activation.py 62.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
16
from paddle import _C_ops, _legacy_C_ops, in_dynamic_mode
17
from paddle.framework import core
18
from paddle.utils.inplace_utils import inplace_apis_in_dygraph_only
19 20

from ...fluid.data_feeder import check_dtype, check_variable_and_dtype
21
from ...fluid.framework import convert_np_dtype_to_dtype_
22 23 24 25 26
from ...fluid.layer_helper import LayerHelper
from ...tensor.manipulation import chunk
from ...tensor.math import tanh  # noqa: F401
from ...tensor.math import tanh_  # noqa: F401
from ...tensor.ops import sigmoid  # noqa: F401
27

28 29
__all__ = []

30

31 32 33 34
def celu(x, alpha=1.0, name=None):
    r"""
    celu activation.

35 36
    Apply the following operation to each element of the input Tensor accroding to the `Continuously Differentiable Exponential Linear Units <https://arxiv.org/abs/1704.07483>`_.

37 38
    .. math::

39
        \operatorname{celu}(x) = \max(0, x) + \min(0, \alpha * (\mathrm{e}^{x/\alpha}-1))
40 41

    Parameters:
42 43
        x (Tensor): The input Tensor with data type float16, float32, or float64.
        alpha (float, optional): The 'alpha' value of the CELU formula. Default is 1.0.
44
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
45 46

    Returns:
47
        A ``Tensor`` with the same data type and shape as ``x`` .
48 49 50 51

    Examples:
        .. code-block:: python

52 53 54 55 56 57 58 59 60
            >>> import paddle
            >>> import paddle.nn.functional as F

            >>> x = paddle.to_tensor([[-1., 6.], [1., 15.6]])
            >>> out = F.celu(x, alpha=0.2)
            >>> print(out)
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[-0.19865242,  6.        ],
             [ 1.        , 15.60000038]])
61 62 63
    """
    if alpha == 0:
        raise ZeroDivisionError("alpha cannot be 0 for celu")
64
    if in_dynamic_mode():
65
        return _C_ops.celu(x, alpha)
66 67
    else:
        check_variable_and_dtype(
68
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'celu'
69 70 71 72 73 74 75 76 77 78
        )
        helper = LayerHelper("celu", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='celu',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'alpha': alpha},
        )
        return out
79 80


81
def elu(x, alpha=1.0, name=None):
82
    r"""
83 84
    elu activation.

85
    .. math::
86

Z
zhupengyang 已提交
87 88 89 90 91 92 93
        elu(x)=
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * (e^{x} - 1),& &\text{if } \ x <= 0
                \end{array}
            \right.
94 95 96 97

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        alpha (float, optional): The 'alpha' value of the ELU formulation. Default is 1.0.
98
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
99

100 101
    Returns:
        A Tensor with the same data type and shape as ``x`` .
102

103 104 105
    Examples:
        .. code-block:: python

106 107
            >>> import paddle
            >>> import paddle.nn.functional as F
108

109 110 111 112 113 114
            >>> x = paddle.to_tensor([[-1., 6.], [1., 15.6]])
            >>> out = F.elu(x, alpha=0.2)
            >>> print(out)
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[-0.12642412,  6.        ],
             [ 1.        , 15.60000038]])
115 116
    """

117
    if in_dynamic_mode():
118
        return _C_ops.elu(x, alpha)
119

120 121
    else:
        check_variable_and_dtype(
122
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'elu'
123 124 125 126 127 128 129 130 131 132
        )
        helper = LayerHelper("elu", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='elu',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'alpha': alpha},
        )
        return out
133 134


135
@inplace_apis_in_dygraph_only
136 137 138 139 140
def elu_(x, alpha=1.0, name=None):
    r"""
    Inplace version of ``elu`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_elu`.
    """
141
    assert alpha >= 0.0, "elu_ only support alpha >= 0, please use elu instead."
142
    if in_dynamic_mode():
143 144
        return _C_ops.elu_(x, alpha)
    return _legacy_C_ops.elu_(x, 'alpha', alpha)
145 146


147
def gelu(x, approximate=False, name=None):
148
    r"""
149 150
    gelu activation.

151 152
    The activation function of Gelu is calculated element by element. More information refers to :ref: `Gaussian Error Linear Units`.

153
    if approximate is True
154 155 156

    .. math::

157
        gelu(x) = 0.5 * x * (1 + tanh(\sqrt{\frac{2}{\pi}} * (x + 0.044715x^{3})))
158

159
    else
160 161 162

    .. math::

163
        gelu(x) = 0.5 * x * (1 + erf(\frac{x}{\sqrt{2}}))
164

165 166
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
167 168
        approximate (bool, optional): Whether to enable approximation. Default is False.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
169

170 171
    Returns:
        A Tensor with the same data type and shape as ``x`` .
172

173 174 175
    Examples:
        .. code-block:: python

176 177 178 179 180 181 182 183 184 185 186 187 188 189
            >>> import paddle
            >>> import paddle.nn.functional as F

            >>> x = paddle.to_tensor([[-1, 0.5], [1, 1.5]])
            >>> out1 = F.gelu(x)
            >>> print(out1)
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[-0.15865529,  0.34573123],
             [ 0.84134471,  1.39978933]])
            >>> out2 = F.gelu(x, True)
            >>> print(out2)
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[-0.15880796,  0.34571400],
             [ 0.84119201,  1.39957154]])
190 191
    """

192
    if in_dynamic_mode():
193
        return _C_ops.gelu(x, approximate)
194 195
    else:
        check_variable_and_dtype(
196
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'gelu'
197 198 199 200 201 202 203 204 205 206
        )
        helper = LayerHelper("gelu", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='gelu',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'approximate': approximate},
        )
        return out
207 208


209
def hardshrink(x, threshold=0.5, name=None):
210
    r"""
211 212 213 214 215
    hard shrinkage activation

    .. math::

        hardshrink(x)=
216 217 218 219 220 221 222
            \left\{
                \begin{array}{rcl}
                x,&  &if \ {x > threshold}  \\
                x,&  &if \ {x < -threshold}   \\
                0,&  &if \ {others} &
                \end{array}
            \right.
223 224 225

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
226 227
        threshold (float, optional): The value of threshold for hardthrink. Default is 0.5.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
228 229 230 231 232 233 234

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

235 236 237 238 239 240 241 242
            >>> import paddle
            >>> import paddle.nn.functional as F

            >>> x = paddle.to_tensor([-1, 0.3, 2.5])
            >>> out = F.hardshrink(x)
            >>> print(out)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [-1.       ,  0.       , 2.50000000])
243 244 245


    """
246
    if in_dynamic_mode():
247
        return _C_ops.hardshrink(x, threshold)
248 249
    else:
        check_variable_and_dtype(
250
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'hardshrink'
251 252 253 254 255 256 257 258 259 260
        )
        helper = LayerHelper('hardshrink', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='hard_shrink',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'threshold': threshold},
        )
        return out
261 262


