activation.py 57.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
16
from paddle import _C_ops, _legacy_C_ops, in_dynamic_mode
17
from paddle.framework import core
18
from paddle.utils.inplace_utils import inplace_apis_in_dygraph_only
19 20

from ...fluid.data_feeder import check_dtype, check_variable_and_dtype
21
from ...fluid.framework import convert_np_dtype_to_dtype_
22 23 24 25 26
from ...fluid.layer_helper import LayerHelper
from ...tensor.manipulation import chunk
from ...tensor.math import tanh  # noqa: F401
from ...tensor.math import tanh_  # noqa: F401
from ...tensor.ops import sigmoid  # noqa: F401
27

28 29
__all__ = []

30

31 32 33 34
def celu(x, alpha=1.0, name=None):
    r"""
    celu activation.

35 36
    Apply the following operation to each element of the input Tensor accroding to the `Continuously Differentiable Exponential Linear Units <https://arxiv.org/abs/1704.07483>`_.

37 38
    .. math::

39
        \operatorname{celu}(x) = \max(0, x) + \min(0, \alpha * (\mathrm{e}^{x/\alpha}-1))
40 41

    Parameters:
42 43
        x (Tensor): The input Tensor with data type float16, float32, or float64.
        alpha (float, optional): The 'alpha' value of the CELU formula. Default is 1.0.
44
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
45 46

    Returns:
47
        A ``Tensor`` with the same data type and shape as ``x`` .
48 49 50 51 52 53 54 55 56 57 58 59 60

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            x = paddle.to_tensor([[-1., 6.], [1., 15.6]])
            out = F.celu(x, alpha=0.2)
            # [[-0.19865242,  6.        ],
            #  [ 1.        , 15.60000038]]
    """
    if alpha == 0:
        raise ZeroDivisionError("alpha cannot be 0 for celu")
61
    if in_dynamic_mode():
62
        return _C_ops.celu(x, alpha)
63 64
    else:
        check_variable_and_dtype(
65
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'celu'
66 67 68 69 70 71 72 73 74 75
        )
        helper = LayerHelper("celu", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='celu',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'alpha': alpha},
        )
        return out
76 77


78
def elu(x, alpha=1.0, name=None):
79
    r"""
80 81
    elu activation.

82
    .. math::
83

Z
zhupengyang 已提交
84 85 86 87 88 89 90
        elu(x)=
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * (e^{x} - 1),& &\text{if } \ x <= 0
                \end{array}
            \right.
91 92 93 94

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        alpha (float, optional): The 'alpha' value of the ELU formulation. Default is 1.0.
95
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
96

97 98
    Returns:
        A Tensor with the same data type and shape as ``x`` .
99

100 101 102
    Examples:
        .. code-block:: python

103 104
            import paddle
            import paddle.nn.functional as F
105

Z
zhupengyang 已提交
106
            x = paddle.to_tensor([[-1., 6.], [1., 15.6]])
107
            out = F.elu(x, alpha=0.2)
108 109
            # [[-0.12642411  6.        ]
            #  [ 1.          15.6      ]]
110 111
    """

112
    if in_dynamic_mode():
113
        return _C_ops.elu(x, alpha)
114

115 116
    else:
        check_variable_and_dtype(
117
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'elu'
118 119 120 121 122 123 124 125 126 127
        )
        helper = LayerHelper("elu", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='elu',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'alpha': alpha},
        )
        return out
128 129


130
@inplace_apis_in_dygraph_only
131 132 133 134 135
def elu_(x, alpha=1.0, name=None):
    r"""
    Inplace version of ``elu`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_elu`.
    """
136
    assert alpha >= 0.0, "elu_ only support alpha >= 0, please use elu instead."
137
    if in_dynamic_mode():
138 139
        return _C_ops.elu_(x, alpha)
    return _legacy_C_ops.elu_(x, 'alpha', alpha)
140 141


142
def gelu(x, approximate=False, name=None):
143
    r"""
144 145
    gelu activation.

146 147
    The activation function of Gelu is calculated element by element. More information refers to :ref: `Gaussian Error Linear Units`.

148
    if approximate is True
149 150 151

    .. math::

152
        gelu(x) = 0.5 * x * (1 + tanh(\sqrt{\frac{2}{\pi}} * (x + 0.044715x^{3})))
153

154
    else
155 156 157

    .. math::

158
        gelu(x) = 0.5 * x * (1 + erf(\frac{x}{\sqrt{2}}))
159

160 161
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
162 163
        approximate (bool, optional): Whether to enable approximation. Default is False.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
164

165 166
    Returns:
        A Tensor with the same data type and shape as ``x`` .
167

168 169 170
    Examples:
        .. code-block:: python

171 172
            import paddle
            import paddle.nn.functional as F
173

Z
zhupengyang 已提交
174 175 176 177 178 179 180
            x = paddle.to_tensor([[-1, 0.5], [1, 1.5]])
            out1 = F.gelu(x)
            # [[-0.15865529,  0.34573123],
            #  [ 0.84134471,  1.39978933]]
            out2 = F.gelu(x, True)
            # [[-0.15880799,  0.34571400],
            #  [ 0.84119201,  1.39957154]]
181 182
    """

183
    if in_dynamic_mode():
184
        return _C_ops.gelu(x, approximate)
185 186
    else:
        check_variable_and_dtype(
187
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'gelu'
188 189 190 191 192 193 194 195 196 197
        )
        helper = LayerHelper("gelu", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='gelu',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'approximate': approximate},
        )
        return out
198 199


200
def hardshrink(x, threshold=0.5, name=None):
201
    r"""
202 203 204 205 206
    hard shrinkage activation

    .. math::

        hardshrink(x)=
207 208 209 210 211 212 213
            \left\{
                \begin{array}{rcl}
                x,&  &if \ {x > threshold}  \\
                x,&  &if \ {x < -threshold}   \\
                0,&  &if \ {others} &
                \end{array}
            \right.
214 215 216

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
217 218
        threshold (float, optional): The value of threshold for hardthrink. Default is 0.5.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
219 220 221 222 223 224 225

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

226 227
            import paddle
            import paddle.nn.functional as F
228

Z
zhupengyang 已提交
229
            x = paddle.to_tensor([-1, 0.3, 2.5])
230
            out = F.hardshrink(x) # [-1., 0., 2.5]
231 232

