activation.py 56.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
16
from paddle import _C_ops, _legacy_C_ops, in_dynamic_mode
17
from paddle.framework import core
18
from paddle.utils.inplace_utils import inplace_apis_in_dygraph_only
19 20

from ...fluid.data_feeder import check_dtype, check_variable_and_dtype
21
from ...fluid.framework import convert_np_dtype_to_dtype_
22 23 24 25 26
from ...fluid.layer_helper import LayerHelper
from ...tensor.manipulation import chunk
from ...tensor.math import tanh  # noqa: F401
from ...tensor.math import tanh_  # noqa: F401
from ...tensor.ops import sigmoid  # noqa: F401
27

28 29
__all__ = []

30

31 32 33 34
def celu(x, alpha=1.0, name=None):
    r"""
    celu activation.

35 36
    Apply the following operation to each element of the input Tensor accroding to the `Continuously Differentiable Exponential Linear Units <https://arxiv.org/abs/1704.07483>`_.

37 38
    .. math::

39
        \operatorname{celu}(x) = \max(0, x) + \min(0, \alpha * (\mathrm{e}^{x/\alpha}-1))
40 41

    Parameters:
42 43
        x (Tensor): The input Tensor with data type float16, float32, or float64.
        alpha (float, optional): The 'alpha' value of the CELU formula. Default is 1.0.
44
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
45 46

    Returns:
47
        A ``Tensor`` with the same data type and shape as ``x`` .
48 49 50 51 52 53 54 55 56 57 58 59 60

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            x = paddle.to_tensor([[-1., 6.], [1., 15.6]])
            out = F.celu(x, alpha=0.2)
            # [[-0.19865242,  6.        ],
            #  [ 1.        , 15.60000038]]
    """
    if alpha == 0:
        raise ZeroDivisionError("alpha cannot be 0 for celu")
61
    if in_dynamic_mode():
62
        return _C_ops.celu(x, alpha)
63 64
    else:
        check_variable_and_dtype(
65
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'celu'
66 67 68 69 70 71 72 73 74 75
        )
        helper = LayerHelper("celu", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='celu',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'alpha': alpha},
        )
        return out
76 77


78
def elu(x, alpha=1.0, name=None):
79
    r"""
80 81
    elu activation.

82
    .. math::
83

Z
zhupengyang 已提交
84 85 86 87 88 89 90
        elu(x)=
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * (e^{x} - 1),& &\text{if } \ x <= 0
                \end{array}
            \right.
91 92 93 94

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        alpha (float, optional): The 'alpha' value of the ELU formulation. Default is 1.0.
95
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
96

97 98
    Returns:
        A Tensor with the same data type and shape as ``x`` .
99

100 101 102
    Examples:
        .. code-block:: python

103 104
            import paddle
            import paddle.nn.functional as F
105

Z
zhupengyang 已提交
106
            x = paddle.to_tensor([[-1., 6.], [1., 15.6]])
107
            out = F.elu(x, alpha=0.2)
108 109
            # [[-0.12642411  6.        ]
            #  [ 1.          15.6      ]]
110 111
    """

112
    if in_dynamic_mode():
113
        return _C_ops.elu(x, alpha)
114

115 116
    else:
        check_variable_and_dtype(
117
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'elu'
118 119 120 121 122 123 124 125 126 127
        )
        helper = LayerHelper("elu", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='elu',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'alpha': alpha},
        )
        return out
128 129


130
@inplace_apis_in_dygraph_only
131 132 133 134 135
def elu_(x, alpha=1.0, name=None):
    r"""
    Inplace version of ``elu`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_elu`.
    """
136
    assert alpha >= 0.0, "elu_ only support alpha >= 0, please use elu instead."
137
    if in_dynamic_mode():
138 139
        return _C_ops.elu_(x, alpha)
    return _legacy_C_ops.elu_(x, 'alpha', alpha)
140 141


142
def gelu(x, approximate=False, name=None):
143
    r"""
144 145
    gelu activation.

146 147
    The activation function of Gelu is calculated element by element. More information refers to :ref: `Gaussian Error Linear Units`.

148
    if approximate is True
149 150 151

    .. math::

152
        gelu(x) = 0.5 * x * (1 + tanh(\sqrt{\frac{2}{\pi}} * (x + 0.044715x^{3})))
153

154
    else
155 156 157

    .. math::

158
        gelu(x) = 0.5 * x * (1 + erf(\frac{x}{\sqrt{2}}))
159

160 161
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
162 163
        approximate (bool, optional): Whether to enable approximation. Default is False.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
164

165 166
    Returns:
        A Tensor with the same data type and shape as ``x`` .
167

168 169 170
    Examples:
        .. code-block:: python

171 172
            import paddle
            import paddle.nn.functional as F
173

Z
zhupengyang 已提交
174 175 176 177 178 179 180
            x = paddle.to_tensor([[-1, 0.5], [1, 1.5]])
            out1 = F.gelu(x)
            # [[-0.15865529,  0.34573123],
            #  [ 0.84134471,  1.39978933]]
            out2 = F.gelu(x, True)
            # [[-0.15880799,  0.34571400],
            #  [ 0.84119201,  1.39957154]]
181 182
    """