263
def hardtanh(x, min=-1.0, max=1.0, name=None):
264
    r"""
265
    hardtanh activation. Calculate the `hardtanh` of input `x`.
266 267 268

    .. math::

269 270 271 272 273 274 275 276
        hardtanh(x)=
            \left\{
                \begin{array}{cll}
                    max,& & \text{if } x > max \\
                    min,& & \text{if } x < min \\
                    x,& & \text{otherwise}
                \end{array}
            \right.
277

278
    Parameters:
279 280 281
        x (Tensor): The input Tensor with data type float32, float64.
        min (float, optional): The minimum value of the linear region range. Default is -1.
        max (float, optional): The maximum value of the linear region range. Default is 1.
282
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
283 284 285 286 287 288 289

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

290 291
            >>> import paddle
            >>> import paddle.nn.functional as F
292

293 294 295 296 297
            >>> x = paddle.to_tensor([-1.5, 0.3, 2.5])
            >>> out = F.hardtanh(x)
            >>> print(out)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [-1.       , 0.30000001,  1.       ])
298 299
    """

300
    if in_dynamic_mode():
301
        return _C_ops.hardtanh(x, min, max)
302 303 304 305
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'hardtanh'
        )
H
hong 已提交
306

307 308 309 310 311 312 313 314 315
        helper = LayerHelper('hardtanh', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='brelu',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'t_min': min, 't_max': max},
        )
        return out
316 317


318 319 320 321 322 323 324 325 326 327
@inplace_apis_in_dygraph_only
def hardtanh_(x, min=-1.0, max=1.0, name=None):
    r"""
    Inplace version of ``hardtanh`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`paddle_nn_functional_hardtanh`.
    """
    if in_dynamic_mode():
        return _C_ops.hardtanh_(x, min, max)


328
def hardsigmoid(x, slope=0.1666667, offset=0.5, name=None):
329
    r"""
330
    hardsigmoid activation. Calculate the `hardsigmoid` of input `x`.
331 332 333 334 335 336
    A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
    which is much faster than sigmoid.

    .. math::

        hardsigmoid(x)=
337 338 339 340 341 342 343
            \left\{
                \begin{array}{lcl}
                0, & &\text{if } \ x \leq -3 \\
                1, & &\text{if } \ x \geq 3 \\
                slope * x + offset, & &\text{otherwise}
                \end{array}
            \right.
344 345 346

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
347 348
        slope (float, optional): The slope of hardsigmoid function. Default is 0.1666667.
        offset (float, optional): The offset of hardsigmoid function. Default is 0.5.
349
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
350 351 352 353 354 355 356

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

357 358
            >>> import paddle
            >>> import paddle.nn.functional as F
359

360 361 362 363 364
            >>> x = paddle.to_tensor([-4., 5., 1.])
            >>> out = F.hardsigmoid(x)
            >>> print(out)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.        , 1.        , 0.66666669])
365 366
    """

367
    if in_dynamic_mode():
368
        return _C_ops.hardsigmoid(x, slope, offset)
369 370
    else:
        check_variable_and_dtype(
371
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'hardsigmoid'
372
        )
H
hong 已提交
373

374 375 376 377 378 379 380 381 382
        helper = LayerHelper('hardsigmoid', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='hard_sigmoid',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'slope': slope, 'offset': offset},
        )
        return out
383 384 385


def hardswish(x, name=None):
386
    r"""
387 388 389
    hardswish activation. hardswish is proposed in MobileNetV3, and performs
    better in computational stability and efficiency compared to swish function.
    For more details please refer to: https://arxiv.org/pdf/1905.02244.pdf
390 391 392 393

    .. math::

        hardswish(x)=
394 395 396 397 398 399 400
            \left\{
                \begin{array}{cll}
                0 &, & \text{if } x \leq -3 \\
                x &, & \text{if } x \geq 3 \\
                \frac{x(x+3)}{6} &, & \text{otherwise}
                \end{array}
            \right.
401 402 403

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
404
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
405 406 407 408 409 410 411

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

412 413
            >>> import paddle
            >>> import paddle.nn.functional as F
414

415 416 417 418 419
            >>> x = paddle.to_tensor([-4., 5., 1.])
            >>> out = F.hardswish(x)
            >>> print(out)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [-0.       , 5.        , 0.66666669])
420
    """
421
    if in_dynamic_mode():
422
        return _C_ops.hardswish(x)
423 424
    else:
        check_variable_and_dtype(
425
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'hardswish'
426
        )
427

428 429 430
        threshold = 6.0
        scale = 6.0
        offset = 3.0
431 432 433
        helper = LayerHelper('hardswish', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
434 435 436 437
            type='hard_swish',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'threshold': threshold, 'scale': scale, 'offset': offset},
438 439
        )
        return out
440 441


442
def leaky_relu(x, negative_slope=0.01, name=None):
443
    r"""
444
    leaky_relu activation. The calculation formula is:
445

446
    .. math::
447 448 449 450 451 452 453
        leaky\_relu(x)=
        \left\{
            \begin{array}{rcl}
                x, & & if \ x >= 0 \\
                negative\_slope * x, & & otherwise \\
            \end{array}
        \right.
454 455 456 457 458

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        negative_slope (float, optional): Slope of the activation function at
            :math:`x < 0` . Default is 0.01.
459
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
460 461 462 463 464 465 466

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

467 468
            >>> import paddle
            >>> import paddle.nn.functional as F
469

470 471 472 473 474
            >>> x = paddle.to_tensor([-2., 0., 1.])
            >>> out = F.leaky_relu(x)
            >>> print(out)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [-0.02000000,  0.        ,  1.        ])
475 476

    """
477
    if in_dynamic_mode():
478
        return _C_ops.leaky_relu(x, negative_slope)
479 480
    else:
        check_variable_and_dtype(
481
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'leaky_relu'
482 483 484 485 486 487 488 489 490 491
        )
        helper = LayerHelper('leaky_relu', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='leaky_relu',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'alpha': negative_slope},
        )
        return out
492 493


494 495 496 497 498 499 500 501 502 503
@inplace_apis_in_dygraph_only
def leaky_relu_(x, negative_slope=0.01, name=None):
    r"""
    Inplace version of ``leaky_relu`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`paddle_nn_functional_leaky_relu`.
    """
    if in_dynamic_mode():
        return _C_ops.leaky_relu_(x, negative_slope)


504
def prelu(x, weight, data_format="NCHW", name=None):
505
    """
506
    prelu activation. The calculation formula is follows:
507 508 509 510 511

    .. math::

        prelu(x) = max(0, x) + weight * min(0, x)

512 513
    x and weight is input Tensor.

