 254 255 256 257 258 259
        hardtanh(x)=
            \left\{
                \begin{array}{cll}
                    max,& & \text{if } x > max \\
                    min,& & \text{if } x < min \\
                    x,& & \text{otherwise}
                \end{array}
            \right.
260

261
    Parameters:
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
        x (Tensor): The input Tensor with data type float32, float64.
        min (float, optional): The minimum value of the linear region range. Default is -1.
        max (float, optional): The maximum value of the linear region range. Default is 1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            import numpy as np

            x = paddle.to_tensor(np.array([-1.5, 0.3, 2.5]))
            out = F.hardtanh(x) # [-1., 0.3, 1.]
    """

Z
zhiboniu 已提交
282
    if in_dynamic_mode():
W
wanghuancoder 已提交
283
        return _C_ops.brelu(x, 't_min', min, 't_max', max)
284 285 286 287 288 289

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'hardtanh')

    helper = LayerHelper('hardtanh', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
290 291 292 293 294 295 296
    helper.append_op(type='brelu',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={
                         't_min': min,
                         't_max': max
                     })
297 298 299
    return out


300
def hardsigmoid(x, slope=0.1666667, offset=0.5, name=None):
301
    r"""
302 303 304 305 306 307 308 309
    hardsigmoid activation.

    A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
    which is much faster than sigmoid.

    .. math::

        hardsigmoid(x)=
310 311 312 313 314 315 316
            \left\{
                \begin{array}{lcl}
                0, & &\text{if } \ x \leq -3 \\
                1, & &\text{if } \ x \geq 3 \\
                slope * x + offset, & &\text{otherwise}
                \end{array}
            \right.
317 318 319

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
320 321
        slope (float, optional): The slope of hardsigmoid function. Default is 0.1666667.
        offset (float, optional): The offset of hardsigmoid function. Default is 0.5.
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.to_tensor([-4., 5., 1.])
            out = F.hardsigmoid(x) # [0., 1., 0.666667]
    """

Z
zhiboniu 已提交
338
    if in_dynamic_mode():
W
wanghuancoder 已提交
339
        return _C_ops.hard_sigmoid(x, 'slope', slope, 'offset', offset)
340 341 342 343 344 345

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'hardsigmoid')

    helper = LayerHelper('hardsigmoid', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
346 347 348 349 350 351 352
    helper.append_op(type='hard_sigmoid',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={
                         'slope': slope,
                         'offset': offset
                     })
353 354 355 356
    return out


def hardswish(x, name=None):
357
    r"""
358 359 360 361 362 363 364 365 366
    hardswish activation

    hardswish is proposed in MobileNetV3, and performs better in computational stability
    and efficiency compared to swish function. For more details please refer
    to: https://arxiv.org/pdf/1905.02244.pdf

    .. math::

        hardswish(x)=
367 368 369 370 371 372 373
            \left\{
                \begin{array}{cll}
                0 &, & \text{if } x \leq -3 \\
                x &, & \text{if } x \geq 3 \\
                \frac{x(x+3)}{6} &, & \text{otherwise}
                \end{array}
            \right.
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.to_tensor([-4., 5., 1.])
            out = F.hardswish(x) # [0., 5., 0.666667]
    """

393
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
394
        return _C_ops.hard_swish(x)
395 396
    if in_dygraph_mode():
        return _C_ops.final_state_hard_swish(x, 6, 6, 3)
397 398 399 400 401 402 403 404 405 406

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'hardswish')

    helper = LayerHelper('hardswish', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='hard_swish', inputs={'X': x}, outputs={'Out': out})
    return out


407
def leaky_relu(x, negative_slope=0.01, name=None):
408
    r"""
409 410
    leaky_relu activation

411
    .. math::
412 413 414 415 416 417 418
        leaky\_relu(x)=
        \left\{
            \begin{array}{rcl}
                x, & & if \ x >= 0 \\
                negative\_slope * x, & & otherwise \\
            \end{array}
        \right.
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        negative_slope (float, optional): Slope of the activation function at
            :math:`x < 0` . Default is 0.01.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

Z
zhupengyang 已提交
436
            x = paddle.to_tensor([-2., 0., 1.])
437 438 439
            out = F.leaky_relu(x) # [-0.02, 0., 1.]

    """
440 441 442 443
    if in_dygraph_mode():
        return _C_ops.final_state_leaky_relu(x, negative_slope)

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
444
        return _C_ops.leaky_relu(x, 'alpha', negative_slope)
445 446 447 448 449

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'leaky_relu')
    helper = LayerHelper('leaky_relu', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
450 451 452 453
    helper.append_op(type='leaky_relu',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'alpha': negative_slope})
454 455 456
    return out


457
def prelu(x, weight, data_format="NCHW", name=None):
458 459 460 461 462 463 464 465 466 467 468 469 470
    """
    prelu activation.