    """
233
    if in_dynamic_mode():
234
        return _C_ops.hardshrink(x, threshold)
235 236
    else:
        check_variable_and_dtype(
237
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'hardshrink'
238 239 240 241 242 243 244 245 246 247
        )
        helper = LayerHelper('hardshrink', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='hard_shrink',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'threshold': threshold},
        )
        return out
248 249


250
def hardtanh(x, min=-1.0, max=1.0, name=None):
251
    r"""
252
    hardtanh activation. Calculate the `hardtanh` of input `x`.
253 254 255

    .. math::

256 257 258 259 260 261 262 263
        hardtanh(x)=
            \left\{
                \begin{array}{cll}
                    max,& & \text{if } x > max \\
                    min,& & \text{if } x < min \\
                    x,& & \text{otherwise}
                \end{array}
            \right.
264

265
    Parameters:
266 267 268
        x (Tensor): The input Tensor with data type float32, float64.
        min (float, optional): The minimum value of the linear region range. Default is -1.
        max (float, optional): The maximum value of the linear region range. Default is 1.
269
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
270 271 272 273 274 275 276 277 278 279

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

280
            x = paddle.to_tensor([-1.5, 0.3, 2.5])
281 282 283
            out = F.hardtanh(x) # [-1., 0.3, 1.]
    """

284
    if in_dynamic_mode():
285
        return _C_ops.hardtanh(x, min, max)
286 287 288 289
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'hardtanh'
        )
H
hong 已提交
290

291 292 293 294 295 296 297 298 299
        helper = LayerHelper('hardtanh', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='brelu',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'t_min': min, 't_max': max},
        )
        return out
300 301


302 303 304 305 306 307 308 309 310 311
@inplace_apis_in_dygraph_only
def hardtanh_(x, min=-1.0, max=1.0, name=None):
    r"""
    Inplace version of ``hardtanh`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`paddle_nn_functional_hardtanh`.
    """
    if in_dynamic_mode():
        return _C_ops.hardtanh_(x, min, max)


312
def hardsigmoid(x, slope=0.1666667, offset=0.5, name=None):
313
    r"""
314
    hardsigmoid activation. Calculate the `hardsigmoid` of input `x`.
315 316 317 318 319 320
    A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
    which is much faster than sigmoid.

    .. math::

        hardsigmoid(x)=
321 322 323 324 325 326 327
            \left\{
                \begin{array}{lcl}
                0, & &\text{if } \ x \leq -3 \\
                1, & &\text{if } \ x \geq 3 \\
                slope * x + offset, & &\text{otherwise}
                \end{array}
            \right.
328 329 330

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
331 332
        slope (float, optional): The slope of hardsigmoid function. Default is 0.1666667.
        offset (float, optional): The offset of hardsigmoid function. Default is 0.5.
333
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
334 335 336 337 338 339 340 341 342 343 344 345 346 347

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.to_tensor([-4., 5., 1.])
            out = F.hardsigmoid(x) # [0., 1., 0.666667]
    """

348
    if in_dynamic_mode():
349
        return _C_ops.hardsigmoid(x, slope, offset)
350 351
    else:
        check_variable_and_dtype(
352
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'hardsigmoid'
353
        )
H
hong 已提交
354

355 356 357 358 359 360 361 362 363
        helper = LayerHelper('hardsigmoid', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='hard_sigmoid',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'slope': slope, 'offset': offset},
        )
        return out
364 365 366


def hardswish(x, name=None):
367
    r"""
368 369 370
    hardswish activation. hardswish is proposed in MobileNetV3, and performs
    better in computational stability and efficiency compared to swish function.
    For more details please refer to: https://arxiv.org/pdf/1905.02244.pdf
371 372 373 374

    .. math::

        hardswish(x)=
375 376 377 378 379 380 381
            \left\{
                \begin{array}{cll}
                0 &, & \text{if } x \leq -3 \\
                x &, & \text{if } x \geq 3 \\
                \frac{x(x+3)}{6} &, & \text{otherwise}
                \end{array}
            \right.
382 383 384

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
385
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
386 387 388 389 390 391 392 393 394 395 396 397 398

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.to_tensor([-4., 5., 1.])
            out = F.hardswish(x) # [0., 5., 0.666667]
    """
399
    if in_dynamic_mode():
400
        return _C_ops.hardswish(x)
401 402
    else:
        check_variable_and_dtype(
403
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'hardswish'
404
        )
405

406 407 408
        threshold = 6.0
        scale = 6.0
        offset = 3.0
409 410 411
        helper = LayerHelper('hardswish', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
412 413 414 415
            type='hard_swish',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'threshold': threshold, 'scale': scale, 'offset': offset},
416 417
        )
        return out
418 419


420
def leaky_relu(x, negative_slope=0.01, name=None):
421
    r"""
422
    leaky_relu activation. The calculation formula is:
423

424
    .. math::
425 426 427 428 429 430 431
        leaky\_relu(x)=
        \left\{
            \begin{array}{rcl}
                x, & & if \ x >= 0 \\
                negative\_slope * x, & & otherwise \\
            \end{array}
        \right.
432 433 434 435 436

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        negative_slope (float, optional): Slope of the activation function at
            :math:`x < 0` . Default is 0.01.
437
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
438 439 440 441 442 443 444 445 446 447

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

Z
zhupengyang 已提交
448
            x = paddle.to_tensor([-2., 0., 1.])
449 450 451
            out = F.leaky_relu(x)
            print(out)
            # [-0.02, 0., 1.]
452 453

    """
454
    if in_dynamic_mode():
455
        return _C_ops.leaky_relu(x, negative_slope)
456 457
    else:
        check_variable_and_dtype(
458
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'leaky_relu'
459 460 461 462 463 464 465 466 467 468
        )
        helper = LayerHelper('leaky_relu', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='leaky_relu',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'alpha': negative_slope},
        )
        return out
469 470


471 472 473 474 475 476 477 478 479 480
@inplace_apis_in_dygraph_only
def leaky_relu_(x, negative_slope=0.01, name=None):
    r"""
    Inplace version of ``leaky_relu`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`paddle_nn_functional_leaky_relu`.
    """
    if in_dynamic_mode():
        return _C_ops.leaky_relu_(x, negative_slope)


481
def prelu(x, weight, data_format="NCHW", name=None):
482
    """
483
    prelu activation. The calculation formula is follows:
484 485 486 487 488

    .. math::

        prelu(x) = max(0, x) + weight * min(0, x)

489 490
    x and weight is input Tensor.