183
    if in_dynamic_mode():
184
        return _C_ops.gelu(x, approximate)
185 186
    else:
        check_variable_and_dtype(
187
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'gelu'
188 189 190 191 192 193 194 195 196 197
        )
        helper = LayerHelper("gelu", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='gelu',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'approximate': approximate},
        )
        return out
198 199


200
def hardshrink(x, threshold=0.5, name=None):
201
    r"""
202 203 204 205 206
    hard shrinkage activation

    .. math::

        hardshrink(x)=
207 208 209 210 211 212 213
            \left\{
                \begin{array}{rcl}
                x,&  &if \ {x > threshold}  \\
                x,&  &if \ {x < -threshold}   \\
                0,&  &if \ {others} &
                \end{array}
            \right.
214 215 216

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
217 218
        threshold (float, optional): The value of threshold for hardthrink. Default is 0.5.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
219 220 221 222 223 224 225

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

226 227
            import paddle
            import paddle.nn.functional as F
228

Z
zhupengyang 已提交
229
            x = paddle.to_tensor([-1, 0.3, 2.5])
230
            out = F.hardshrink(x) # [-1., 0., 2.5]
231 232

    """
233
    if in_dynamic_mode():
234
        return _C_ops.hardshrink(x, threshold)
235 236
    else:
        check_variable_and_dtype(
237
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'hardshrink'
238 239 240 241 242 243 244 245 246 247
        )
        helper = LayerHelper('hardshrink', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='hard_shrink',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'threshold': threshold},
        )
        return out
248 249


250
def hardtanh(x, min=-1.0, max=1.0, name=None):
251
    r"""
252
    hardtanh activation. Calculate the `hardtanh` of input `x`.
253 254 255

    .. math::

256 257 258 259 260 261 262 263
        hardtanh(x)=
            \left\{
                \begin{array}{cll}
                    max,& & \text{if } x > max \\
                    min,& & \text{if } x < min \\
                    x,& & \text{otherwise}
                \end{array}
            \right.
264

265
    Parameters:
266 267 268
        x (Tensor): The input Tensor with data type float32, float64.
        min (float, optional): The minimum value of the linear region range. Default is -1.
        max (float, optional): The maximum value of the linear region range. Default is 1.
269
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
270 271 272 273 274 275 276 277 278 279

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

280
            x = paddle.to_tensor([-1.5, 0.3, 2.5])
281 282 283
            out = F.hardtanh(x) # [-1., 0.3, 1.]
    """

284
    if in_dynamic_mode():
285
        return _C_ops.hardtanh(x, min, max)
286 287 288 289
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'hardtanh'
        )
H
hong 已提交
290

291 292 293 294 295 296 297 298 299
        helper = LayerHelper('hardtanh', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='brelu',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'t_min': min, 't_max': max},
        )
        return out
300 301


302
def hardsigmoid(x, slope=0.1666667, offset=0.5, name=None):
303
    r"""
304
    hardsigmoid activation. Calculate the `hardsigmoid` of input `x`.
305 306 307 308 309 310
    A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
    which is much faster than sigmoid.

    .. math::

        hardsigmoid(x)=
311 312 313 314 315 316 317
            \left\{
                \begin{array}{lcl}
                0, & &\text{if } \ x \leq -3 \\
                1, & &\text{if } \ x \geq 3 \\
                slope * x + offset, & &\text{otherwise}
                \end{array}
            \right.
318 319 320

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
321 322
        slope (float, optional): The slope of hardsigmoid function. Default is 0.1666667.
        offset (float, optional): The offset of hardsigmoid function. Default is 0.5.
323
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
324 325 326 327 328 329 330 331 332 333 334 335 336 337

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.to_tensor([-4., 5., 1.])
            out = F.hardsigmoid(x) # [0., 1., 0.666667]
    """

338
    if in_dynamic_mode():
339
        return _C_ops.hardsigmoid(x, slope, offset)
340 341
    else:
        check_variable_and_dtype(
342
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'hardsigmoid'
343
        )
H
hong 已提交
344

345 346 347 348 349 350 351 352 353
        helper = LayerHelper('hardsigmoid', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='hard_sigmoid',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'slope': slope, 'offset': offset},
        )
        return out
354 355 356


def hardswish(x, name=None):
357
    r"""
358 359 360
    hardswish activation. hardswish is proposed in MobileNetV3, and performs
    better in computational stability and efficiency compared to swish function.
    For more details please refer to: https://arxiv.org/pdf/1905.02244.pdf
361 362 363 364

    .. math::

        hardswish(x)=
365 366 367 368 369 370 371
            \left\{
                \begin{array}{cll}
                0 &, & \text{if } x \leq -3 \\
                x &, & \text{if } x \geq 3 \\
                \frac{x(x+3)}{6} &, & \text{otherwise}
                \end{array}
            \right.
372 373 374

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
375
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
376 377 378 379 380 381 382 383 384 385 386 387 388

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.to_tensor([-4., 5., 1.])
            out = F.hardswish(x) # [0., 5., 0.666667]
    """
389
    if in_dynamic_mode():
390
        return _C_ops.hardswish(x)
391 392
    else:
        check_variable_and_dtype(
393
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'hardswish'
394
        )
395