    .. math::

        prelu(x) = max(0, x) + weight * min(0, x)

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        weight (Tensor): The learnable parameter with data type same as ``x``.
            The weight shape is [1] or [in], where `in` is the input channel of ``x``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
471 472
        data_format(str, optional): Data format that specifies the layout of input.
            It may be "NC", "NCL", "NCHW", "NCDHW", "NLC", "NHWC" or "NDHWC". Default: "NCHW".
473 474 475 476 477 478 479 480 481 482 483 484

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            import numpy as np

            data = np.array([[[[-2.0,  3.0, -4.0,  5.0],
Z
zhupengyang 已提交
485 486 487 488 489
                               [ 3.0, -4.0,  5.0, -6.0],
                               [-7.0, -8.0,  8.0,  9.0]],
                              [[ 1.0, -2.0, -3.0,  4.0],
                               [-5.0,  6.0,  7.0, -8.0],
                               [ 6.0,  7.0,  8.0,  9.0]]]], 'float32')
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
            x = paddle.to_tensor(data)
            w = paddle.to_tensor(np.array([0.25]).astype('float32'))
            out = F.prelu(x, w)
            # [[[[-0.5 ,  3.  , -1.  ,  5.  ],
            #    [ 3.  , -1.  ,  5.  , -1.5 ],
            #    [-1.75, -2.  ,  8.  ,  9.  ]],
            #   [[ 1.  , -0.5 , -0.75,  4.  ],
            #    [-1.25,  6.  ,  7.  , -2.  ],
            #    [ 6.  ,  7.  ,  8.  ,  9.  ]]]]
    """
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'prelu')
    check_variable_and_dtype(weight, 'weight',
                             ['float16', 'float32', 'float64'], 'prelu')

    assert len(weight.shape
               ) == 1, "The dim count of weight shape should be 1 in prelu()."

    mode = 'all'
    if weight.shape[0] > 1:
509 510 511 512 513 514 515 516 517 518 519

        true_data_format = [
            'NC', 'NCL', 'NCHW', 'NCDHW', 'NLC', 'NHWC', 'NDHWC'
        ]
        if data_format not in true_data_format:
            raise ValueError(
                "data_format must be one of 'NC', 'NCL', 'NCHW', 'NCDHW', "
                "'NLC', 'NHWC', 'NDHWC' but receive {}".format(data_format))

        data_format = 'NCHW' if data_format[1] == 'C' else 'NHWC'

520 521 522
        assert len(
            x.shape
        ) > 1, "The dim count of x should be equal or larger than 2 in prelu() when weight shape is not [1]."
523 524 525 526 527 528 529 530

        #NOTE(GuoxiaWang): support NHWC data format
        if data_format == 'NHWC':
            assert weight.shape[0] == x.shape[
                -1], "The weight size should be equal to x input channel in prelu() when weight shape is not [1]."
        else:
            assert weight.shape[0] == x.shape[
                1], "The weight size should be equal to x input channel in prelu() when weight shape is not [1]."
531 532
        mode = 'channel'

533 534 535
    if in_dygraph_mode():
        return _C_ops.final_state_prelu(x, weight, data_format, mode)
    if _in_legacy_dygraph():
536
        return _C_ops.prelu(x, weight, 'mode', mode, 'data_format', data_format)
537

538
    helper = LayerHelper('prelu', **locals())
539
    out = helper.create_variable_for_type_inference(x.dtype)
540 541 542 543 544 545 546 547 548 549
    helper.append_op(type="prelu",
                     inputs={
                         "X": x,
                         "Alpha": weight
                     },
                     outputs={"Out": out},
                     attrs={
                         "mode": mode,
                         "data_format": data_format
                     })
550 551 552
    return out


553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
def rrelu(x, lower=1. / 8., upper=1. / 3., training=True, name=None):
    r"""
    rrelu activation.

    Applies the randomized leaky rectified liner unit function to improve generalization performance,
    as described in the paper:
    `Empirical Evaluation of Rectified Activations in Convolutional Network <https://arxiv.org/abs/1505.00853>`_

    During training, randomly samples the negative slope for activation values as described below:

    .. math::

        rrelu(x)=
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    a * x, & & otherwise \\
                \end{array}
            \right.

    where :math:`x` is the input tensor,
    :math:`a` is randomly sampled from uniform distribution in range (:math:`lower`, :math:`upper`),

    In the test phase, the negative slope will take the average value of :math:`lower` and :math:`upper`:

    .. math::

        rrelu(x)=
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    (lower + upper) * 0.5 * x, & & otherwise \\
                \end{array}
            \right.

    where :math:`x` is the input tensor,
    :math:`lower` and :math:`upper` are the bounds of uniform distribution.