514 515 516
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        weight (Tensor): The learnable parameter with data type same as ``x``.
517
            The weight shape is [], [1] or [in], where `in` is the input channel of ``x``.
518
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
519 520
        data_format(str, optional): Data format that specifies the layout of input.
            It may be "NC", "NCL", "NCHW", "NCDHW", "NLC", "NHWC" or "NDHWC". Default: "NCHW".
521 522 523 524 525 526 527

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
            >>> import paddle
            >>> import paddle.nn.functional as F

            >>> data = paddle.to_tensor([[[[-2.0,  3.0, -4.0,  5.0],
            ...                            [ 3.0, -4.0,  5.0, -6.0],
            ...                            [-7.0, -8.0,  8.0,  9.0]],
            ...                           [[ 1.0, -2.0, -3.0,  4.0],
            ...                            [-5.0,  6.0,  7.0, -8.0],
            ...                            [ 6.0,  7.0,  8.0,  9.0]]]], dtype='float32')

            >>> w = paddle.to_tensor([0.25], dtype='float32')
            >>> out = F.prelu(data, w)
            >>> print(out)
            Tensor(shape=[1, 2, 3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[[[-0.50000000,  3.        , -1.        ,  5.        ],
               [ 3.        , -1.        ,  5.        , -1.50000000],
               [-1.75000000, -2.        ,  8.        ,  9.        ]],
              [[ 1.        , -0.50000000, -0.75000000,  4.        ],
               [-1.25000000,  6.        ,  7.        , -2.        ],
               [ 6.        ,  7.        ,  8.        ,  9.        ]]]])
548
    """
549
    assert (
550 551
        len(weight.shape) == 0 or len(weight.shape) == 1
    ), "The dim count of weight shape should be 0 or 1 in prelu()."
552 553

    mode = 'all'
554
    if len(weight.shape) == 1 and weight.shape[0] > 1:
555
        true_data_format = [
556 557 558 559 560 561 562
            'NC',
            'NCL',
            'NCHW',
            'NCDHW',
            'NLC',
            'NHWC',
            'NDHWC',
563 564 565 566
        ]
        if data_format not in true_data_format:
            raise ValueError(
                "data_format must be one of 'NC', 'NCL', 'NCHW', 'NCDHW', "
567 568
                "'NLC', 'NHWC', 'NDHWC' but receive {}".format(data_format)
            )
569 570 571

        data_format = 'NCHW' if data_format[1] == 'C' else 'NHWC'

572 573 574
        assert (
            len(x.shape) > 1
        ), "The dim count of x should be equal or larger than 2 in prelu() when weight shape is not [1]."
575

576
        # NOTE(GuoxiaWang): support NHWC data format
577
        if data_format == 'NHWC':
578 579 580
            assert (
                weight.shape[0] == x.shape[-1]
            ), "The weight size should be equal to x input channel in prelu() when weight shape is not [1]."
581
        else:
582 583 584
            assert (
                weight.shape[0] == x.shape[1]
            ), "The weight size should be equal to x input channel in prelu() when weight shape is not [1]."
585 586
        mode = 'channel'

587
    if in_dynamic_mode():
588
        return _C_ops.prelu(x, weight, data_format, mode)
589
    else:
W
Weilong Wu 已提交
590
        check_variable_and_dtype(
591
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], 'prelu'
W
Weilong Wu 已提交
592 593
        )
        check_variable_and_dtype(
594 595 596 597
            weight,
            'weight',
            ['float16', 'float32', 'float64', 'uint16'],
            'prelu',
W
Weilong Wu 已提交
598
        )
599 600 601 602 603 604 605
        helper = LayerHelper('prelu', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type="prelu",
            inputs={"X": x, "Alpha": weight},
            outputs={"Out": out},
            attrs={"mode": mode, "data_format": data_format},
606
        )
607
        return out
608 609


610
def rrelu(x, lower=1.0 / 8.0, upper=1.0 / 3.0, training=True, name=None):
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
    r"""
    rrelu activation.

    Applies the randomized leaky rectified liner unit function to improve generalization performance,
    as described in the paper:
    `Empirical Evaluation of Rectified Activations in Convolutional Network <https://arxiv.org/abs/1505.00853>`_

    During training, randomly samples the negative slope for activation values as described below:

    .. math::

        rrelu(x)=
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    a * x, & & otherwise \\
                \end{array}
            \right.

    where :math:`x` is the input tensor,
    :math:`a` is randomly sampled from uniform distribution in range (:math:`lower`, :math:`upper`),

    In the test phase, the negative slope will take the average value of :math:`lower` and :math:`upper`:

    .. math::

        rrelu(x)=
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    (lower + upper) * 0.5 * x, & & otherwise \\
                \end{array}
            \right.

    where :math:`x` is the input tensor,
    :math:`lower` and :math:`upper` are the bounds of uniform distribution.

    Parameters:
        x (Tensor): The input Tensor with data type float16, float32, float64.
650 651
        lower (float, optional): The lower bound of uniform distribution. Default: 0.125.
        upper (float, optional): The upper bound of uniform distribution. Default: 0.3333333333333333.
652
        training (bool, optional): Current mode is in training or others.  Default is True.
653
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
654 655 656 657 658 659 660

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
            >>> import paddle
            >>> import paddle.nn.functional as F
            >>> paddle.seed(1)
            >>> input_tensor = paddle.to_tensor([[[[-2.0,  3.0, -4.0,  5.0],
            ...                                    [ 3.0, -4.0,  5.0, -6.0],
            ...                                    [-7.0, -8.0,  8.0,  9.0]],
            ...                                   [[ 1.0, -2.0, -3.0,  4.0],
            ...                                    [-5.0,  6.0,  7.0, -8.0],
            ...                                    [ 6.0,  7.0,  8.0,  9.0]]]], dtype='float32')
            >>> out = F.rrelu(input_tensor, 0.1, 0.3)
            >>> print(out)
            Tensor(shape=[1, 2, 3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[[[-0.20715050,  3.        , -1.01193857,  5.        ],
               [ 3.        , -0.94084597,  5.        , -0.65544695],
               [-1.24268556, -2.34339547,  8.        ,  9.        ]],
              [[ 1.        , -0.44942653, -0.68969047,  4.        ],
               [-1.03736508,  6.        ,  7.        , -0.95799232],
               [ 6.        ,  7.        ,  8.        ,  9.        ]]]])
679 680 681
    """
    if not isinstance(lower, float) or not isinstance(upper, float):
        raise TypeError(
682 683 684 685
            "The lower and upper values must be float type. Received: lower {}, upper {}.".format(
                lower, upper
            )
        )
686 687 688

    if lower < 0 or lower > 1:
        raise ValueError(
689 690 691 692
            "The lower value must be no less than zero or greater than one. Received: {}.".format(
                lower
            )
        )
693 694 695

    if upper < lower:
        raise ValueError(
696 697 698 699
            "The upper value must be greater than lower value. Received: lower {}, upper {}.".format(
                lower, upper
            )
        )
700 701 702 703

    if upper > 1:
        raise ValueError(
            "The upper value must be no greater than one. Received: {}.".format(
704 705 706
                upper
            )
        )
707 708 709

    is_test = not training

710
    if in_dynamic_mode():
W
Weilong Wu 已提交
711
        return _C_ops.rrelu(x, lower, upper, is_test)
712
    else:
W
Weilong Wu 已提交
713
        check_variable_and_dtype(
714
            x, 'X', ['float16', 'uint16', 'float32', 'float64'], 'rrelu'
W
Weilong Wu 已提交
715
        )
716 717 718 719 720 721 722 723 724 725 726
        helper = LayerHelper('rrelu', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        noise = helper.create_variable_for_type_inference(dtype=x.dtype)
        attrs = {'lower': lower, 'upper': upper, 'is_test': is_test}
        helper.append_op(
            type='rrelu',
            inputs={"X": x},
            outputs={"Out": out, "Noise": noise},
            attrs=attrs,
        )
        return out
727 728


729
def relu(x, name=None):
730
    """
731
    relu activation. The calculation formula is follows:
732

733
    .. math::
734 735 736

        out = max(x, 0)

737 738
    x is input Tensor.