396 397 398 399 400 401
        helper = LayerHelper('hardswish', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='hard_swish', inputs={'X': x}, outputs={'Out': out}
        )
        return out
402 403


404
def leaky_relu(x, negative_slope=0.01, name=None):
405
    r"""
406
    leaky_relu activation. The calculation formula is:
407

408
    .. math::
409 410 411 412 413 414 415
        leaky\_relu(x)=
        \left\{
            \begin{array}{rcl}
                x, & & if \ x >= 0 \\
                negative\_slope * x, & & otherwise \\
            \end{array}
        \right.
416 417 418 419 420

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        negative_slope (float, optional): Slope of the activation function at
            :math:`x < 0` . Default is 0.01.
421
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
422 423 424 425 426 427 428 429 430 431

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

Z
zhupengyang 已提交
432
            x = paddle.to_tensor([-2., 0., 1.])
433 434 435
            out = F.leaky_relu(x)
            print(out)
            # [-0.02, 0., 1.]
436 437

    """
438
    if in_dynamic_mode():
439
        return _C_ops.leaky_relu(x, negative_slope)
440 441
    else:
        check_variable_and_dtype(
442
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'leaky_relu'
443 444 445 446 447 448 449 450 451 452
        )
        helper = LayerHelper('leaky_relu', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='leaky_relu',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'alpha': negative_slope},
        )
        return out
453 454


455
def prelu(x, weight, data_format="NCHW", name=None):
456
    """
457
    prelu activation. The calculation formula is follows:
458 459 460 461 462

    .. math::

        prelu(x) = max(0, x) + weight * min(0, x)

463 464
    x and weight is input Tensor.

465 466 467
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        weight (Tensor): The learnable parameter with data type same as ``x``.
468
            The weight shape is [], [1] or [in], where `in` is the input channel of ``x``.
469
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
470 471
        data_format(str, optional): Data format that specifies the layout of input.
            It may be "NC", "NCL", "NCHW", "NCDHW", "NLC", "NHWC" or "NDHWC". Default: "NCHW".
472 473 474 475 476 477 478 479 480 481

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

482
            data = paddle.to_tensor([[[[-2.0,  3.0, -4.0,  5.0],
Z
zhupengyang 已提交
483 484 485 486
                               [ 3.0, -4.0,  5.0, -6.0],
                               [-7.0, -8.0,  8.0,  9.0]],
                              [[ 1.0, -2.0, -3.0,  4.0],
                               [-5.0,  6.0,  7.0, -8.0],
487 488 489 490 491
                               [ 6.0,  7.0,  8.0,  9.0]]]], dtype='float32')

            w = paddle.to_tensor([0.25], dtype='float32')
            out = F.prelu(data, w)
            print(out)
492 493 494 495 496 497 498
            # [[[[-0.5 ,  3.  , -1.  ,  5.  ],
            #    [ 3.  , -1.  ,  5.  , -1.5 ],
            #    [-1.75, -2.  ,  8.  ,  9.  ]],
            #   [[ 1.  , -0.5 , -0.75,  4.  ],
            #    [-1.25,  6.  ,  7.  , -2.  ],
            #    [ 6.  ,  7.  ,  8.  ,  9.  ]]]]
    """
499
    assert (
500 501
        len(weight.shape) == 0 or len(weight.shape) == 1
    ), "The dim count of weight shape should be 0 or 1 in prelu()."
502 503

    mode = 'all'
504
    if len(weight.shape) == 1 and weight.shape[0] > 1:
505
        true_data_format = [
506 507 508 509 510 511 512
            'NC',
            'NCL',
            'NCHW',
            'NCDHW',
            'NLC',
            'NHWC',
            'NDHWC',
513 514 515 516
        ]
        if data_format not in true_data_format:
            raise ValueError(
                "data_format must be one of 'NC', 'NCL', 'NCHW', 'NCDHW', "
517 518
                "'NLC', 'NHWC', 'NDHWC' but receive {}".format(data_format)
            )
519 520 521

        data_format = 'NCHW' if data_format[1] == 'C' else 'NHWC'

522 523 524
        assert (
            len(x.shape) > 1
        ), "The dim count of x should be equal or larger than 2 in prelu() when weight shape is not [1]."
525

526
        # NOTE(GuoxiaWang): support NHWC data format
527
        if data_format == 'NHWC':
528 529 530
            assert (
                weight.shape[0] == x.shape[-1]
            ), "The weight size should be equal to x input channel in prelu() when weight shape is not [1]."
531
        else:
532 533 534
            assert (
                weight.shape[0] == x.shape[1]
            ), "The weight size should be equal to x input channel in prelu() when weight shape is not [1]."
535 536
        mode = 'channel'

537
    if in_dynamic_mode():
538
        return _C_ops.prelu(x, weight, data_format, mode)
539
    else:
W
Weilong Wu 已提交
540
        check_variable_and_dtype(
541
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], 'prelu'
W
Weilong Wu 已提交
542 543
        )
        check_variable_and_dtype(
544 545 546 547
            weight,
            'weight',
            ['float16', 'float32', 'float64', 'uint16'],
            'prelu',
W
Weilong Wu 已提交
548
        )
549 550 551 552 553 554 555
        helper = LayerHelper('prelu', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type="prelu",
            inputs={"X": x, "Alpha": weight},
            outputs={"Out": out},
            attrs={"mode": mode, "data_format": data_format},
556
        )
557
        return out
558 559


560
def rrelu(x, lower=1.0 / 8.0, upper=1.0 / 3.0, training=True, name=None):
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
    r"""
    rrelu activation.