    Parameters:
        x (Tensor): The input Tensor with data type float16, float32, float64.
        lower (float, optional): The lower bound of uniform distribution. Default: 0.125.
        upper (float, optional): The upper bound of uniform distribution. Default: 0.333.
        training (bool, optional): Current mode is in training or others.  Default is True.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python
            :name: rrelu-example

            import paddle
            import paddle.nn.functional as F

            input_tensor = paddle.to_tensor([[[[-2.0,  3.0, -4.0,  5.0],
                                            [ 3.0, -4.0,  5.0, -6.0],
                                            [-7.0, -8.0,  8.0,  9.0]],
                                            [[ 1.0, -2.0, -3.0,  4.0],
                                            [-5.0,  6.0,  7.0, -8.0],
                                            [ 6.0,  7.0,  8.0,  9.0]]]], dtype='float32')

            out = F.rrelu(input_tensor, 0.1, 0.3)
            #[[[[-0.20000899  3.         -0.8810822   5.        ]
            #   [ 3.         -0.55175185  5.         -1.0776101 ]
            #   [-1.0680687  -1.9896201   8.          9.        ]]
            #  [[ 1.         -0.5238267  -0.65515125  4.        ]
            #   [-1.3766339   6.          7.         -2.3465784 ]
            #   [ 6.          7.          8.          9.        ]]]]
    """

    if not in_dynamic_mode():
        check_variable_and_dtype(x, 'X', ['float16', 'float32', 'float64'],
                                 'rrelu')

    if not isinstance(lower, float) or not isinstance(upper, float):
        raise TypeError(
631 632
            "The lower and upper values must be float type. Received: lower {}, upper {}."
            .format(lower, upper))
633 634 635

    if lower < 0 or lower > 1:
        raise ValueError(
636 637
            "The lower value must be no less than zero or greater than one. Received: {}."
            .format(lower))
638 639 640

    if upper < lower:
        raise ValueError(
641 642
            "The upper value must be greater than lower value. Received: lower {}, upper {}."
            .format(lower, upper))
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659

    if upper > 1:
        raise ValueError(
            "The upper value must be no greater than one. Received: {}.".format(
                upper))

    is_test = not training

    if _in_legacy_dygraph():
        out, noise = _C_ops.rrelu(x, 'lower', lower, 'upper', upper, 'is_test',
                                  is_test)
        return out

    helper = LayerHelper('rrelu', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    noise = helper.create_variable_for_type_inference(dtype=x.dtype)
    attrs = {'lower': lower, 'upper': upper, 'is_test': is_test}
660 661 662 663 664 665 666
    helper.append_op(type='rrelu',
                     inputs={"X": x},
                     outputs={
                         "Out": out,
                         "Noise": noise
                     },
                     attrs=attrs)
667 668 669
    return out


670
def relu(x, name=None):
671
    """
672
    relu activation.
673

674
    .. math::
675 676 677 678

        out = max(x, 0)

    Parameters:
679 680 681
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
682 683

    Returns:
684
        A Tensor with the same data type and shape as ``x`` .
685 686 687 688

    Examples:
        .. code-block:: python

689 690 691
            import paddle
            import paddle.nn.functional as F
            import numpy as np
692

693 694
            x = paddle.to_tensor(np.array([-2, 0, 1]).astype('float32'))
            out = F.relu(x) # [0., 0., 1.]
695 696
    """

697 698 699
    if in_dygraph_mode():
        return _C_ops.final_state_relu(x)
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
700
        return _C_ops.relu(x)
701
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'relu')
702
    helper = LayerHelper('relu', **locals())
703 704 705 706 707
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='relu', inputs={'X': x}, outputs={'Out': out})
    return out


708
@inplace_apis_in_dygraph_only
709 710 711 712 713
def relu_(x, name=None):
    """
    Inplace version of ``relu`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_relu`.
    """
714
    if in_dygraph_mode():
715
        return _C_ops.final_state_relu_(x)
716 717
    if _in_legacy_dygraph():
        return _C_ops.relu_(x)
718 719


720
def log_sigmoid(x, name=None):
721
    r"""
722
    log_sigmoid activation.
723

724
    .. math::
725

726
        log\_sigmoid(x) = log \frac{1}{1 + e^{-x}}
727

728 729 730 731
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
732

733 734
    Returns:
        A Tensor with the same data type and shape as ``x`` .
735

736 737 738
    Examples:
        .. code-block:: python

739 740
            import paddle
            import paddle.nn.functional as F
741

742 743
            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = F.log_sigmoid(x) # [-0.313262 -0.126928 -0.0485874 -0.0181499]
744 745
    """

Z
zhiboniu 已提交
746
    if in_dynamic_mode():
W
wanghuancoder 已提交
747
        return _C_ops.logsigmoid(x)
748 749

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
750 751
                             'log_sigmoid')
    helper = LayerHelper("log_sigmoid", **locals())
752 753 754
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='logsigmoid', inputs={'X': x}, outputs={'Out': out})
    return out
755 756


757
def maxout(x, groups, axis=1, name=None):
758
    r"""
759 760 761 762 763 764 765 766
    maxout activation.