491 492 493
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        weight (Tensor): The learnable parameter with data type same as ``x``.
494
            The weight shape is [], [1] or [in], where `in` is the input channel of ``x``.
495
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
496 497
        data_format(str, optional): Data format that specifies the layout of input.
            It may be "NC", "NCL", "NCHW", "NCDHW", "NLC", "NHWC" or "NDHWC". Default: "NCHW".
498 499 500 501 502 503 504 505 506 507

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

508
            data = paddle.to_tensor([[[[-2.0,  3.0, -4.0,  5.0],
Z
zhupengyang 已提交
509 510 511 512
                               [ 3.0, -4.0,  5.0, -6.0],
                               [-7.0, -8.0,  8.0,  9.0]],
                              [[ 1.0, -2.0, -3.0,  4.0],
                               [-5.0,  6.0,  7.0, -8.0],
513 514 515 516 517
                               [ 6.0,  7.0,  8.0,  9.0]]]], dtype='float32')

            w = paddle.to_tensor([0.25], dtype='float32')
            out = F.prelu(data, w)
            print(out)
518 519 520 521 522 523 524
            # [[[[-0.5 ,  3.  , -1.  ,  5.  ],
            #    [ 3.  , -1.  ,  5.  , -1.5 ],
            #    [-1.75, -2.  ,  8.  ,  9.  ]],
            #   [[ 1.  , -0.5 , -0.75,  4.  ],
            #    [-1.25,  6.  ,  7.  , -2.  ],
            #    [ 6.  ,  7.  ,  8.  ,  9.  ]]]]
    """
525
    assert (
526 527
        len(weight.shape) == 0 or len(weight.shape) == 1
    ), "The dim count of weight shape should be 0 or 1 in prelu()."
528 529

    mode = 'all'
530
    if len(weight.shape) == 1 and weight.shape[0] > 1:
531
        true_data_format = [
532 533 534 535 536 537 538
            'NC',
            'NCL',
            'NCHW',
            'NCDHW',
            'NLC',
            'NHWC',
            'NDHWC',
539 540 541 542
        ]
        if data_format not in true_data_format:
            raise ValueError(
                "data_format must be one of 'NC', 'NCL', 'NCHW', 'NCDHW', "
543 544
                "'NLC', 'NHWC', 'NDHWC' but receive {}".format(data_format)
            )
545 546 547

        data_format = 'NCHW' if data_format[1] == 'C' else 'NHWC'

548 549 550
        assert (
            len(x.shape) > 1
        ), "The dim count of x should be equal or larger than 2 in prelu() when weight shape is not [1]."
551

552
        # NOTE(GuoxiaWang): support NHWC data format
553
        if data_format == 'NHWC':
554 555 556
            assert (
                weight.shape[0] == x.shape[-1]
            ), "The weight size should be equal to x input channel in prelu() when weight shape is not [1]."
557
        else:
558 559 560
            assert (
                weight.shape[0] == x.shape[1]
            ), "The weight size should be equal to x input channel in prelu() when weight shape is not [1]."
561 562
        mode = 'channel'

563
    if in_dynamic_mode():
564
        return _C_ops.prelu(x, weight, data_format, mode)
565
    else:
W
Weilong Wu 已提交
566
        check_variable_and_dtype(
567
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], 'prelu'
W
Weilong Wu 已提交
568 569
        )
        check_variable_and_dtype(
570 571 572 573
            weight,
            'weight',
            ['float16', 'float32', 'float64', 'uint16'],
            'prelu',
W
Weilong Wu 已提交
574
        )
575 576 577 578 579 580 581
        helper = LayerHelper('prelu', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type="prelu",
            inputs={"X": x, "Alpha": weight},
            outputs={"Out": out},
            attrs={"mode": mode, "data_format": data_format},
582
        )
583
        return out
584 585


586
def rrelu(x, lower=1.0 / 8.0, upper=1.0 / 3.0, training=True, name=None):
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
    r"""
    rrelu activation.

    Applies the randomized leaky rectified liner unit function to improve generalization performance,
    as described in the paper:
    `Empirical Evaluation of Rectified Activations in Convolutional Network <https://arxiv.org/abs/1505.00853>`_

    During training, randomly samples the negative slope for activation values as described below:

    .. math::

        rrelu(x)=
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    a * x, & & otherwise \\
                \end{array}
            \right.

    where :math:`x` is the input tensor,
    :math:`a` is randomly sampled from uniform distribution in range (:math:`lower`, :math:`upper`),

    In the test phase, the negative slope will take the average value of :math:`lower` and :math:`upper`:

    .. math::

        rrelu(x)=
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    (lower + upper) * 0.5 * x, & & otherwise \\
                \end{array}
            \right.

    where :math:`x` is the input tensor,
    :math:`lower` and :math:`upper` are the bounds of uniform distribution.

    Parameters:
        x (Tensor): The input Tensor with data type float16, float32, float64.
626 627
        lower (float, optional): The lower bound of uniform distribution. Default: 0.125.
        upper (float, optional): The upper bound of uniform distribution. Default: 0.3333333333333333.
628
        training (bool, optional): Current mode is in training or others.  Default is True.
629
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input_tensor = paddle.to_tensor([[[[-2.0,  3.0, -4.0,  5.0],
                                            [ 3.0, -4.0,  5.0, -6.0],
                                            [-7.0, -8.0,  8.0,  9.0]],
                                            [[ 1.0, -2.0, -3.0,  4.0],
                                            [-5.0,  6.0,  7.0, -8.0],
                                            [ 6.0,  7.0,  8.0,  9.0]]]], dtype='float32')

            out = F.rrelu(input_tensor, 0.1, 0.3)
648
            print(out)
649 650 651 652 653 654 655 656 657
            #[[[[-0.20000899  3.         -0.8810822   5.        ]
            #   [ 3.         -0.55175185  5.         -1.0776101 ]
            #   [-1.0680687  -1.9896201   8.          9.        ]]
            #  [[ 1.         -0.5238267  -0.65515125  4.        ]
            #   [-1.3766339   6.          7.         -2.3465784 ]
            #   [ 6.          7.          8.          9.        ]]]]
    """
    if not isinstance(lower, float) or not isinstance(upper, float):
        raise TypeError(
658 659 660 661
            "The lower and upper values must be float type. Received: lower {}, upper {}.".format(
                lower, upper
            )
        )
662 663 664