    Applies the randomized leaky rectified liner unit function to improve generalization performance,
    as described in the paper:
    `Empirical Evaluation of Rectified Activations in Convolutional Network <https://arxiv.org/abs/1505.00853>`_

    During training, randomly samples the negative slope for activation values as described below:

    .. math::

        rrelu(x)=
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    a * x, & & otherwise \\
                \end{array}
            \right.

    where :math:`x` is the input tensor,
    :math:`a` is randomly sampled from uniform distribution in range (:math:`lower`, :math:`upper`),

    In the test phase, the negative slope will take the average value of :math:`lower` and :math:`upper`:

    .. math::

        rrelu(x)=
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    (lower + upper) * 0.5 * x, & & otherwise \\
                \end{array}
            \right.

    where :math:`x` is the input tensor,
    :math:`lower` and :math:`upper` are the bounds of uniform distribution.

    Parameters:
        x (Tensor): The input Tensor with data type float16, float32, float64.
600 601
        lower (float, optional): The lower bound of uniform distribution. Default: 0.125.
        upper (float, optional): The upper bound of uniform distribution. Default: 0.3333333333333333.
602
        training (bool, optional): Current mode is in training or others.  Default is True.
603
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input_tensor = paddle.to_tensor([[[[-2.0,  3.0, -4.0,  5.0],
                                            [ 3.0, -4.0,  5.0, -6.0],
                                            [-7.0, -8.0,  8.0,  9.0]],
                                            [[ 1.0, -2.0, -3.0,  4.0],
                                            [-5.0,  6.0,  7.0, -8.0],
                                            [ 6.0,  7.0,  8.0,  9.0]]]], dtype='float32')

            out = F.rrelu(input_tensor, 0.1, 0.3)
622
            print(out)
623 624 625 626 627 628 629 630 631
            #[[[[-0.20000899  3.         -0.8810822   5.        ]
            #   [ 3.         -0.55175185  5.         -1.0776101 ]
            #   [-1.0680687  -1.9896201   8.          9.        ]]
            #  [[ 1.         -0.5238267  -0.65515125  4.        ]
            #   [-1.3766339   6.          7.         -2.3465784 ]
            #   [ 6.          7.          8.          9.        ]]]]
    """
    if not isinstance(lower, float) or not isinstance(upper, float):
        raise TypeError(
632 633 634 635
            "The lower and upper values must be float type. Received: lower {}, upper {}.".format(
                lower, upper
            )
        )
636 637 638

    if lower < 0 or lower > 1:
        raise ValueError(
639 640 641 642
            "The lower value must be no less than zero or greater than one. Received: {}.".format(
                lower
            )
        )
643 644 645

    if upper < lower:
        raise ValueError(
646 647 648 649
            "The upper value must be greater than lower value. Received: lower {}, upper {}.".format(
                lower, upper
            )
        )
650 651 652 653

    if upper > 1:
        raise ValueError(
            "The upper value must be no greater than one. Received: {}.".format(
654 655 656
                upper
            )
        )
657 658 659

    is_test = not training

660
    if in_dynamic_mode():
W
Weilong Wu 已提交
661
        return _C_ops.rrelu(x, lower, upper, is_test)
662
    else:
W
Weilong Wu 已提交
663
        check_variable_and_dtype(
664
            x, 'X', ['float16', 'uint16', 'float32', 'float64'], 'rrelu'
W
Weilong Wu 已提交
665
        )
666 667 668 669 670 671 672 673 674 675 676
        helper = LayerHelper('rrelu', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        noise = helper.create_variable_for_type_inference(dtype=x.dtype)
        attrs = {'lower': lower, 'upper': upper, 'is_test': is_test}
        helper.append_op(
            type='rrelu',
            inputs={"X": x},
            outputs={"Out": out, "Noise": noise},
            attrs=attrs,
        )
        return out
677 678


679
def relu(x, name=None):
680
    """
681
    relu activation. The calculation formula is follows:
682

683
    .. math::
684 685 686

        out = max(x, 0)

687 688
    x is input Tensor.