739
    Parameters:
740
        x (Tensor): The input Tensor with data type float32, float64.
741
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
742 743

    Returns:
744
        A Tensor with the same data type and shape as ``x`` .
745 746 747 748

    Examples:
        .. code-block:: python

749 750
            >>> import paddle
            >>> import paddle.nn.functional as F
751

752 753 754 755 756
            >>> x = paddle.to_tensor([-2, 0, 1], dtype='float32')
            >>> out = F.relu(x)
            >>> print(out)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0., 0., 1.])
757 758
    """

759
    if in_dynamic_mode():
W
wanghuancoder 已提交
760
        return _C_ops.relu(x)
761
    else:
762
        if paddle.framework.in_dynamic_or_new_ir_mode():
Z
zhangbo9674 已提交
763 764 765
            # Below code will be removed after we can generate IR api automatically
            return paddle._ir_ops.relu(x)

766
        check_variable_and_dtype(
767
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'relu'
768 769 770 771 772
        )
        helper = LayerHelper('relu', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='relu', inputs={'X': x}, outputs={'Out': out})
        return out
773 774


775
@inplace_apis_in_dygraph_only
776 777 778 779 780
def relu_(x, name=None):
    """
    Inplace version of ``relu`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_relu`.
    """
781
    return _C_ops.relu_(x)
782 783


784
def log_sigmoid(x, name=None):
785
    r"""
786
    log_sigmoid activation.
787

788
    .. math::
789

790
        log\_sigmoid(x) = log \frac{1}{1 + e^{-x}}
791

792 793
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
794
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
795

796 797
    Returns:
        A Tensor with the same data type and shape as ``x`` .
798

799 800 801
    Examples:
        .. code-block:: python

802 803
            >>> import paddle
            >>> import paddle.nn.functional as F
804

805 806 807 808 809
            >>> x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            >>> out = F.log_sigmoid(x)
            >>> print(out)
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [-0.31326166, -0.12692805, -0.04858733, -0.01814996])
810 811
    """

812
    if in_dynamic_mode():
813
        return _C_ops.logsigmoid(x)
814 815 816 817 818 819 820 821 822 823
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'log_sigmoid'
        )
        helper = LayerHelper("log_sigmoid", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='logsigmoid', inputs={'X': x}, outputs={'Out': out}
        )
        return out
824 825


826
def maxout(x, groups, axis=1, name=None):
827
    r"""
828 829 830 831 832 833 834 835
    maxout activation.

    Assumed the input shape is (N, Ci, H, W).
    The output shape is (N, Co, H, W).
    Then Co = Ci/groups and the operator formula is as follows:

    .. math::

836 837 838 839 840 841 842 843 844
        \begin{array}{l}
        &out_{si+j} = \max_{k} x_{gsi + sk + j} \\
        &g = groups \\
        &s = \frac{input.size}{num\_channels} \\
        &0 \le i < \frac{num\_channels}{groups} \\
        &0 \le j < s \\
        &0 \le k < groups
        \end{array}

845 846 847

    Parameters:
        x (Tensor): The input is 4-D Tensor with shape [N, C, H, W] or [N, H, W, C], the data type
848
            of input is float16, float32 or float64.
849
        groups (int): The groups number of maxout. `groups` specifies the
850
            index of channel dimension where maxout will be performed. This must be
851
            a factor of number of features.
852 853 854 855 856
        axis (int, optional): The axis along which to perform maxout calculations.
            It should be 1 when data format is NCHW, be -1 or 3 when data format
            is NHWC. If ``axis`` < 0, it works the same way as :math:`axis + D` ,
            where D is the dimensions of ``x`` . ``axis`` only supports 1, 3 or -1.
            Default is 1.
857
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
858 859 860 861 862 863 864

    Returns:
        A Tensor with the same data type as ``x`` .

    Examples:
        .. code-block:: python

865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
            >>> import paddle
            >>> import paddle.nn.functional as F

            >>> paddle.seed(2023)
            >>> x = paddle.rand([1, 2, 3, 4])
            >>> print(x)
            Tensor(shape=[1, 2, 3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[[[0.86583614, 0.52014720, 0.25960937, 0.90525323],
               [0.42400089, 0.40641287, 0.97020894, 0.74437362],
               [0.51785129, 0.73292869, 0.97786582, 0.04315904]],
              [[0.42639419, 0.71958369, 0.20811461, 0.19731510],
               [0.38424349, 0.14603184, 0.22713774, 0.44607511],
               [0.21657862, 0.67685395, 0.46460176, 0.92382854]]]])
            >>> out = F.maxout(x, groups=2)
            >>> print(out)
            Tensor(shape=[1, 1, 3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[[[0.86583614, 0.71958369, 0.25960937, 0.90525323],
               [0.42400089, 0.40641287, 0.97020894, 0.74437362],
               [0.51785129, 0.73292869, 0.97786582, 0.92382854]]]])
884
    """
885
    if in_dynamic_mode():
886
        return _C_ops.maxout(x, groups, axis)
887
    else:
888 889 890
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'maxout'
        )
891 892 893 894 895 896 897
        if axis not in [1, -1, 3]:
            raise ValueError(
                "Attr(axis) should be 1 when data format is NCHW, -1 or 3 when data format is NHWC. Received "
                "Attr(axis): %s." % str(axis)
            )
        if axis == -1:
            axis = 3
898

899 900 901 902 903 904 905 906 907
        helper = LayerHelper('maxout', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='maxout',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'groups': groups, 'axis': axis},
        )
        return out
908 909


910 911 912 913 914 915
def relu6(x, name=None):
    """
    relu6 activation

    .. math::

916
        relu6(x) = min(max(0,x), 6)
917

918
    Parameters:
919
        x (Tensor): The input Tensor with data type float32, float64.
920
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
921 922 923 924 925 926 927

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

928 929
            >>> import paddle
            >>> import paddle.nn.functional as F
930