    if lower < 0 or lower > 1:
        raise ValueError(
665 666 667 668
            "The lower value must be no less than zero or greater than one. Received: {}.".format(
                lower
            )
        )
669 670 671

    if upper < lower:
        raise ValueError(
672 673 674 675
            "The upper value must be greater than lower value. Received: lower {}, upper {}.".format(
                lower, upper
            )
        )
676 677 678 679

    if upper > 1:
        raise ValueError(
            "The upper value must be no greater than one. Received: {}.".format(
680 681 682
                upper
            )
        )
683 684 685

    is_test = not training

686
    if in_dynamic_mode():
W
Weilong Wu 已提交
687
        return _C_ops.rrelu(x, lower, upper, is_test)
688
    else:
W
Weilong Wu 已提交
689
        check_variable_and_dtype(
690
            x, 'X', ['float16', 'uint16', 'float32', 'float64'], 'rrelu'
W
Weilong Wu 已提交
691
        )
692 693 694 695 696 697 698 699 700 701 702
        helper = LayerHelper('rrelu', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        noise = helper.create_variable_for_type_inference(dtype=x.dtype)
        attrs = {'lower': lower, 'upper': upper, 'is_test': is_test}
        helper.append_op(
            type='rrelu',
            inputs={"X": x},
            outputs={"Out": out, "Noise": noise},
            attrs=attrs,
        )
        return out
703 704


705
def relu(x, name=None):
706
    """
707
    relu activation. The calculation formula is follows:
708

709
    .. math::
710 711 712

        out = max(x, 0)

713 714
    x is input Tensor.

715
    Parameters:
716
        x (Tensor): The input Tensor with data type float32, float64.
717
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
718 719

    Returns:
720
        A Tensor with the same data type and shape as ``x`` .
721 722 723 724

    Examples:
        .. code-block:: python

725 726
            import paddle
            import paddle.nn.functional as F
727

728 729 730 731
            x = paddle.to_tensor([-2, 0, 1], dtype='float32')
            out = F.relu(x)
            print(out)
            # [0., 0., 1.]
732 733
    """

734
    if in_dynamic_mode():
W
wanghuancoder 已提交
735
        return _C_ops.relu(x)
736 737
    else:
        check_variable_and_dtype(
738
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'relu'
739 740 741 742 743
        )
        helper = LayerHelper('relu', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='relu', inputs={'X': x}, outputs={'Out': out})
        return out
744 745


746
@inplace_apis_in_dygraph_only
747 748 749 750 751
def relu_(x, name=None):
    """
    Inplace version of ``relu`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_relu`.
    """
752
    return _C_ops.relu_(x)
753 754


755
def log_sigmoid(x, name=None):
756
    r"""
757
    log_sigmoid activation.
758

759
    .. math::
760

761
        log\_sigmoid(x) = log \frac{1}{1 + e^{-x}}
762

763 764
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
765
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
766

767 768
    Returns:
        A Tensor with the same data type and shape as ``x`` .
769

770 771 772
    Examples:
        .. code-block:: python

773 774
            import paddle
            import paddle.nn.functional as F
775

776 777
            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = F.log_sigmoid(x) # [-0.313262 -0.126928 -0.0485874 -0.0181499]
778 779
    """

780
    if in_dynamic_mode():
781
        return _C_ops.logsigmoid(x)
782 783 784 785 786 787 788 789 790 791
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'log_sigmoid'
        )
        helper = LayerHelper("log_sigmoid", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='logsigmoid', inputs={'X': x}, outputs={'Out': out}
        )
        return out
792 793


794
def maxout(x, groups, axis=1, name=None):
795
    r"""
796 797 798 799 800 801 802 803
    maxout activation.

    Assumed the input shape is (N, Ci, H, W).
    The output shape is (N, Co, H, W).
    Then Co = Ci/groups and the operator formula is as follows:

    .. math::

804 805 806 807 808 809 810 811 812
        \begin{array}{l}
        &out_{si+j} = \max_{k} x_{gsi + sk + j} \\
        &g = groups \\
        &s = \frac{input.size}{num\_channels} \\
        &0 \le i < \frac{num\_channels}{groups} \\
        &0 \le j < s \\
        &0 \le k < groups
        \end{array}

813 814 815

    Parameters:
        x (Tensor): The input is 4-D Tensor with shape [N, C, H, W] or [N, H, W, C], the data type
816
            of input is float16, float32 or float64.
817
        groups (int): The groups number of maxout. `groups` specifies the
818
            index of channel dimension where maxout will be performed. This must be
819
            a factor of number of features.
820 821 822 823 824
        axis (int, optional): The axis along which to perform maxout calculations.
            It should be 1 when data format is NCHW, be -1 or 3 when data format
            is NHWC. If ``axis`` < 0, it works the same way as :math:`axis + D` ,
            where D is the dimensions of ``x`` . ``axis`` only supports 1, 3 or -1.
            Default is 1.
825
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847

    Returns:
        A Tensor with the same data type as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.rand([1, 2, 3, 4])
            # [[[[0.5002636  0.22272532 0.17402348 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.02879342 0.88725346 0.61093384 0.38833922]]
            #   [[0.5231306  0.03807496 0.91661984 0.15602879]
            #    [0.666127   0.616567   0.30741522 0.24044901]
            #    [0.7142536  0.7351477  0.31588817 0.23782359]]]]
            out = F.maxout(x, groups=2)
            # [[[[0.5231306  0.22272532 0.91661984 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.7142536  0.88725346 0.61093384 0.38833922]]]]
    """
848
    if in_dynamic_mode():
849
        return _C_ops.maxout(x, groups, axis)
850
    else:
851 852 853
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'maxout'
        )
854 855 856 857 858 859 860
        if axis not in [1, -1, 3]:
            raise ValueError(
                "Attr(axis) should be 1 when data format is NCHW, -1 or 3 when data format is NHWC. Received "
                "Attr(axis): %s." % str(axis)
            )
        if axis == -1:
            axis = 3
861

862 863 864 865 866 867 868 869 870
        helper = LayerHelper('maxout', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='maxout',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'groups': groups, 'axis': axis},
        )
        return out
871 872


873 874 875 876 877 878
def relu6(x, name=None):
    """
    relu6 activation

    .. math::