689
    Parameters:
690
        x (Tensor): The input Tensor with data type float32, float64.
691
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
692 693

    Returns:
694
        A Tensor with the same data type and shape as ``x`` .
695 696 697 698

    Examples:
        .. code-block:: python

699 700
            import paddle
            import paddle.nn.functional as F
701

702 703 704 705
            x = paddle.to_tensor([-2, 0, 1], dtype='float32')
            out = F.relu(x)
            print(out)
            # [0., 0., 1.]
706 707
    """

708
    if in_dynamic_mode():
W
wanghuancoder 已提交
709
        return _C_ops.relu(x)
710 711
    else:
        check_variable_and_dtype(
712
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'relu'
713 714 715 716 717
        )
        helper = LayerHelper('relu', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='relu', inputs={'X': x}, outputs={'Out': out})
        return out
718 719


720
@inplace_apis_in_dygraph_only
721 722 723 724 725
def relu_(x, name=None):
    """
    Inplace version of ``relu`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_relu`.
    """
726
    return _C_ops.relu_(x)
727 728


729
def log_sigmoid(x, name=None):
730
    r"""
731
    log_sigmoid activation.
732

733
    .. math::
734

735
        log\_sigmoid(x) = log \frac{1}{1 + e^{-x}}
736

737 738
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
739
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
740

741 742
    Returns:
        A Tensor with the same data type and shape as ``x`` .
743

744 745 746
    Examples:
        .. code-block:: python

747 748
            import paddle
            import paddle.nn.functional as F
749

750 751
            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = F.log_sigmoid(x) # [-0.313262 -0.126928 -0.0485874 -0.0181499]
752 753
    """

754
    if in_dynamic_mode():
755
        return _C_ops.logsigmoid(x)
756 757 758 759 760 761 762 763 764 765
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'log_sigmoid'
        )
        helper = LayerHelper("log_sigmoid", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='logsigmoid', inputs={'X': x}, outputs={'Out': out}
        )
        return out
766 767


768
def maxout(x, groups, axis=1, name=None):
769
    r"""
770 771 772 773 774 775 776 777
    maxout activation.

    Assumed the input shape is (N, Ci, H, W).
    The output shape is (N, Co, H, W).
    Then Co = Ci/groups and the operator formula is as follows:

    .. math::

778 779 780 781 782 783 784 785 786
        \begin{array}{l}
        &out_{si+j} = \max_{k} x_{gsi + sk + j} \\
        &g = groups \\
        &s = \frac{input.size}{num\_channels} \\
        &0 \le i < \frac{num\_channels}{groups} \\
        &0 \le j < s \\
        &0 \le k < groups
        \end{array}

787 788 789

    Parameters:
        x (Tensor): The input is 4-D Tensor with shape [N, C, H, W] or [N, H, W, C], the data type
790
            of input is float16, float32 or float64.
791
        groups (int): The groups number of maxout. `groups` specifies the
792
            index of channel dimension where maxout will be performed. This must be
793
            a factor of number of features.
794 795 796 797 798
        axis (int, optional): The axis along which to perform maxout calculations.
            It should be 1 when data format is NCHW, be -1 or 3 when data format
            is NHWC. If ``axis`` < 0, it works the same way as :math:`axis + D` ,
            where D is the dimensions of ``x`` . ``axis`` only supports 1, 3 or -1.
            Default is 1.
799
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821

    Returns:
        A Tensor with the same data type as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.rand([1, 2, 3, 4])
            # [[[[0.5002636  0.22272532 0.17402348 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.02879342 0.88725346 0.61093384 0.38833922]]
            #   [[0.5231306  0.03807496 0.91661984 0.15602879]
            #    [0.666127   0.616567   0.30741522 0.24044901]
            #    [0.7142536  0.7351477  0.31588817 0.23782359]]]]
            out = F.maxout(x, groups=2)
            # [[[[0.5231306  0.22272532 0.91661984 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.7142536  0.88725346 0.61093384 0.38833922]]]]
    """
822
    if in_dynamic_mode():
823
        return _C_ops.maxout(x, groups, axis)
824
    else:
825 826 827
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'maxout'
        )
828 829 830 831 832 833 834
        if axis not in [1, -1, 3]:
            raise ValueError(
                "Attr(axis) should be 1 when data format is NCHW, -1 or 3 when data format is NHWC. Received "
                "Attr(axis): %s." % str(axis)
            )
        if axis == -1:
            axis = 3
835

836 837 838 839 840 841 842 843 844
        helper = LayerHelper('maxout', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='maxout',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'groups': groups, 'axis': axis},
        )
        return out
845 846


847 848 849 850 851 852
def relu6(x, name=None):
    """
    relu6 activation

    .. math::

853
        relu6(x) = min(max(0,x), 6)
854

855
    Parameters:
856
        x (Tensor): The input Tensor with data type float32, float64.
857
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
858 859 860 861 862 863 864

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

865 866
            import paddle
            import paddle.nn.functional as F
867

868 869 870 871
            x = paddle.to_tensor([-1, 0.3, 6.5])
            out = F.relu6(x)
            print(out)
            # [0, 0.3, 6]
872 873
    """
    threshold = 6.0
Z
zhiboniu 已提交
874
    if in_dynamic_mode():
875
        return _C_ops.relu6(x)
876

877 878 879
    check_variable_and_dtype(
        x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'relu6'
    )
880 881
    helper = LayerHelper('relu6', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
882 883 884 885 886 887
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold},
    )
888 889 890
    return out


891 892 893 894 895 896
def selu(
    x,
    scale=1.0507009873554804934193349852946,
    alpha=1.6732632423543772848170429916717,
    name=None,
):
897
    r"""
898 899 900 901
    selu activation

    .. math::

902
        selu(x)= scale *
903 904 905 906 907 908
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * e^{x} - alpha,& &\text{if } \ x <= 0
                \end{array}
            \right.
909