931 932 933 934 935
            >>> x = paddle.to_tensor([-1, 0.3, 6.5])
            >>> out = F.relu6(x)
            >>> print(out)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.        , 0.30000001, 6.        ])
936 937
    """
    threshold = 6.0
Z
zhiboniu 已提交
938
    if in_dynamic_mode():
939
        return _C_ops.relu6(x)
940

941 942 943
    check_variable_and_dtype(
        x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'relu6'
    )
944 945
    helper = LayerHelper('relu6', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
946 947 948 949 950 951
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold},
    )
952 953 954
    return out


955 956 957 958 959 960
def selu(
    x,
    scale=1.0507009873554804934193349852946,
    alpha=1.6732632423543772848170429916717,
    name=None,
):
961
    r"""
962 963 964 965
    selu activation

    .. math::

966
        selu(x)= scale *
967 968 969 970 971 972
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * e^{x} - alpha,& &\text{if } \ x <= 0
                \end{array}
            \right.
973

974
    Parameters:
975
        x (Tensor): The input Tensor with data type float32, float64.
976 977
        scale (float, optional): The value of scale(must be greater than 1.0) for selu. Default is 1.0507009873554804934193349852946.
        alpha (float, optional): The value of alpha(must be no less than zero) for selu. Default is 1.6732632423543772848170429916717.
978
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
979 980 981 982 983 984 985

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

986 987
            >>> import paddle
            >>> import paddle.nn.functional as F
988

989 990 991 992 993 994
            >>> x = paddle.to_tensor([[0.0, 1.0],[2.0, 3.0]])
            >>> out = F.selu(x)
            >>> print(out)
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.        , 1.05070102],
             [2.10140204, 3.15210295]])
995
    """
996 997
    if scale <= 1.0:
        raise ValueError(
998
            f"The scale must be greater than 1.0. Received: {scale}."
999
        )
1000 1001 1002

    if alpha < 0:
        raise ValueError(
1003
            f"The alpha must be no less than zero. Received: {alpha}."
1004
        )
1005

1006
    if in_dynamic_mode():
1007
        return _C_ops.selu(x, scale, alpha)
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'selu'
        )
        helper = LayerHelper('selu', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='selu',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'scale': scale, 'alpha': alpha},
        )
        return out
1021 1022


M
minghaoBD 已提交
1023
def silu(x, name=None):
1024 1025 1026 1027 1028
    r"""
    silu activation

    .. math::

M
minghaoBD 已提交
1029
        silu(x) = \frac{x}{1 + e^{-x}}
1030

1031 1032
    Where :math:`x` is the input Tensor.

M
minghaoBD 已提交
1033
    Parameters:
1034
        x (Tensor): The input Tensor with data type bfloat16, float16, float32, float64.
1035
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1036

M
minghaoBD 已提交
1037
    Returns:
1038
        A Tensor with the same data type and shape as :attr:`x`.
1039

M
minghaoBD 已提交
1040 1041
    Examples:
        .. code-block:: python
1042

1043 1044
            >>> import paddle
            >>> import paddle.nn.functional as F
1045

1046 1047 1048 1049 1050
            >>> x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            >>> out = F.silu(x)
            >>> print(out)
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.73105860, 1.76159406, 2.85772228, 3.92805505])
M
minghaoBD 已提交
1051 1052
    """

1053
    if in_dynamic_mode():
W
wanghuancoder 已提交
1054
        return _C_ops.silu(x)
1055 1056
    else:
        check_variable_and_dtype(
1057
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'silu'
1058 1059 1060 1061 1062
        )
        helper = LayerHelper("silu", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='silu', inputs={'X': x}, outputs={'Out': out})
        return out
M
minghaoBD 已提交
1063 1064


1065
def softmax(x, axis=-1, dtype=None, name=None):
1066
    r"""
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
    This operator implements the softmax layer. The calculation process is as follows:

    1. The dimension :attr:`axis` of ``x`` will be permuted to the last.

    2. Then ``x`` will be logically flattened to a 2-D matrix. The matrix's second
    dimension(row length) is the same as the dimension :attr:`axis` of ``x``,
    and the first dimension(column length) is the product of all other dimensions
    of ``x``. For each row of the matrix, the softmax operator squashes the
    K-dimensional(K is the width of the matrix, which is also the size of ``x``'s
    dimension :attr:`axis`) vector of arbitrary real values to a K-dimensional
    vector of real values in the range [0, 1] that add up to 1.

    3. After the softmax operation is completed, the inverse operations of steps 1 and 2
    are performed to restore the two-dimensional matrix to the same dimension as the ``x`` .

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

    For each row :math:`i` and each column :math:`j` in the matrix, we have:

    .. math::

1092
        softmax[i, j] = \frac{\exp(x[i, j])}{\sum_j(exp(x[i, j])}
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140

    Example:

    .. code-block:: text

        Case 1:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]

          Attrs:
            axis = -1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
                        [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]

        Case 2:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]
          Attrs:
            axis = 1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
                         [0.01786798, 0.01786798, 0.04661262, 0.04661262],
                         [0.97555875, 0.97555875, 0.93623955, 0.93623955]],
                        [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
                         [0.26762315, 0.26762315, 0.26762315, 0.26762315],
                         [0.72747516, 0.72747516, 0.72747516, 0.72747516]]]

1141
    Parameters:
1142
        x (Tensor): The input Tensor with data type bfloat16, float16, float32, float64.
1143
        axis (int, optional): The axis along which to perform softmax
1144
            calculations. It should be in range [-D, D), where D is the
1145
            rank of ``x`` . If ``axis`` < 0, it works the same way as
1146
            :math:`axis + D` . Default is -1.
1147
        dtype (str, optional): The data type of the output tensor, can be bfloat16, float16, float32, float64.
1148
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1149 1150

    Returns:
1151 1152
        A Tensor with the same shape and data type (use ``dtype`` if it is
        specified) as x.
1153 1154 1155 1156

    Examples:
        .. code-block:: python

1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
            >>> import paddle
            >>> import paddle.nn.functional as F

            >>> x = paddle.to_tensor([[[2.0, 3.0, 4.0, 5.0],
            ...                        [3.0, 4.0, 5.0, 6.0],
            ...                        [7.0, 8.0, 8.0, 9.0]],
            ...                       [[1.0, 2.0, 3.0, 4.0],
            ...                        [5.0, 6.0, 7.0, 8.0],
            ...                        [6.0, 7.0, 8.0, 9.0]]],dtype='float32')
            >>> out1 = F.softmax(x)
            >>> out2 = F.softmax(x, dtype='float64')
            >>> #out1's data type is float32; out2's data type is float64
            >>> #out1 and out2's value is as follows:
            >>> print(out1)
            >>> print(out2)
            Tensor(shape=[2, 3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[[0.03205860, 0.08714432, 0.23688284, 0.64391428],
              [0.03205860, 0.08714432, 0.23688284, 0.64391428],
              [0.07232949, 0.19661194, 0.19661194, 0.53444666]],
             [[0.03205860, 0.08714432, 0.23688284, 0.64391428],
              [0.03205860, 0.08714432, 0.23688284, 0.64391428],
              [0.03205860, 0.08714432, 0.23688284, 0.64391428]]])
            Tensor(shape=[2, 3, 4], dtype=float64, place=Place(cpu), stop_gradient=True,
            [[[0.03205860, 0.08714432, 0.23688282, 0.64391426],
              [0.03205860, 0.08714432, 0.23688282, 0.64391426],
              [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
             [[0.03205860, 0.08714432, 0.23688282, 0.64391426],
              [0.03205860, 0.08714432, 0.23688282, 0.64391426],
              [0.03205860, 0.08714432, 0.23688282, 0.64391426]]])
1186
    """
1187 1188 1189