    Assumed the input shape is (N, Ci, H, W).
    The output shape is (N, Co, H, W).
    Then Co = Ci/groups and the operator formula is as follows:

    .. math::

767 768 769 770 771 772 773 774 775
        \begin{array}{l}
        &out_{si+j} = \max_{k} x_{gsi + sk + j} \\
        &g = groups \\
        &s = \frac{input.size}{num\_channels} \\
        &0 \le i < \frac{num\_channels}{groups} \\
        &0 \le j < s \\
        &0 \le k < groups
        \end{array}

776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811

    Parameters:
        x (Tensor): The input is 4-D Tensor with shape [N, C, H, W] or [N, H, W, C], the data type
            of input is float32 or float64.
        groups (int, optional): The groups number of maxout. `groups` specifies the
            index of channel dimension where maxout will be performed. This must be
            a factor of number of features. Default is 1.
        axis (int, optional): The axis along which to perform maxout calculations.
            It should be 1 when data format is NCHW, be -1 or 3 when data format
            is NHWC. If ``axis`` < 0, it works the same way as :math:`axis + D` ,
            where D is the dimensions of ``x`` . ``axis`` only supports 1, 3 or -1.
            Default is 1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.rand([1, 2, 3, 4])
            # [[[[0.5002636  0.22272532 0.17402348 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.02879342 0.88725346 0.61093384 0.38833922]]
            #   [[0.5231306  0.03807496 0.91661984 0.15602879]
            #    [0.666127   0.616567   0.30741522 0.24044901]
            #    [0.7142536  0.7351477  0.31588817 0.23782359]]]]
            out = F.maxout(x, groups=2)
            # [[[[0.5231306  0.22272532 0.91661984 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.7142536  0.88725346 0.61093384 0.38833922]]]]
    """
812
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
813
        return _C_ops.maxout(x, 'groups', groups, 'axis', axis)
814 815
    if in_dygraph_mode():
        return _C_ops.final_state_maxout(x, groups, axis)
816 817 818 819 820 821 822 823 824 825
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'maxout')
    if axis not in [1, -1, 3]:
        raise ValueError(
            "Attr(axis) should be 1 when data format is NCHW, -1 or 3 when data format is NHWC. Received "
            "Attr(axis): %s." % str(axis))
    if axis == -1:
        axis = 3

    helper = LayerHelper('maxout', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
826 827 828 829 830 831 832
    helper.append_op(type='maxout',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={
                         'groups': groups,
                         'axis': axis
                     })
833 834 835
    return out


836 837 838 839 840 841
def relu6(x, name=None):
    """
    relu6 activation

    .. math::

842
        relu6(x) = min(max(0,x), 6)
843

844
    Parameters:
845 846 847 848 849 850 851 852 853 854
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

855 856 857
            import paddle
            import paddle.nn.functional as F
            import numpy as np
858

859 860
            x = paddle.to_tensor(np.array([-1, 0.3, 6.5]))
            out = F.relu6(x) # [0, 0.3, 6]
861 862
    """
    threshold = 6.0
Z
zhiboniu 已提交
863
    if in_dynamic_mode():
W
wanghuancoder 已提交
864
        return _C_ops.relu6(x, 'threshold', threshold)
865 866 867 868

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'relu6')
    helper = LayerHelper('relu6', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
869 870 871 872
    helper.append_op(type='relu6',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'threshold': threshold})
873 874 875 876 877 878 879
    return out


def selu(x,
         scale=1.0507009873554804934193349852946,
         alpha=1.6732632423543772848170429916717,
         name=None):
880
    r"""
881 882 883 884
    selu activation

    .. math::

885
        selu(x)= scale *
886 887 888 889 890 891
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * e^{x} - alpha,& &\text{if } \ x <= 0
                \end{array}
            \right.
892

893
    Parameters:
894
        x (Tensor): The input Tensor with data type float32, float64.
895 896
        scale (float, optional): The value of scale(must be greater than 1.0) for selu. Default is 1.0507009873554804934193349852946
        alpha (float, optional): The value of alpha(must be no less than zero) for selu. Default is 1.6732632423543772848170429916717
897 898 899 900 901 902 903 904 905
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

906 907 908
            import paddle
            import paddle.nn.functional as F
            import numpy as np
909

910
            x = paddle.to_tensor(np.array([[0.0, 1.0],[2.0, 3.0]]))
911
            out = F.selu(x) # [[0, 1.050701],[2.101402, 3.152103]]
912
    """
913 914 915 916 917 918 919 920
    if scale <= 1.0:
        raise ValueError(
            "The scale must be greater than 1.0. Received: {}.".format(scale))

    if alpha < 0:
        raise ValueError(
            "The alpha must be no less than zero. Received: {}.".format(alpha))

H
hong 已提交
921 922 923
    if in_dygraph_mode():
        return _C_ops.final_state_selu(x, scale, alpha)
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
924
        return _C_ops.selu(x, 'scale', scale, 'alpha', alpha)
925 926 927 928

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'selu')
    helper = LayerHelper('selu', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
929 930 931 932 933 934 935
    helper.append_op(type='selu',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={
                         'scale': scale,
                         'alpha': alpha
                     })
936 937 938
    return out


M
minghaoBD 已提交
939
def silu(x, name=None):
940 941 942 943 944
    r"""
    silu activation

    .. math::

M
minghaoBD 已提交
945 946 947 948 949 950 951 952 953 954 955 956
        silu(x) = \frac{x}{1 + e^{-x}}
    
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        A Tensor with the same data type and shape as ``x`` .
    