910
    Parameters:
911
        x (Tensor): The input Tensor with data type float32, float64.
912 913
        scale (float, optional): The value of scale(must be greater than 1.0) for selu. Default is 1.0507009873554804934193349852946.
        alpha (float, optional): The value of alpha(must be no less than zero) for selu. Default is 1.6732632423543772848170429916717.
914
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
915 916 917 918 919 920 921

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

922 923
            import paddle
            import paddle.nn.functional as F
924

925 926 927 928
            x = paddle.to_tensor([[0.0, 1.0],[2.0, 3.0]])
            out = F.selu(x)
            print(out)
            # [[0, 1.050701],[2.101402, 3.152103]]
929
    """
930 931
    if scale <= 1.0:
        raise ValueError(
932
            f"The scale must be greater than 1.0. Received: {scale}."
933
        )
934 935 936

    if alpha < 0:
        raise ValueError(
937
            f"The alpha must be no less than zero. Received: {alpha}."
938
        )
939

940
    if in_dynamic_mode():
941
        return _C_ops.selu(x, scale, alpha)
942 943 944 945 946 947 948 949 950 951 952 953 954
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'selu'
        )
        helper = LayerHelper('selu', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='selu',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'scale': scale, 'alpha': alpha},
        )
        return out
955 956


M
minghaoBD 已提交
957
def silu(x, name=None):
958 959 960 961 962
    r"""
    silu activation

    .. math::

M
minghaoBD 已提交
963
        silu(x) = \frac{x}{1 + e^{-x}}
964

965 966
    Where :math:`x` is the input Tensor.

M
minghaoBD 已提交
967
    Parameters:
968
        x (Tensor): The input Tensor with data type bfloat16, float16, float32, float64.
969
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
970

M
minghaoBD 已提交
971
    Returns:
972
        A Tensor with the same data type and shape as :attr:`x`.
973

M
minghaoBD 已提交
974 975
    Examples:
        .. code-block:: python
976 977 978

            import paddle
            import paddle.nn.functional as F
979

980 981
            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = F.silu(x) # [ 0.731059, 1.761594, 2.857722, 3.928055 ]
M
minghaoBD 已提交
982 983
    """

984
    if in_dynamic_mode():
W
wanghuancoder 已提交
985
        return _C_ops.silu(x)
986 987
    else:
        check_variable_and_dtype(
988
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'silu'
989 990 991 992 993
        )
        helper = LayerHelper("silu", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='silu', inputs={'X': x}, outputs={'Out': out})
        return out
M
minghaoBD 已提交
994 995


996
def softmax(x, axis=-1, dtype=None, name=None):
997
    r"""
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
    This operator implements the softmax layer. The calculation process is as follows:

    1. The dimension :attr:`axis` of ``x`` will be permuted to the last.

    2. Then ``x`` will be logically flattened to a 2-D matrix. The matrix's second
    dimension(row length) is the same as the dimension :attr:`axis` of ``x``,
    and the first dimension(column length) is the product of all other dimensions
    of ``x``. For each row of the matrix, the softmax operator squashes the
    K-dimensional(K is the width of the matrix, which is also the size of ``x``'s
    dimension :attr:`axis`) vector of arbitrary real values to a K-dimensional
    vector of real values in the range [0, 1] that add up to 1.

    3. After the softmax operation is completed, the inverse operations of steps 1 and 2
    are performed to restore the two-dimensional matrix to the same dimension as the ``x`` .

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

    For each row :math:`i` and each column :math:`j` in the matrix, we have:

    .. math::

1023
        softmax[i, j] = \frac{\exp(x[i, j])}{\sum_j(exp(x[i, j])}
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071

    Example:

    .. code-block:: text

        Case 1:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]

          Attrs:
            axis = -1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
                        [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]

        Case 2:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]
          Attrs:
            axis = 1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
                         [0.01786798, 0.01786798, 0.04661262, 0.04661262],
                         [0.97555875, 0.97555875, 0.93623955, 0.93623955]],
                        [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
                         [0.26762315, 0.26762315, 0.26762315, 0.26762315],
                         [0.72747516, 0.72747516, 0.72747516, 0.72747516]]]

1072
    Parameters:
1073
        x (Tensor): The input Tensor with data type bfloat16, float16, float32, float64.
1074
        axis (int, optional): The axis along which to perform softmax
1075
            calculations. It should be in range [-D, D), where D is the
1076
            rank of ``x`` . If ``axis`` < 0, it works the same way as
1077
            :math:`axis + D` . Default is -1.
1078
        dtype (str, optional): The data type of the output tensor, can be bfloat16, float16, float32, float64.
1079
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1080 1081

    Returns:
1082 1083
        A Tensor with the same shape and data type (use ``dtype`` if it is
        specified) as x.
1084 1085 1086 1087

    Examples:
        .. code-block:: python

1088 1089
            import paddle
            import paddle.nn.functional as F
1090