879
        relu6(x) = min(max(0,x), 6)
880

881
    Parameters:
882
        x (Tensor): The input Tensor with data type float32, float64.
883
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
884 885 886 887 888 889 890

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

891 892
            import paddle
            import paddle.nn.functional as F
893

894 895 896 897
            x = paddle.to_tensor([-1, 0.3, 6.5])
            out = F.relu6(x)
            print(out)
            # [0, 0.3, 6]
898 899
    """
    threshold = 6.0
Z
zhiboniu 已提交
900
    if in_dynamic_mode():
901
        return _C_ops.relu6(x)
902

903 904 905
    check_variable_and_dtype(
        x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'relu6'
    )
906 907
    helper = LayerHelper('relu6', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
908 909 910 911 912 913
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold},
    )
914 915 916
    return out


917 918 919 920 921 922
def selu(
    x,
    scale=1.0507009873554804934193349852946,
    alpha=1.6732632423543772848170429916717,
    name=None,
):
923
    r"""
924 925 926 927
    selu activation

    .. math::

928
        selu(x)= scale *
929 930 931 932 933 934
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * e^{x} - alpha,& &\text{if } \ x <= 0
                \end{array}
            \right.
935

936
    Parameters:
937
        x (Tensor): The input Tensor with data type float32, float64.
938 939
        scale (float, optional): The value of scale(must be greater than 1.0) for selu. Default is 1.0507009873554804934193349852946.
        alpha (float, optional): The value of alpha(must be no less than zero) for selu. Default is 1.6732632423543772848170429916717.
940
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
941 942 943 944 945 946 947

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

948 949
            import paddle
            import paddle.nn.functional as F
950

951 952 953 954
            x = paddle.to_tensor([[0.0, 1.0],[2.0, 3.0]])
            out = F.selu(x)
            print(out)
            # [[0, 1.050701],[2.101402, 3.152103]]
955
    """
956 957
    if scale <= 1.0:
        raise ValueError(
958
            f"The scale must be greater than 1.0. Received: {scale}."
959
        )
960 961 962

    if alpha < 0:
        raise ValueError(
963
            f"The alpha must be no less than zero. Received: {alpha}."
964
        )
965

966
    if in_dynamic_mode():
967
        return _C_ops.selu(x, scale, alpha)
968 969 970 971 972 973 974 975 976 977 978 979 980
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'selu'
        )
        helper = LayerHelper('selu', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='selu',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'scale': scale, 'alpha': alpha},
        )
        return out
981 982


M
minghaoBD 已提交
983
def silu(x, name=None):
984 985 986 987 988
    r"""
    silu activation

    .. math::

M
minghaoBD 已提交
989
        silu(x) = \frac{x}{1 + e^{-x}}
990

991 992
    Where :math:`x` is the input Tensor.

M
minghaoBD 已提交
993
    Parameters:
994
        x (Tensor): The input Tensor with data type bfloat16, float16, float32, float64.
995
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
996

M
minghaoBD 已提交
997
    Returns:
998
        A Tensor with the same data type and shape as :attr:`x`.
999

M
minghaoBD 已提交
1000 1001
    Examples:
        .. code-block:: python
1002 1003 1004

            import paddle
            import paddle.nn.functional as F
1005

1006 1007
            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = F.silu(x) # [ 0.731059, 1.761594, 2.857722, 3.928055 ]
M
minghaoBD 已提交
1008 1009
    """

1010
    if in_dynamic_mode():
W
wanghuancoder 已提交
1011
        return _C_ops.silu(x)
1012 1013
    else:
        check_variable_and_dtype(
1014
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'silu'
1015 1016 1017 1018 1019
        )
        helper = LayerHelper("silu", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='silu', inputs={'X': x}, outputs={'Out': out})
        return out
M
minghaoBD 已提交
1020 1021


1022
def softmax(x, axis=-1, dtype=None, name=None):
1023
    r"""
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
    This operator implements the softmax layer. The calculation process is as follows:

    1. The dimension :attr:`axis` of ``x`` will be permuted to the last.

    2. Then ``x`` will be logically flattened to a 2-D matrix. The matrix's second
    dimension(row length) is the same as the dimension :attr:`axis` of ``x``,
    and the first dimension(column length) is the product of all other dimensions
    of ``x``. For each row of the matrix, the softmax operator squashes the
    K-dimensional(K is the width of the matrix, which is also the size of ``x``'s
    dimension :attr:`axis`) vector of arbitrary real values to a K-dimensional
    vector of real values in the range [0, 1] that add up to 1.

    3. After the softmax operation is completed, the inverse operations of steps 1 and 2
    are performed to restore the two-dimensional matrix to the same dimension as the ``x`` .

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

    For each row :math:`i` and each column :math:`j` in the matrix, we have:

    .. math::

1049
        softmax[i, j] = \frac{\exp(x[i, j])}{\sum_j(exp(x[i, j])}
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097

    Example:

    .. code-block:: text

        Case 1:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]

          Attrs:
            axis = -1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
                        [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]

        Case 2:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]
          Attrs:
            axis = 1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
                         [0.01786798, 0.01786798, 0.04661262, 0.04661262],
                         [0.97555875, 0.97555875, 0.93623955, 0.93623955]],
                        [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
                         [0.26762315, 0.26762315, 0.26762315, 0.26762315],
                         [0.72747516, 0.72747516, 0.72747516, 0.72747516]]]

1098
    Parameters:
1099
        x (Tensor): The input Tensor with data type bfloat16, float16, float32, float64.
1100
        axis (int, optional): The axis along which to perform softmax
1101
            calculations. It should be in range [-D, D), where D is the
1102
            rank of ``x`` . If ``axis`` < 0, it works the same way as
1103
            :math:`axis + D` . Default is -1.
1104
        dtype (str, optional): The data type of the output tensor, can be bfloat16, float16, float32, float64.
1105
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1106 1107

    Returns:
1108 1109
        A Tensor with the same shape and data type (use ``dtype`` if it is
        specified) as x.
1110 1111 1112 1113

    Examples:
        .. code-block:: python

1114 1115
            import paddle
            import paddle.nn.functional as F
1116