    Examples:
        .. code-block:: python
957 958 959 960 961 962

            import paddle
            import paddle.nn.functional as F
            
            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = F.silu(x) # [ 0.731059, 1.761594, 2.857722, 3.928055 ]
M
minghaoBD 已提交
963 964
    """

Z
zhiboniu 已提交
965
    if in_dynamic_mode():
W
wanghuancoder 已提交
966
        return _C_ops.silu(x)
M
minghaoBD 已提交
967 968 969 970 971 972 973 974

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'silu')
    helper = LayerHelper("silu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='silu', inputs={'X': x}, outputs={'Out': out})
    return out


975
def softmax(x, axis=-1, dtype=None, name=None):
976
    r"""
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
    This operator implements the softmax layer. The calculation process is as follows:

    1. The dimension :attr:`axis` of ``x`` will be permuted to the last.

    2. Then ``x`` will be logically flattened to a 2-D matrix. The matrix's second
    dimension(row length) is the same as the dimension :attr:`axis` of ``x``,
    and the first dimension(column length) is the product of all other dimensions
    of ``x``. For each row of the matrix, the softmax operator squashes the
    K-dimensional(K is the width of the matrix, which is also the size of ``x``'s
    dimension :attr:`axis`) vector of arbitrary real values to a K-dimensional
    vector of real values in the range [0, 1] that add up to 1.

    3. After the softmax operation is completed, the inverse operations of steps 1 and 2
    are performed to restore the two-dimensional matrix to the same dimension as the ``x`` .

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

    For each row :math:`i` and each column :math:`j` in the matrix, we have:

    .. math::

1002
        softmax[i, j] = \frac{\exp(x[i, j])}{\sum_j(exp(x[i, j])}
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050

    Example:

    .. code-block:: text

        Case 1:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]

          Attrs:
            axis = -1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
                        [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]

        Case 2:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]
          Attrs:
            axis = 1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
                         [0.01786798, 0.01786798, 0.04661262, 0.04661262],
                         [0.97555875, 0.97555875, 0.93623955, 0.93623955]],
                        [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
                         [0.26762315, 0.26762315, 0.26762315, 0.26762315],
                         [0.72747516, 0.72747516, 0.72747516, 0.72747516]]]

1051 1052 1053 1054 1055 1056
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` < 0, it works the same way as
            :math:`axis + D` . Default is -1.
1057
        dtype (str, optional): The data type of the output tensor, can be float32, float64.
1058 1059 1060 1061
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
1062 1063
        A Tensor with the same shape and data type (use ``dtype`` if it is
        specified) as x.
1064 1065 1066 1067

    Examples:
        .. code-block:: python

1068 1069 1070
            import paddle
            import paddle.nn.functional as F
            import numpy as np
1071

1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
            x = np.array([[[2.0, 3.0, 4.0, 5.0],
                        [3.0, 4.0, 5.0, 6.0],
                        [7.0, 8.0, 8.0, 9.0]],
                        [[1.0, 2.0, 3.0, 4.0],
                        [5.0, 6.0, 7.0, 8.0],
                        [6.0, 7.0, 8.0, 9.0]]], 'float32')
            x = paddle.to_tensor(x)
            out1 = F.softmax(x)
            out2 = F.softmax(x, dtype='float64')
            # out1's data type is float32; out2's data type is float64
            # out1 and out2's value is as follows:
            # [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
            # [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]
1089
    """
1090 1091 1092

    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
1093
    use_cudnn = True
1094

H
hong 已提交
1095 1096 1097 1098 1099 1100
    if in_dygraph_mode():
        outs_cast = x if dtype is None \
            else _C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
        return _C_ops.final_state_softmax(outs_cast, axis)

    if _in_legacy_dygraph():
1101
        outs_cast = x if dtype is None \
W
wanghuancoder 已提交
1102 1103
            else _C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
        return _C_ops.softmax(outs_cast, 'axis', axis, 'use_cudnn', use_cudnn)
1104 1105 1106 1107 1108

    if dtype is None:
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'softmax')
    else:
1109 1110 1111
        check_dtype(
            dtype, 'dtype', ['float32', 'float64'], 'softmax',
            'If dtype is not None, it only support float32 or float64.')
1112 1113 1114 1115 1116

    helper = LayerHelper("softmax", **locals())
    outs_cast = x
    if dtype is not None:
        outs_cast = helper.create_variable_for_type_inference(dtype)
1117 1118 1119 1120 1121 1122 1123
        helper.append_op(type='cast',
                         inputs={'X': x},
                         outputs={'Out': outs_cast},
                         attrs={
                             'in_dtype': x.dtype,
                             'out_dtype': dtype
                         })
1124 1125

    outs_softmax = helper.create_variable_for_type_inference(outs_cast.dtype)
1126 1127 1128 1129 1130 1131 1132
    helper.append_op(type='softmax',
                     inputs={'X': outs_cast},
                     outputs={'Out': outs_softmax},
                     attrs={
                         'axis': axis,
                         'use_cudnn': use_cudnn
                     })
1133 1134

    return outs_softmax
1135 1136


1137
@inplace_apis_in_dygraph_only
1138 1139 1140 1141 1142 1143 1144 1145
def softmax_(x, axis=-1, dtype=None, name=None):
    r"""
    Inplace version of ``softmax`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_softmax`.
    """
    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
    use_cudnn = True
W
wanghuancoder 已提交
1146
    return _C_ops.softmax_(x, 'axis', axis, 'use_cudnn', use_cudnn)
1147 1148