    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
1190
    if in_dynamic_mode():
1191
        outs_cast = x if dtype is None else _C_ops.cast(x, dtype)
1192
        return _C_ops.softmax(outs_cast, axis)
1193 1194 1195 1196
    else:
        use_cudnn = True
        if dtype is None:
            check_variable_and_dtype(
1197
                x, 'x', ['uint16', 'float16', 'float32', 'float64'], 'softmax'
1198 1199 1200 1201 1202
            )
        else:
            check_dtype(
                dtype,
                'dtype',
1203
                ['uint16', 'float16', 'float32', 'float64'],
1204
                'softmax',
1205
                'If dtype is not None, it only support uint16, float16, float32 or float64.',
1206
            )
H
hong 已提交
1207

1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
        helper = LayerHelper("softmax", **locals())
        outs_cast = x
        if dtype is not None:
            outs_cast = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='cast',
                inputs={'X': x},
                outputs={'Out': outs_cast},
                attrs={'in_dtype': x.dtype, 'out_dtype': dtype},
            )
1218

1219 1220
        outs_softmax = helper.create_variable_for_type_inference(
            outs_cast.dtype
1221 1222
        )
        helper.append_op(
1223 1224 1225 1226
            type='softmax',
            inputs={'X': outs_cast},
            outputs={'Out': outs_softmax},
            attrs={'axis': axis, 'use_cudnn': use_cudnn},
1227
        )
1228

1229
        return outs_softmax
1230 1231


1232
@inplace_apis_in_dygraph_only
1233 1234 1235 1236 1237 1238 1239
def softmax_(x, axis=-1, dtype=None, name=None):
    r"""
    Inplace version of ``softmax`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_softmax`.
    """
    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
1240 1241 1242 1243 1244 1245
    outs_cast = (
        x
        if dtype is None
        else _legacy_C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
    )
    return _C_ops.softmax_(outs_cast, axis)
1246 1247


1248
def softplus(x, beta=1, threshold=20, name=None):
1249
    r"""
1250 1251 1252
    softplus activation

    .. math::
1253 1254 1255 1256
        softplus(x)=\begin{cases}
                \frac{1}{\beta} * \log(1 + e^{\beta * x}),&x\leqslant\frac{\varepsilon}{\beta};\\
                x,&x>\frac{\varepsilon}{\beta}.
            \end{cases}
1257

1258
    Parameters:
1259
        x (Tensor): The input Tensor with data type float32, float64.
1260 1261
        beta (float, optional): The value of :math:`\beta` for softplus. Default is 1
        threshold (float, optional): The value of :math:`\varepsilon` for softplus. Default is 20
1262
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1263 1264 1265 1266 1267 1268 1269

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1270 1271
            >>> import paddle
            >>> import paddle.nn.functional as F
1272

1273 1274 1275 1276 1277
            >>> x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3], dtype='float32')
            >>> out = F.softplus(x)
            >>> print(out)
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.51301527, 0.59813893, 0.74439669, 0.85435522])
1278
    """
W
Wang Bojun 已提交
1279

1280
    if in_dynamic_mode():
1281
        return _C_ops.softplus(x, beta, threshold)
1282 1283
    else:
        check_variable_and_dtype(
1284
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'softplus'
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
        )
        helper = LayerHelper('softplus', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='softplus',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'beta': beta, 'threshold': threshold},
        )
        return out
1295 1296 1297


def softshrink(x, threshold=0.5, name=None):
1298
    r"""
1299 1300 1301 1302
    softshrink activation

    .. math::

1303
        softshrink(x)=
1304 1305 1306 1307 1308 1309 1310
            \left\{
                \begin{array}{rcl}
                x - threshold,& & \text{if } x > threshold \\
                x + threshold,& & \text{if } x < -threshold \\
                0,& &  \text{otherwise}
            \end{array}
            \right.
1311

1312
    Parameters:
1313 1314
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold(must be no less than zero) for softplus. Default is 0.5
1315
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1316 1317 1318 1319 1320 1321 1322

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1323 1324
            >>> import paddle
            >>> import paddle.nn.functional as F
1325

1326 1327 1328 1329 1330
            >>> x = paddle.to_tensor([-0.9, -0.2, 0.1, 0.8])
            >>> out = F.softshrink(x)
            >>> print(out)
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [-0.39999998,  0.        ,  0.        ,  0.30000001])
1331
    """
1332 1333 1334
    if threshold < 0:
        raise ValueError(
            "The threshold must be no less than zero. Received: {}.".format(
1335 1336 1337
                threshold
            )
        )
1338

1339
    if in_dynamic_mode():
1340
        return _C_ops.softshrink(x, threshold)
1341 1342
    else:
        check_variable_and_dtype(
1343
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'softshrink'
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
        )
        helper = LayerHelper('softshrink', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='softshrink',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'lambda': threshold},
        )
        return out
1354 1355 1356


def softsign(x, name=None):
1357
    r"""
1358 1359 1360 1361
    softsign activation

    .. math::

1362
        softsign(x) = \frac{x}{1 + |x|}
1363

1364
    Parameters:
1365
        x (Tensor): The input Tensor with data type float32, float64.
1366
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1367 1368 1369 1370 1371 1372 1373

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1374 1375
            >>> import paddle
            >>> import paddle.nn.functional as F
1376

1377 1378 1379 1380 1381
            >>> x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            >>> out = F.softsign(x)
            >>> print(out)
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [-0.28571430, -0.16666666,  0.09090909,  0.23076925])
1382
    """
1383
    if in_dynamic_mode():
1384
        return _C_ops.softsign(x)
1385

1386
    check_variable_and_dtype(
1387
        x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'softsign'
1388
    )
1389 1390 1391 1392 1393 1394
    helper = LayerHelper('softsign', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='softsign', inputs={'X': x}, outputs={'Out': out})
    return out


1395
def swish(x, name=None):
1396
    r"""
1397 1398 1399 1400
    swish activation.