1091
            x = paddle.to_tensor([[[2.0, 3.0, 4.0, 5.0],
1092 1093 1094 1095
                        [3.0, 4.0, 5.0, 6.0],
                        [7.0, 8.0, 8.0, 9.0]],
                        [[1.0, 2.0, 3.0, 4.0],
                        [5.0, 6.0, 7.0, 8.0],
1096
                        [6.0, 7.0, 8.0, 9.0]]],dtype='float32')
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
            out1 = F.softmax(x)
            out2 = F.softmax(x, dtype='float64')
            # out1's data type is float32; out2's data type is float64
            # out1 and out2's value is as follows:
            # [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
            # [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]
1107
    """
1108 1109 1110

    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
1111
    if in_dynamic_mode():
1112
        outs_cast = x if dtype is None else _C_ops.cast(x, dtype)
1113
        return _C_ops.softmax(outs_cast, axis)
1114 1115 1116 1117
    else:
        use_cudnn = True
        if dtype is None:
            check_variable_and_dtype(
1118
                x, 'x', ['uint16', 'float16', 'float32', 'float64'], 'softmax'
1119 1120 1121 1122 1123
            )
        else:
            check_dtype(
                dtype,
                'dtype',
1124
                ['uint16', 'float16', 'float32', 'float64'],
1125
                'softmax',
1126
                'If dtype is not None, it only support uint16, float16, float32 or float64.',
1127
            )
H
hong 已提交
1128

1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
        helper = LayerHelper("softmax", **locals())
        outs_cast = x
        if dtype is not None:
            outs_cast = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='cast',
                inputs={'X': x},
                outputs={'Out': outs_cast},
                attrs={'in_dtype': x.dtype, 'out_dtype': dtype},
            )
1139

1140 1141
        outs_softmax = helper.create_variable_for_type_inference(
            outs_cast.dtype
1142 1143
        )
        helper.append_op(
1144 1145 1146 1147
            type='softmax',
            inputs={'X': outs_cast},
            outputs={'Out': outs_softmax},
            attrs={'axis': axis, 'use_cudnn': use_cudnn},
1148
        )
1149

1150
        return outs_softmax
1151 1152


1153
@inplace_apis_in_dygraph_only
1154 1155 1156 1157 1158 1159 1160
def softmax_(x, axis=-1, dtype=None, name=None):
    r"""
    Inplace version of ``softmax`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_softmax`.
    """
    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
1161 1162 1163 1164 1165 1166
    outs_cast = (
        x
        if dtype is None
        else _legacy_C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
    )
    return _C_ops.softmax_(outs_cast, axis)
1167 1168


1169
def softplus(x, beta=1, threshold=20, name=None):
1170
    r"""
1171 1172 1173
    softplus activation

    .. math::
1174 1175 1176 1177
        softplus(x)=\begin{cases}
                \frac{1}{\beta} * \log(1 + e^{\beta * x}),&x\leqslant\frac{\varepsilon}{\beta};\\
                x,&x>\frac{\varepsilon}{\beta}.
            \end{cases}
1178

1179
    Parameters:
1180
        x (Tensor): The input Tensor with data type float32, float64.
1181 1182
        beta (float, optional): The value of :math:`\beta` for softplus. Default is 1
        threshold (float, optional): The value of :math:`\varepsilon` for softplus. Default is 20
1183
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1184 1185 1186 1187 1188 1189 1190

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1191 1192
            import paddle
            import paddle.nn.functional as F
1193

1194
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3], dtype='float32')
1195
            out = F.softplus(x) # [0.513015, 0.598139, 0.744397, 0.854355]
1196
    """
W
Wang Bojun 已提交
1197

1198
    if in_dynamic_mode():
1199
        return _C_ops.softplus(x, beta, threshold)
1200 1201
    else:
        check_variable_and_dtype(
1202
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'softplus'
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
        )
        helper = LayerHelper('softplus', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='softplus',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'beta': beta, 'threshold': threshold},
        )
        return out
1213 1214 1215


def softshrink(x, threshold=0.5, name=None):
1216
    r"""
1217 1218 1219 1220
    softshrink activation

    .. math::

1221
        softshrink(x)=
1222 1223 1224 1225 1226 1227 1228
            \left\{
                \begin{array}{rcl}
                x - threshold,& & \text{if } x > threshold \\
                x + threshold,& & \text{if } x < -threshold \\
                0,& &  \text{otherwise}
            \end{array}
            \right.
1229

1230
    Parameters:
1231 1232
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold(must be no less than zero) for softplus. Default is 0.5
1233
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1234 1235 1236 1237 1238 1239 1240

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1241 1242
            import paddle
            import paddle.nn.functional as F
1243

1244 1245 1246 1247 1248
            x = paddle.to_tensor([-0.9, -0.2, 0.1, 0.8])
            out = F.softshrink(x)
            print(out)
            # Tensor(shape=[4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [-0.39999998,  0.        ,  0.        ,  0.30000001])
1249
    """
1250 1251 1252
    if threshold < 0:
        raise ValueError(
            "The threshold must be no less than zero. Received: {}.".format(
1253 1254 1255
                threshold
            )
        )
1256

1257
    if in_dynamic_mode():
1258
        return _C_ops.softshrink(x, threshold)
1259 1260
    else:
        check_variable_and_dtype(
1261
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'softshrink'
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
        )
        helper = LayerHelper('softshrink', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='softshrink',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'lambda': threshold},
        )
        return out
1272 1273 1274


def softsign(x, name=None):
1275
    r"""
1276 1277 1278 1279
    softsign activation