1149
def softplus(x, beta=1, threshold=20, name=None):
1150
    r"""
1151 1152 1153 1154
    softplus activation

    .. math::

1155 1156
        softplus(x) = \frac{1}{beta} * \log(1 + e^{beta * x}) \\
        \text{For numerical stability, the implementation reverts to the linear function when: beta * x > threshold.}
1157

1158
    Parameters:
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
        x (Tensor): The input Tensor with data type float32, float64.
        beta (float, optional): The value of beta for softplus. Default is 1
        threshold (float, optional): The value of threshold for softplus. Default is 20
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1171 1172 1173
            import paddle
            import paddle.nn.functional as F
            import numpy as np
1174

1175 1176
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            out = F.softplus(x) # [0.513015, 0.598139, 0.744397, 0.854355]
1177
    """
Z
zhiboniu 已提交
1178
    if in_dynamic_mode():
W
wanghuancoder 已提交
1179
        return _C_ops.softplus(x, 'beta', beta, 'threshold', threshold)
1180 1181 1182 1183 1184

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'softplus')
    helper = LayerHelper('softplus', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
1185 1186 1187 1188 1189 1190 1191
    helper.append_op(type='softplus',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={
                         'beta': beta,
                         'threshold': threshold
                     })
1192 1193 1194 1195
    return out


def softshrink(x, threshold=0.5, name=None):
1196
    r"""
1197 1198 1199 1200
    softshrink activation

    .. math::

1201 1202 1203 1204 1205 1206 1207 1208
        softshrink(x)= 
            \left\{
                \begin{array}{rcl}
                x - threshold,& & \text{if } x > threshold \\
                x + threshold,& & \text{if } x < -threshold \\
                0,& &  \text{otherwise}
            \end{array}
            \right.
1209

1210
    Parameters:
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold(must be no less than zero) for softplus. Default is 0.5
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1222 1223 1224
            import paddle
            import paddle.nn.functional as F
            import numpy as np
1225

1226 1227
            x = paddle.to_tensor(np.array([-0.9, -0.2, 0.1, 0.8]))
            out = F.softshrink(x) # [-0.4, 0, 0, 0.3]
1228
    """
1229 1230 1231 1232 1233
    if threshold < 0:
        raise ValueError(
            "The threshold must be no less than zero. Received: {}.".format(
                threshold))

1234 1235 1236
    if in_dygraph_mode():
        return _C_ops.final_state_soft_shrink(x, threshold)
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
1237
        return _C_ops.softshrink(x, 'lambda', threshold)
1238 1239 1240 1241 1242

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'softshrink')
    helper = LayerHelper('softshrink', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
1243 1244 1245 1246
    helper.append_op(type='softshrink',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'lambda': threshold})
1247 1248 1249 1250
    return out


def softsign(x, name=None):
1251
    r"""
1252 1253 1254 1255
    softsign activation

    .. math::

1256
        softsign(x) = \frac{x}{1 + |x|}
1257

1258
    Parameters:
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1269 1270 1271
            import paddle
            import paddle.nn.functional as F
            import numpy as np
1272

1273 1274
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            out = F.softsign(x) # [-0.285714, -0.166667, 0.0909091, 0.230769]
1275
    """
Z
zhiboniu 已提交
1276
    if in_dynamic_mode():
W
wanghuancoder 已提交
1277
        return _C_ops.softsign(x)
1278 1279 1280 1281 1282 1283 1284 1285 1286

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'softsign')
    helper = LayerHelper('softsign', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='softsign', inputs={'X': x}, outputs={'Out': out})
    return out


1287
def swish(x, name=None):
1288
    r"""
1289 1290 1291 1292
    swish activation.

    .. math::

1293
        swish(x) = \frac{x}{1 + e^{-x}}
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            import numpy as np

            x = paddle.to_tensor(np.array([-2., 0., 1.]))
            out = F.swish(x) # [-0.238406, 0., 0.731059]
    """
1313 1314 1315
    if in_dygraph_mode():
        return _C_ops.final_state_swish(x, 1.0)
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
1316
        return _C_ops.swish(x, 'beta', 1.0)
1317 1318 1319 1320

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'swish')
    helper = LayerHelper('swish', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
1321 1322 1323 1324
    helper.append_op(type='swish',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'beta': 1.0})
1325 1326 1327
    return out


1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
def mish(x, name=None):
    r"""
    mish activation.