1117
            x = paddle.to_tensor([[[2.0, 3.0, 4.0, 5.0],
1118 1119 1120 1121
                        [3.0, 4.0, 5.0, 6.0],
                        [7.0, 8.0, 8.0, 9.0]],
                        [[1.0, 2.0, 3.0, 4.0],
                        [5.0, 6.0, 7.0, 8.0],
1122
                        [6.0, 7.0, 8.0, 9.0]]],dtype='float32')
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
            out1 = F.softmax(x)
            out2 = F.softmax(x, dtype='float64')
            # out1's data type is float32; out2's data type is float64
            # out1 and out2's value is as follows:
            # [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
            # [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]
1133
    """
1134 1135 1136

    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
1137
    if in_dynamic_mode():
1138
        outs_cast = x if dtype is None else _C_ops.cast(x, dtype)
1139
        return _C_ops.softmax(outs_cast, axis)
1140 1141 1142 1143
    else:
        use_cudnn = True
        if dtype is None:
            check_variable_and_dtype(
1144
                x, 'x', ['uint16', 'float16', 'float32', 'float64'], 'softmax'
1145 1146 1147 1148 1149
            )
        else:
            check_dtype(
                dtype,
                'dtype',
1150
                ['uint16', 'float16', 'float32', 'float64'],
1151
                'softmax',
1152
                'If dtype is not None, it only support uint16, float16, float32 or float64.',
1153
            )
H
hong 已提交
1154

1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
        helper = LayerHelper("softmax", **locals())
        outs_cast = x
        if dtype is not None:
            outs_cast = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='cast',
                inputs={'X': x},
                outputs={'Out': outs_cast},
                attrs={'in_dtype': x.dtype, 'out_dtype': dtype},
            )
1165

1166 1167
        outs_softmax = helper.create_variable_for_type_inference(
            outs_cast.dtype
1168 1169
        )
        helper.append_op(
1170 1171 1172 1173
            type='softmax',
            inputs={'X': outs_cast},
            outputs={'Out': outs_softmax},
            attrs={'axis': axis, 'use_cudnn': use_cudnn},
1174
        )
1175

1176
        return outs_softmax
1177 1178


1179
@inplace_apis_in_dygraph_only
1180 1181 1182 1183 1184 1185 1186
def softmax_(x, axis=-1, dtype=None, name=None):
    r"""
    Inplace version of ``softmax`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_softmax`.
    """
    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
1187 1188 1189 1190 1191 1192
    outs_cast = (
        x
        if dtype is None
        else _legacy_C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
    )
    return _C_ops.softmax_(outs_cast, axis)
1193 1194


1195
def softplus(x, beta=1, threshold=20, name=None):
1196
    r"""
1197 1198 1199
    softplus activation

    .. math::
1200 1201 1202 1203
        softplus(x)=\begin{cases}
                \frac{1}{\beta} * \log(1 + e^{\beta * x}),&x\leqslant\frac{\varepsilon}{\beta};\\
                x,&x>\frac{\varepsilon}{\beta}.
            \end{cases}
1204

1205
    Parameters:
1206
        x (Tensor): The input Tensor with data type float32, float64.
1207 1208
        beta (float, optional): The value of :math:`\beta` for softplus. Default is 1
        threshold (float, optional): The value of :math:`\varepsilon` for softplus. Default is 20
1209
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1210 1211 1212 1213 1214 1215 1216

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1217 1218
            import paddle
            import paddle.nn.functional as F
1219

1220
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3], dtype='float32')
1221
            out = F.softplus(x) # [0.513015, 0.598139, 0.744397, 0.854355]
1222
    """
W
Wang Bojun 已提交
1223

1224
    if in_dynamic_mode():
1225
        return _C_ops.softplus(x, beta, threshold)
1226 1227
    else:
        check_variable_and_dtype(
1228
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'softplus'
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
        )
        helper = LayerHelper('softplus', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='softplus',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'beta': beta, 'threshold': threshold},
        )
        return out
1239 1240 1241


def softshrink(x, threshold=0.5, name=None):
1242
    r"""
1243 1244 1245 1246
    softshrink activation

    .. math::

1247
        softshrink(x)=
1248 1249 1250 1251 1252 1253 1254
            \left\{
                \begin{array}{rcl}
                x - threshold,& & \text{if } x > threshold \\
                x + threshold,& & \text{if } x < -threshold \\
                0,& &  \text{otherwise}
            \end{array}
            \right.
1255

1256
    Parameters:
1257 1258
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold(must be no less than zero) for softplus. Default is 0.5
1259
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1260 1261 1262 1263 1264 1265 1266

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1267 1268
            import paddle
            import paddle.nn.functional as F
1269

1270 1271 1272 1273 1274
            x = paddle.to_tensor([-0.9, -0.2, 0.1, 0.8])
            out = F.softshrink(x)
            print(out)
            # Tensor(shape=[4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [-0.39999998,  0.        ,  0.        ,  0.30000001])
1275
    """
1276 1277 1278
    if threshold < 0:
        raise ValueError(
            "The threshold must be no less than zero. Received: {}.".format(
1279 1280 1281
                threshold
            )
        )
1282

1283
    if in_dynamic_mode():
1284
        return _C_ops.softshrink(x, threshold)
1285 1286
    else:
        check_variable_and_dtype(
1287
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'softshrink'
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
        )
        helper = LayerHelper('softshrink', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='softshrink',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'lambda': threshold},
        )
        return out
1298 1299 1300


def softsign(x, name=None):
1301
    r"""
1302 1303 1304 1305
    softsign activation

    .. math::

1306
        softsign(x) = \frac{x}{1 + |x|}
1307

1308
    Parameters:
1309
        x (Tensor): The input Tensor with data type float32, float64.
1310
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1311 1312 1313 1314 1315 1316 1317

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1318 1319
            import paddle
            import paddle.nn.functional as F
1320

1321 1322 1323 1324 1325
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = F.softsign(x)
            print(out)
            # Tensor(shape=[4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [-0.28571430, -0.16666666,  0.09090909,  0.23076925])
1326
    """
1327
    if in_dynamic_mode():
1328
        return _C_ops.softsign(x)
1329

1330
    check_variable_and_dtype(
1331
        x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'softsign'
1332
    )
1333 1334 1335 1336 1337 1338
    helper = LayerHelper('softsign', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='softsign', inputs={'X': x}, outputs={'Out': out})
    return out


1339
def swish(x, name=None):
1340
    r"""
1341 1342 1343 1344
    swish activation.