    .. math::

1401
        swish(x) = \frac{x}{1 + e^{-x}}
1402 1403 1404

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
1405
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1406 1407 1408 1409 1410 1411 1412

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1413 1414
            >>> import paddle
            >>> import paddle.nn.functional as F
1415

1416 1417 1418 1419 1420
            >>> x = paddle.to_tensor([-2., 0., 1.])
            >>> out = F.swish(x)
            >>> print(out)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [-0.23840584,  0.        ,  0.73105860])
1421
    """
1422
    if in_dynamic_mode():
1423
        return _C_ops.swish(x)
1424 1425
    else:
        check_variable_and_dtype(
1426
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'swish'
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
        )
        helper = LayerHelper('swish', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='swish',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'beta': 1.0},
        )
        return out
1437 1438


1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
def mish(x, name=None):
    r"""
    mish activation.

    ..  math::

        softplus(x) = \begin{cases}
                x, \text{if } x > \text{threshold} \\
                \ln(1 + e^{x}),  \text{otherwise}
            \end{cases}

        mish(x) = x * \tanh(softplus(x))
1451

1452 1453
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
1454
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1455 1456 1457 1458 1459 1460 1461

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1462 1463
            >>> import paddle
            >>> import paddle.nn.functional as F
1464

1465 1466 1467 1468 1469
            >>> x = paddle.to_tensor([-5., 0., 5.])
            >>> out = F.mish(x)
            >>> print(out)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [-0.03357624,  0.        ,  4.99955177])
1470
    """
1471
    if in_dynamic_mode():
1472
        return _C_ops.mish(x, 20)
1473 1474
    else:
        check_variable_and_dtype(
1475
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'mish'
1476 1477 1478 1479 1480
        )
        helper = LayerHelper('mish', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='mish', inputs={'X': x}, outputs={'Out': out})
        return out
1481 1482


1483 1484 1485 1486 1487 1488
def tanhshrink(x, name=None):
    """
    tanhshrink activation

    .. math::

1489
        tanhshrink(x) = x - tanh(x)
1490 1491 1492

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
1493
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1494 1495 1496 1497 1498 1499 1500

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1501 1502
            >>> import paddle
            >>> import paddle.nn.functional as F
1503

1504 1505 1506 1507 1508
            >>> x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            >>> out = F.tanhshrink(x)
            >>> print(out)
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [-0.02005100, -0.00262472,  0.00033201,  0.00868741])
1509
    """
1510
    if in_dynamic_mode():
1511
        return _C_ops.tanh_shrink(x)
1512 1513
    else:
        check_variable_and_dtype(
1514
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'tanhshrink'
1515 1516 1517 1518 1519 1520 1521
        )
        helper = LayerHelper('tanh_shrink', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='tanh_shrink', inputs={'X': x}, outputs={'Out': out}
        )
        return out
1522 1523


1524
def thresholded_relu(x, threshold=1.0, name=None):
1525
    r"""
1526 1527 1528 1529
    thresholded relu activation.

    .. math::

1530
        thresholded\_relu(x) =
1531 1532 1533 1534 1535 1536 1537
            \left\{
                \begin{array}{rl}
                x,& \text{if } \ x > threshold \\
                0,& \text{otherwise}
                \end{array}
            \right.

1538 1539 1540 1541

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold for thresholded_relu. Default is 1.0
1542
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1543 1544 1545 1546 1547 1548 1549

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1550 1551
            >>> import paddle
            >>> import paddle.nn.functional as F
1552

1553 1554 1555 1556 1557
            >>> x = paddle.to_tensor([2., 0., 1.])
            >>> out = F.thresholded_relu(x)
            >>> print(out)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [2., 0., 0.])
1558 1559
    """

1560
    if in_dynamic_mode():
1561
        return _C_ops.thresholded_relu(x, threshold)
1562 1563
    else:
        check_variable_and_dtype(
1564 1565 1566 1567
            x,
            'x',
            ['float16', 'uint16', 'float32', 'float64'],
            'thresholded_relu',
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
        )
        helper = LayerHelper('thresholded_relu', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='thresholded_relu',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'threshold': threshold},
        )
        return out
1578 1579


1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
@inplace_apis_in_dygraph_only
def thresholded_relu_(x, threshold=1.0, name=None):
    r"""
    Inplace version of ``thresholded_relu`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`paddle_nn_functional_thresholded_relu`.
    """
    if in_dynamic_mode():
        return _C_ops.thresholded_relu_(x, threshold)


1590
def log_softmax(x, axis=-1, dtype=None, name=None):
1591
    r"""
1592 1593
    This operator implements the log_softmax layer. The calculation process is
    as follows:
1594 1595 1596

    .. math::

1597
        \begin{aligned}
1598 1599 1600
        log\_softmax[i, j] &= log(softmax(x)) \\
        &= log(\frac{\exp(X[i, j])}{\sum_j(\exp(X[i, j])})
        \end{aligned}
1601 1602

    Parameters:
1603 1604 1605 1606 1607 1608 1609
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` < 0, it works the same way as
            :math:`axis + D` . Default is -1.
        dtype (str|np.dtype|core.VarDesc.VarType, optional): The desired data
            type of the output tensor. If dtype is specified, ``x`` is casted
1610
            to ``dtype`` before the operation is performed. This is useful for
1611 1612 1613
            preventing data type overflows. Supported dtype: float32, float64.
            If ``dtype`` is None, the output Tensor has the same dtype as x.
            Default is None.
1614
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1615

1616
    Returns:
1617 1618
        A Tensor with the same shape and data type (use ``dtype`` if it is
        specified) as x.
1619 1620 1621 1622

    Examples:
        .. code-block:: python

1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
            >>> import paddle
            >>> import paddle.nn.functional as F
            >>> x = [[[-2.0, 3.0, -4.0, 5.0],
            ...       [3.0, -4.0, 5.0, -6.0],
            ...       [-7.0, -8.0, 8.0, 9.0]],
            ...      [[1.0, -2.0, -3.0, 4.0],
            ...       [-5.0, 6.0, 7.0, -8.0],
            ...       [6.0, 7.0, 8.0, 9.0]]]
            >>> x = paddle.to_tensor(x)
            >>> out1 = F.log_softmax(x)
            >>> out2 = F.log_softmax(x, dtype='float64')
            >>> #out1's data type is float32; out2's data type is float64
            >>> #out1 and out2's value is as follows:
            >>> print(out1)
            Tensor(shape=[2, 3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[[-7.12783957 , -2.12783957 , -9.12783909 , -0.12783945 ],
              [-2.12705135 , -9.12705135 , -0.12705141 , -11.12705135],
              [-16.31326103, -17.31326103, -1.31326187 , -0.31326184 ]],
             [[-3.05181193 , -6.05181217 , -7.05181217 , -0.05181199 ],
              [-12.31326675, -1.31326652 , -0.31326646 , -15.31326675],
              [-3.44018984 , -2.44018984 , -1.44018972 , -0.44018975 ]]])
            >>> print(out2)
            Tensor(shape=[2, 3, 4], dtype=float64, place=Place(cpu), stop_gradient=True,
            [[[-7.12783948 , -2.12783948 , -9.12783948 , -0.12783948 ],
              [-2.12705141 , -9.12705141 , -0.12705141 , -11.12705141],
              [-16.31326180, -17.31326180, -1.31326180 , -0.31326180 ]],
             [[-3.05181198 , -6.05181198 , -7.05181198 , -0.05181198 ],
              [-12.31326640, -1.31326640 , -0.31326640 , -15.31326640],
              [-3.44018970 , -2.44018970 , -1.44018970 , -0.44018970 ]]])
1652
    """
1653 1654 1655