    ..  math::

        softplus(x) = \begin{cases}
                x, \text{if } x > \text{threshold} \\
                \ln(1 + e^{x}),  \text{otherwise}
            \end{cases}

        mish(x) = x * \tanh(softplus(x))
    
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

W
wangxinxin08 已提交
1355
            x = paddle.to_tensor([-5., 0., 5.])
1356 1357
            out = F.mish(x) # [-0.03357624, 0., 4.99955208]
    """
1358 1359 1360
    if in_dygraph_mode():
        return _C_ops.final_state_mish(x, 20)
    if _in_legacy_dygraph():
1361 1362 1363 1364 1365 1366 1367 1368 1369
        return _C_ops.mish(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'mish')
    helper = LayerHelper('mish', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='mish', inputs={'X': x}, outputs={'Out': out})
    return out


1370 1371 1372 1373 1374 1375
def tanhshrink(x, name=None):
    """
    tanhshrink activation

    .. math::

1376
        tanhshrink(x) = x - tanh(x)
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1389 1390 1391
            import paddle
            import paddle.nn.functional as F
            import numpy as np
1392

1393 1394
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            out = F.tanhshrink(x) # [-0.020051, -0.00262468, 0.000332005, 0.00868739]
1395
    """
Z
zhiboniu 已提交
1396
    if in_dynamic_mode():
W
wanghuancoder 已提交
1397
        return _C_ops.tanh_shrink(x)
1398 1399 1400 1401 1402 1403 1404 1405 1406

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'tanhshrink')
    helper = LayerHelper('tanh_shrink', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='tanh_shrink', inputs={'X': x}, outputs={'Out': out})
    return out


1407
def thresholded_relu(x, threshold=1.0, name=None):
1408
    r"""
1409 1410 1411 1412
    thresholded relu activation.

    .. math::

1413 1414 1415 1416 1417 1418 1419 1420
        thresholded\_relu(x) = 
            \left\{
                \begin{array}{rl}
                x,& \text{if } \ x > threshold \\
                0,& \text{otherwise}
                \end{array}
            \right.

1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold for thresholded_relu. Default is 1.0
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            import numpy as np

            x = paddle.to_tensor(np.array([2., 0., 1.]))
            out = F.thresholded_relu(x) # [2., 0., 0.]
    """

Z
zhiboniu 已提交
1442
    if in_dynamic_mode():
W
wanghuancoder 已提交
1443
        return _C_ops.thresholded_relu(x, 'threshold', threshold)
1444 1445 1446 1447 1448

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'thresholded_relu')
    helper = LayerHelper('thresholded_relu', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
1449 1450 1451 1452
    helper.append_op(type='thresholded_relu',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'threshold': threshold})
1453 1454 1455
    return out


1456
def log_softmax(x, axis=-1, dtype=None, name=None):
1457
    r"""
1458 1459
    This operator implements the log_softmax layer. The calculation process is
    as follows:
1460 1461 1462

    .. math::

1463 1464 1465 1466
        \begin{aligned} 
        log\_softmax[i, j] &= log(softmax(x)) \\
        &= log(\frac{\exp(X[i, j])}{\sum_j(\exp(X[i, j])})
        \end{aligned}
1467 1468

    Parameters:
1469 1470 1471 1472 1473 1474 1475
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` < 0, it works the same way as
            :math:`axis + D` . Default is -1.
        dtype (str|np.dtype|core.VarDesc.VarType, optional): The desired data
            type of the output tensor. If dtype is specified, ``x`` is casted
1476
            to ``dtype`` before the operation is performed. This is useful for
1477 1478 1479 1480 1481
            preventing data type overflows. Supported dtype: float32, float64.
            If ``dtype`` is None, the output Tensor has the same dtype as x.
            Default is None.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
1482

1483
    Returns:
1484 1485
        A Tensor with the same shape and data type (use ``dtype`` if it is
        specified) as x.
1486 1487 1488 1489

    Examples:
        .. code-block:: python

1490 1491 1492
            import paddle
            import paddle.nn.functional as F

Z
zhupengyang 已提交
1493 1494 1495 1496 1497 1498
            x = [[[-2.0, 3.0, -4.0, 5.0],
                  [3.0, -4.0, 5.0, -6.0],
                  [-7.0, -8.0, 8.0, 9.0]],
                 [[1.0, -2.0, -3.0, 4.0],
                  [-5.0, 6.0, 7.0, -8.0],
                  [6.0, 7.0, 8.0, 9.0]]]
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
            x = paddle.to_tensor(x)
            out1 = F.log_softmax(x)
            out2 = F.log_softmax(x, dtype='float64')
            # out1's data type is float32; out2's data type is float64
            # out1 and out2's value is as follows:
            # [[[ -7.1278396   -2.1278396   -9.127839    -0.12783948]
            #   [ -2.1270514   -9.127051    -0.12705144 -11.127051  ]
            #   [-16.313261   -17.313261    -1.3132617   -0.31326184]]
            #  [[ -3.0518122   -6.051812    -7.051812    -0.051812  ]
            #   [-12.313267    -1.3132664   -0.3132665  -15.313267  ]
            #   [ -3.4401896   -2.4401896   -1.4401896   -0.44018966]]]
    """
1511 1512 1513

    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
1514

1515
    if _non_static_mode():
1516
        if dtype is not None:
W
wanghuancoder 已提交
1517
            x = _C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
1518 1519 1520
        if _in_legacy_dygraph():
            return _C_ops.log_softmax(x, 'axis', axis)
        return _C_ops.final_state_log_softmax(x, axis)
1521