    .. math::

1345
        swish(x) = \frac{x}{1 + e^{-x}}
1346 1347 1348

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
1349
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

1360 1361 1362 1363 1364
            x = paddle.to_tensor([-2., 0., 1.])
            out = F.swish(x)
            print(out)
            # Tensor(shape=[3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [-0.23840584,  0.        ,  0.73105854])
1365
    """
1366
    if in_dynamic_mode():
1367
        return _C_ops.swish(x)
1368 1369
    else:
        check_variable_and_dtype(
1370
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'swish'
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
        )
        helper = LayerHelper('swish', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='swish',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'beta': 1.0},
        )
        return out
1381 1382


1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
def mish(x, name=None):
    r"""
    mish activation.

    ..  math::

        softplus(x) = \begin{cases}
                x, \text{if } x > \text{threshold} \\
                \ln(1 + e^{x}),  \text{otherwise}
            \end{cases}

        mish(x) = x * \tanh(softplus(x))
1395

1396 1397
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
1398
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

W
wangxinxin08 已提交
1409
            x = paddle.to_tensor([-5., 0., 5.])
1410 1411
            out = F.mish(x) # [-0.03357624, 0., 4.99955208]
    """
1412
    if in_dynamic_mode():
1413
        return _C_ops.mish(x, 20)
1414 1415
    else:
        check_variable_and_dtype(
1416
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'mish'
1417 1418 1419 1420 1421
        )
        helper = LayerHelper('mish', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='mish', inputs={'X': x}, outputs={'Out': out})
        return out
1422 1423


1424 1425 1426 1427 1428 1429
def tanhshrink(x, name=None):
    """
    tanhshrink activation

    .. math::

1430
        tanhshrink(x) = x - tanh(x)
1431 1432 1433

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
1434
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1435 1436 1437 1438 1439 1440 1441

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1442 1443
            import paddle
            import paddle.nn.functional as F
1444

1445 1446 1447 1448 1449
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = F.tanhshrink(x)
            print(out)
            # Tensor(shape=[4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [-0.02005106, -0.00262468,  0.00033200,  0.00868741])
1450
    """
1451
    if in_dynamic_mode():
1452
        return _C_ops.tanh_shrink(x)
1453 1454
    else:
        check_variable_and_dtype(
1455
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'tanhshrink'
1456 1457 1458 1459 1460 1461 1462
        )
        helper = LayerHelper('tanh_shrink', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='tanh_shrink', inputs={'X': x}, outputs={'Out': out}
        )
        return out
1463 1464


1465
def thresholded_relu(x, threshold=1.0, name=None):
1466
    r"""
1467 1468 1469 1470
    thresholded relu activation.

    .. math::

1471
        thresholded\_relu(x) =
1472 1473 1474 1475 1476 1477 1478
            \left\{
                \begin{array}{rl}
                x,& \text{if } \ x > threshold \\
                0,& \text{otherwise}
                \end{array}
            \right.

1479 1480 1481 1482

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold for thresholded_relu. Default is 1.0
1483
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

1494 1495 1496 1497 1498
            x = paddle.to_tensor([2., 0., 1.])
            out = F.thresholded_relu(x)
            print(out)
            # Tensor(shape=[3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [2., 0., 0.])
1499 1500
    """

1501
    if in_dynamic_mode():
1502
        return _C_ops.thresholded_relu(x, threshold)
1503 1504
    else:
        check_variable_and_dtype(
1505 1506 1507 1508
            x,
            'x',
            ['float16', 'uint16', 'float32', 'float64'],
            'thresholded_relu',
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
        )
        helper = LayerHelper('thresholded_relu', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='thresholded_relu',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'threshold': threshold},
        )
        return out
1519 1520


1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
@inplace_apis_in_dygraph_only
def thresholded_relu_(x, threshold=1.0, name=None):
    r"""
    Inplace version of ``thresholded_relu`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`paddle_nn_functional_thresholded_relu`.
    """
    if in_dynamic_mode():
        return _C_ops.thresholded_relu_(x, threshold)


1531
def log_softmax(x, axis=-1, dtype=None, name=None):
1532
    r"""
1533 1534
    This operator implements the log_softmax layer. The calculation process is
    as follows:
1535 1536 1537

    .. math::

1538
        \begin{aligned}
1539 1540 1541
        log\_softmax[i, j] &= log(softmax(x)) \\
        &= log(\frac{\exp(X[i, j])}{\sum_j(\exp(X[i, j])})
        \end{aligned}
1542 1543

    Parameters:
1544 1545 1546 1547 1548 1549 1550
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` < 0, it works the same way as
            :math:`axis + D` . Default is -1.
        dtype (str|np.dtype|core.VarDesc.VarType, optional): The desired data
            type of the output tensor. If dtype is specified, ``x`` is casted
1551
            to ``dtype`` before the operation is performed. This is useful for
1552 1553 1554
            preventing data type overflows. Supported dtype: float32, float64.
            If ``dtype`` is None, the output Tensor has the same dtype as x.
            Default is None.
1555
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1556

1557
    Returns:
1558 1559
        A Tensor with the same shape and data type (use ``dtype`` if it is
        specified) as x.
1560 1561 1562 1563

    Examples:
        .. code-block:: python

1564 1565 1566
            import paddle
            import paddle.nn.functional as F

Z
zhupengyang 已提交
1567 1568 1569 1570 1571 1572
            x = [[[-2.0, 3.0, -4.0, 5.0],
                  [3.0, -4.0, 5.0, -6.0],
                  [-7.0, -8.0, 8.0, 9.0]],
                 [[1.0, -2.0, -3.0, 4.0],
                  [-5.0, 6.0, 7.0, -8.0],
                  [6.0, 7.0, 8.0, 9.0]]]
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
            x = paddle.to_tensor(x)
            out1 = F.log_softmax(x)
            out2 = F.log_softmax(x, dtype='float64')
            # out1's data type is float32; out2's data type is float64
            # out1 and out2's value is as follows:
            # [[[ -7.1278396   -2.1278396   -9.127839    -0.12783948]
            #   [ -2.1270514   -9.127051    -0.12705144 -11.127051  ]
            #   [-16.313261   -17.313261    -1.3132617   -0.31326184]]
            #  [[ -3.0518122   -6.051812    -7.051812    -0.051812  ]
            #   [-12.313267    -1.3132664   -0.3132665  -15.313267  ]
            #   [ -3.4401896   -2.4401896   -1.4401896   -0.44018966]]]
    """
1585 1586 1587