    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
1656

1657
    if in_dynamic_mode():
1658
        if dtype is not None:
1659 1660
            x = _C_ops.cast(x, dtype)
        return _C_ops.log_softmax(x, axis)
1661 1662 1663
    else:
        if dtype is None:
            check_variable_and_dtype(
1664 1665 1666 1667
                x,
                'x',
                ['float16', 'uint16', 'float32', 'float64'],
                'log_softmax',
1668 1669 1670 1671 1672 1673 1674 1675 1676
            )
        else:
            check_dtype(
                dtype,
                'dtype',
                ['float32', 'float64'],
                'log_softmax',
                'If dtype is not None, it only support float32 or float64.',
            )
1677

1678 1679
        helper = LayerHelper("log_softmax", **locals())
        out_cast = x
H
hong 已提交
1680
        if dtype is not None:
1681 1682 1683 1684 1685 1686 1687
            out_cast = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='cast',
                inputs={'X': x},
                outputs={'Out': out_cast},
                attrs={'in_dtype': x.dtype, 'out_dtype': dtype},
            )
1688

1689
        out = helper.create_variable_for_type_inference(out_cast.dtype)
1690
        helper.append_op(
1691 1692 1693 1694
            type='log_softmax',
            inputs={'X': out_cast},
            outputs={'Out': out},
            attrs={'axis': axis},
1695
        )
1696

1697
        return out
F
Feiyu Chan 已提交
1698 1699 1700 1701


def glu(x, axis=-1, name=None):
    r"""
1702
    The gated linear unit. The input is evenly splited into 2 parts along a
F
Feiyu Chan 已提交
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
    given axis. The first part is used as the content, and the second part is
    passed through a sigmoid function then used as the gate. The output is a
    elementwise multiplication of the content and the gate.

    .. math::

        \mathrm{GLU}(a, b) = a \otimes \sigma(b)

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
1713 1714 1715
        axis (int, optional): The axis along which split the input tensor. It
            should be in range [-D, D), where D is the dimensions of ``x`` .
            If ``axis`` < 0, it works the same way as :math:`axis + D` .
F
Feiyu Chan 已提交
1716
            Default is -1.
1717
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1718

F
Feiyu Chan 已提交
1719
    Returns:
1720
        A Tensor with the same data type as x. The size of the given aixs is
F
Feiyu Chan 已提交
1721
        halved.
1722

F
Feiyu Chan 已提交
1723 1724
    Examples:
        .. code-block:: python
1725

1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
            >>> import paddle
            >>> from paddle.nn import functional as F
            >>> x = paddle.to_tensor(
            ...     [[-0.22014759, -1.76358426,  0.80566144,  0.04241343],
            ...         [-1.94900405, -1.89956081,  0.17134808, -1.11280477]]
            ... )
            >>> print(F.glu(x))
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[-0.15216254, -0.90048921],
            [-1.05778778, -0.46985325]])
1736

F
Feiyu Chan 已提交
1737
    """
1738 1739 1740
    check_variable_and_dtype(
        x, 'input', ['float16', 'float32', 'float64'], "glu"
    )
1741 1742 1743 1744 1745 1746 1747
    rank = len(x.shape)
    if not (-rank <= axis < rank):
        raise ValueError(
            "Expected value range of `axis` is [{}, {}), but received axis: {}".format(
                -rank, rank, axis
            )
        )
F
Feiyu Chan 已提交
1748 1749 1750 1751
    a, b = chunk(x, 2, axis=axis, name=name)
    gate = sigmoid(b, name=name)
    out = paddle.multiply(a, gate, name=name)
    return out
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776


def gumbel_softmax(x, temperature=1.0, hard=False, axis=-1, name=None):
    r"""
    Samples from the Gumbel-Softmax distribution and optionally discretizes.
    temperature is denoted by t. The calculation process is as follows:

    First, generate gumbel noise:

    .. math::

        G_i = -log(-log(U_i)), U_i \sim U(0,1)

    Second, add noise to ``x``:

    .. math::

        v = [x_1 + G_1,...,x_n + G_n]

    Finally, calculate gumbel_softmax and generate samples:

    .. math::
        gumbel\_softmax(v_i)=\frac{e^{v_i/t}}{\sum_{j=1}^n{e^{v_j/t}}},i=1,2,3...n

    Parameters:
1777 1778
        x (Tensor): An N-D Tensor, the first N - 1 dimensions index into a batch
            of independent distributions and the last dimension represents
1779
            a vector of probabilities with datatype float16, float32, float64.
1780 1781
        temperature (float, optional): non-negative scalar temperature.
            Default is 1.0.
1782 1783
        hard (bool, optional): if True, the returned samples will be discretized as
            one-hot vectors, but will be differentiated as if it is the soft sample
1784
            in autograd. Default is False.
1785
        axis (int, optional): The axis along will be calculated softmax value.
1786
            Default is -1.
1787
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1788

1789
    Returns:
1790 1791
        Sampled tensor of same shape as ``x`` from the Gumbel-Softmax distribution.
        If ``hard = True``, the returned samples will be one-hot, otherwise they will be
1792
        probability distributions that sum to 1 across ``axis``.
1793

1794 1795 1796
    Examples:
        .. code-block:: python

1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
            >>> import paddle
            >>> import paddle.nn.functional as F

            >>> paddle.seed(2023)
            >>> logits = paddle.randn([4, 6])
            >>> temperature = 0.01
            >>> gumbel_softmax = F.gumbel_softmax(logits, temperature)
            >>> print(gumbel_softmax)
            Tensor(shape=[4, 6], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.00000000, 1.        , 0.00000000, 0.00000000, 0.00000000, 0.00000000],
             [0.00000000, 0.00000000, 1.        , 0.00000000, 0.00000000, 0.00000000],
             [0.00000000, 0.00000004, 0.00000000, 0.00000000, 1.        , 0.00000000],
             [0.00000000, 1.        , 0.00000000, 0.00000000, 0.00000000, 0.00000000]])
1810

1811
    """
Z
zhiboniu 已提交
1812
    if in_dynamic_mode():
1813
        return _C_ops.gumbel_softmax(x, temperature, hard, axis)
1814 1815

    helper = LayerHelper("gumbel_softmax", **locals())
1816 1817 1818
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'gumbel_softmax'
    )
1819
    out = helper.create_variable_for_type_inference(x.dtype)
1820 1821 1822 1823 1824 1825
    helper.append_op(
        type='gumbel_softmax',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'temperature': temperature, 'hard': hard, 'axis': axis},
    )
1826
    return out