1522
    if dtype is None:
1523 1524 1525
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'log_softmax')
    else:
1526 1527 1528
        check_dtype(
            dtype, 'dtype', ['float32', 'float64'], 'log_softmax',
            'If dtype is not None, it only support float32 or float64.')
1529

1530
    helper = LayerHelper("log_softmax", **locals())
1531
    out_cast = x
1532
    if dtype is not None:
1533
        out_cast = helper.create_variable_for_type_inference(dtype)
1534 1535 1536 1537 1538 1539 1540
        helper.append_op(type='cast',
                         inputs={'X': x},
                         outputs={'Out': out_cast},
                         attrs={
                             'in_dtype': x.dtype,
                             'out_dtype': dtype
                         })
1541

1542
    out = helper.create_variable_for_type_inference(out_cast.dtype)
1543 1544 1545 1546
    helper.append_op(type='log_softmax',
                     inputs={'X': out_cast},
                     outputs={'Out': out},
                     attrs={'axis': axis})
1547

1548
    return out
F
Feiyu Chan 已提交
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595


def glu(x, axis=-1, name=None):
    r"""
    The gated linear unit. The input is evenly splited into 2 parts along a 
    given axis. The first part is used as the content, and the second part is
    passed through a sigmoid function then used as the gate. The output is a
    elementwise multiplication of the content and the gate.

    .. math::

        \mathrm{GLU}(a, b) = a \otimes \sigma(b)

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int, optional): The axis along which split the input tensor. It 
            should be in range [-D, D), where D is the dimensions of ``x`` . 
            If ``axis`` < 0, it works the same way as :math:`axis + D` . 
            Default is -1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        A Tensor with the same data type as x. The size of the given aixs is 
        halved.
    
    Examples:
        .. code-block:: python
        
            import paddle
            from paddle.nn import functional as F
            
            x = paddle.to_tensor(
                [[-0.22014759, -1.76358426,  0.80566144,  0.04241343],
                 [-1.94900405, -1.89956081,  0.17134808, -1.11280477]]
            )
            print(F.glu(x).numpy())
            # array([[-0.15216254, -0.9004892 ],
            #        [-1.0577879 , -0.46985325]], dtype=float32)
        
    """
    check_variable_and_dtype(x, 'input', ['float16', 'float32', 'float64'],
                             "glu")
    a, b = chunk(x, 2, axis=axis, name=name)
    gate = sigmoid(b, name=name)
    out = paddle.multiply(a, gate, name=name)
    return out
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655


def gumbel_softmax(x, temperature=1.0, hard=False, axis=-1, name=None):
    r"""
    Samples from the Gumbel-Softmax distribution and optionally discretizes.
    temperature is denoted by t. The calculation process is as follows:

    First, generate gumbel noise:

    .. math::

        G_i = -log(-log(U_i)), U_i \sim U(0,1)

    Second, add noise to ``x``:

    .. math::

        v = [x_1 + G_1,...,x_n + G_n]

    Finally, calculate gumbel_softmax and generate samples:

    .. math::
        gumbel\_softmax(v_i)=\frac{e^{v_i/t}}{\sum_{j=1}^n{e^{v_j/t}}},i=1,2,3...n

    Parameters:
        x (Tensor): An N-D Tensor, the first N - 1 dimensions index into a batch 
            of independent distributions and the last dimension represents 
            a vector of probabilities with datatype float32, float64.
        temperature (float, optional): non-negative scalar temperature.
            Default is 1.0.
        hard (bool, optional): if True, the returned samples will be discretized as 
            one-hot vectors, but will be differentiated as if it is the soft sample 
            in autograd. Default is False.
        axis (int, optional): The axis along will be calculated softmax value. 
            Default is -1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        Sampled tensor of same shape as ``x`` from the Gumbel-Softmax distribution. 
        If ``hard = True``, the returned samples will be one-hot, otherwise they will be 
        probability distributions that sum to 1 across ``axis``.
    
    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            logits = paddle.randn([4, 6])
            temperature = 0.01
            gumbel_softmax = F.gumbel_softmax(logits, temperature)
            print(gumbel_softmax)
            # out's value is as follows:
            # [[0.00000001, 1.        , 0.00000000, 0.00000000, 0.00000006, 0.00000000],
            # [0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 1.        ],
            # [0.00000062, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.99999940],
            # [0.00000000, 0.00000000, 0.00000000, 0.00001258, 0.99998736, 0.00000000]]
        
    """
H
hong 已提交
1656 1657 1658
    if in_dygraph_mode():
        return _C_ops.final_state_gumbel_softmax(x, temperature, hard, axis)

Z
zhiboniu 已提交
1659
    if in_dynamic_mode():
1660 1661 1662 1663 1664 1665
        return _C_ops.gumbel_softmax(x, 'temperature', temperature, 'hard',
                                     hard, 'axis', axis)

    helper = LayerHelper("gumbel_softmax", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'gumbel_softmax')
    out = helper.create_variable_for_type_inference(x.dtype)
1666 1667 1668 1669 1670 1671 1672 1673
    helper.append_op(type='gumbel_softmax',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={
                         'temperature': temperature,
                         'hard': hard,
                         'axis': axis
                     })
1674
    return out