    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
1588

1589
    if in_dynamic_mode():
1590
        if dtype is not None:
1591 1592
            x = _C_ops.cast(x, dtype)
        return _C_ops.log_softmax(x, axis)
1593 1594 1595
    else:
        if dtype is None:
            check_variable_and_dtype(
1596 1597 1598 1599
                x,
                'x',
                ['float16', 'uint16', 'float32', 'float64'],
                'log_softmax',
1600 1601 1602 1603 1604 1605 1606 1607 1608
            )
        else:
            check_dtype(
                dtype,
                'dtype',
                ['float32', 'float64'],
                'log_softmax',
                'If dtype is not None, it only support float32 or float64.',
            )
1609

1610 1611
        helper = LayerHelper("log_softmax", **locals())
        out_cast = x
H
hong 已提交
1612
        if dtype is not None:
1613 1614 1615 1616 1617 1618 1619
            out_cast = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='cast',
                inputs={'X': x},
                outputs={'Out': out_cast},
                attrs={'in_dtype': x.dtype, 'out_dtype': dtype},
            )
1620

1621
        out = helper.create_variable_for_type_inference(out_cast.dtype)
1622
        helper.append_op(
1623 1624 1625 1626
            type='log_softmax',
            inputs={'X': out_cast},
            outputs={'Out': out},
            attrs={'axis': axis},
1627
        )
1628

1629
        return out
F
Feiyu Chan 已提交
1630 1631 1632 1633


def glu(x, axis=-1, name=None):
    r"""
1634
    The gated linear unit. The input is evenly splited into 2 parts along a
F
Feiyu Chan 已提交
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
    given axis. The first part is used as the content, and the second part is
    passed through a sigmoid function then used as the gate. The output is a
    elementwise multiplication of the content and the gate.

    .. math::

        \mathrm{GLU}(a, b) = a \otimes \sigma(b)

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
1645 1646 1647
        axis (int, optional): The axis along which split the input tensor. It
            should be in range [-D, D), where D is the dimensions of ``x`` .
            If ``axis`` < 0, it works the same way as :math:`axis + D` .
F
Feiyu Chan 已提交
1648
            Default is -1.
1649
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1650

F
Feiyu Chan 已提交
1651
    Returns:
1652
        A Tensor with the same data type as x. The size of the given aixs is
F
Feiyu Chan 已提交
1653
        halved.
1654

F
Feiyu Chan 已提交
1655 1656
    Examples:
        .. code-block:: python
1657

F
Feiyu Chan 已提交
1658 1659
            import paddle
            from paddle.nn import functional as F
1660

F
Feiyu Chan 已提交
1661 1662
            x = paddle.to_tensor(
                [[-0.22014759, -1.76358426,  0.80566144,  0.04241343],
1663
                    [-1.94900405, -1.89956081,  0.17134808, -1.11280477]]
F
Feiyu Chan 已提交
1664
            )
1665 1666 1667 1668
            print(F.glu(x))
            # Tensor(shape=[2, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[-0.15216254, -0.90048921],
            #         [-1.05778778, -0.46985325]])
1669

F
Feiyu Chan 已提交
1670
    """
1671 1672 1673
    check_variable_and_dtype(
        x, 'input', ['float16', 'float32', 'float64'], "glu"
    )
1674 1675 1676 1677 1678 1679 1680
    rank = len(x.shape)
    if not (-rank <= axis < rank):
        raise ValueError(
            "Expected value range of `axis` is [{}, {}), but received axis: {}".format(
                -rank, rank, axis
            )
        )
F
Feiyu Chan 已提交
1681 1682 1683 1684
    a, b = chunk(x, 2, axis=axis, name=name)
    gate = sigmoid(b, name=name)
    out = paddle.multiply(a, gate, name=name)
    return out
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709


def gumbel_softmax(x, temperature=1.0, hard=False, axis=-1, name=None):
    r"""
    Samples from the Gumbel-Softmax distribution and optionally discretizes.
    temperature is denoted by t. The calculation process is as follows:

    First, generate gumbel noise:

    .. math::

        G_i = -log(-log(U_i)), U_i \sim U(0,1)

    Second, add noise to ``x``:

    .. math::

        v = [x_1 + G_1,...,x_n + G_n]

    Finally, calculate gumbel_softmax and generate samples:

    .. math::
        gumbel\_softmax(v_i)=\frac{e^{v_i/t}}{\sum_{j=1}^n{e^{v_j/t}}},i=1,2,3...n

    Parameters:
1710 1711
        x (Tensor): An N-D Tensor, the first N - 1 dimensions index into a batch
            of independent distributions and the last dimension represents
1712
            a vector of probabilities with datatype float16, float32, float64.
1713 1714
        temperature (float, optional): non-negative scalar temperature.
            Default is 1.0.
1715 1716
        hard (bool, optional): if True, the returned samples will be discretized as
            one-hot vectors, but will be differentiated as if it is the soft sample
1717
            in autograd. Default is False.
1718
        axis (int, optional): The axis along will be calculated softmax value.
1719
            Default is -1.
1720
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1721

1722
    Returns:
1723 1724
        Sampled tensor of same shape as ``x`` from the Gumbel-Softmax distribution.
        If ``hard = True``, the returned samples will be one-hot, otherwise they will be
1725
        probability distributions that sum to 1 across ``axis``.
1726

1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            logits = paddle.randn([4, 6])
            temperature = 0.01
            gumbel_softmax = F.gumbel_softmax(logits, temperature)
            print(gumbel_softmax)
            # out's value is as follows:
            # [[0.00000001, 1.        , 0.00000000, 0.00000000, 0.00000006, 0.00000000],
            # [0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 1.        ],
            # [0.00000062, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.99999940],
            # [0.00000000, 0.00000000, 0.00000000, 0.00001258, 0.99998736, 0.00000000]]
1742

1743
    """
Z
zhiboniu 已提交
1744
    if in_dynamic_mode():
1745
        return _C_ops.gumbel_softmax(x, temperature, hard, axis)
1746 1747

    helper = LayerHelper("gumbel_softmax", **locals())
1748 1749 1750
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'gumbel_softmax'
    )
1751
    out = helper.create_variable_for_type_inference(x.dtype)
1752 1753 1754 1755 1756 1757
    helper.append_op(
        type='gumbel_softmax',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'temperature': temperature, 'hard': hard, 'axis': axis},
    )
1758
    return out