    .. math::

1280
        softsign(x) = \frac{x}{1 + |x|}
1281

1282
    Parameters:
1283
        x (Tensor): The input Tensor with data type float32, float64.
1284
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1285 1286 1287 1288 1289 1290 1291

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1292 1293
            import paddle
            import paddle.nn.functional as F
1294

1295 1296 1297 1298 1299
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = F.softsign(x)
            print(out)
            # Tensor(shape=[4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [-0.28571430, -0.16666666,  0.09090909,  0.23076925])
1300
    """
1301
    if in_dynamic_mode():
1302
        return _C_ops.softsign(x)
1303

1304
    check_variable_and_dtype(
1305
        x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'softsign'
1306
    )
1307 1308 1309 1310 1311 1312
    helper = LayerHelper('softsign', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='softsign', inputs={'X': x}, outputs={'Out': out})
    return out


1313
def swish(x, name=None):
1314
    r"""
1315 1316 1317 1318
    swish activation.

    .. math::

1319
        swish(x) = \frac{x}{1 + e^{-x}}
1320 1321 1322

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
1323
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

1334 1335 1336 1337 1338
            x = paddle.to_tensor([-2., 0., 1.])
            out = F.swish(x)
            print(out)
            # Tensor(shape=[3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [-0.23840584,  0.        ,  0.73105854])
1339
    """
1340
    if in_dynamic_mode():
1341
        return _C_ops.swish(x)
1342 1343
    else:
        check_variable_and_dtype(
1344
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'swish'
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
        )
        helper = LayerHelper('swish', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='swish',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'beta': 1.0},
        )
        return out
1355 1356


1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
def mish(x, name=None):
    r"""
    mish activation.

    ..  math::

        softplus(x) = \begin{cases}
                x, \text{if } x > \text{threshold} \\
                \ln(1 + e^{x}),  \text{otherwise}
            \end{cases}

        mish(x) = x * \tanh(softplus(x))
1369

1370 1371
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
1372
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

W
wangxinxin08 已提交
1383
            x = paddle.to_tensor([-5., 0., 5.])
1384 1385
            out = F.mish(x) # [-0.03357624, 0., 4.99955208]
    """
1386
    if in_dynamic_mode():
1387
        return _C_ops.mish(x, 20)
1388 1389
    else:
        check_variable_and_dtype(
1390
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'mish'
1391 1392 1393 1394 1395
        )
        helper = LayerHelper('mish', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='mish', inputs={'X': x}, outputs={'Out': out})
        return out
1396 1397


1398 1399 1400 1401 1402 1403
def tanhshrink(x, name=None):
    """
    tanhshrink activation

    .. math::

1404
        tanhshrink(x) = x - tanh(x)
1405 1406 1407

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
1408
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1409 1410 1411 1412 1413 1414 1415

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1416 1417
            import paddle
            import paddle.nn.functional as F
1418

1419 1420 1421 1422 1423
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = F.tanhshrink(x)
            print(out)
            # Tensor(shape=[4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [-0.02005106, -0.00262468,  0.00033200,  0.00868741])
1424
    """
1425
    if in_dynamic_mode():
1426
        return _C_ops.tanh_shrink(x)
1427 1428
    else:
        check_variable_and_dtype(
1429
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'tanhshrink'
1430 1431 1432 1433 1434 1435 1436
        )
        helper = LayerHelper('tanh_shrink', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='tanh_shrink', inputs={'X': x}, outputs={'Out': out}
        )
        return out
1437 1438


1439
def thresholded_relu(x, threshold=1.0, name=None):
1440
    r"""
1441 1442 1443 1444
    thresholded relu activation.

    .. math::

1445
        thresholded\_relu(x) =
1446 1447 1448 1449 1450 1451 1452
            \left\{
                \begin{array}{rl}
                x,& \text{if } \ x > threshold \\
                0,& \text{otherwise}
                \end{array}
            \right.

1453 1454 1455 1456

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold for thresholded_relu. Default is 1.0
1457
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

1468 1469 1470 1471 1472
            x = paddle.to_tensor([2., 0., 1.])
            out = F.thresholded_relu(x)
            print(out)
            # Tensor(shape=[3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [2., 0., 0.])
1473 1474
    """

1475
    if in_dynamic_mode():
1476
        return _C_ops.thresholded_relu(x, threshold)
1477 1478
    else:
        check_variable_and_dtype(
1479 1480 1481 1482
            x,
            'x',
            ['float16', 'uint16', 'float32', 'float64'],
            'thresholded_relu',
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
        )
        helper = LayerHelper('thresholded_relu', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='thresholded_relu',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'threshold': threshold},
        )
        return out
1493 1494


1495
def log_softmax(x, axis=-1, dtype=None, name=None):
1496
    r"""
1497 1498
    This operator implements the log_softmax layer. The calculation process is
    as follows:
1499 1500 1501

    .. math::

1502
        \begin{aligned}
1503 1504 1505
        log\_softmax[i, j] &= log(softmax(x)) \\
        &= log(\frac{\exp(X[i, j])}{\sum_j(\exp(X[i, j])})
        \end{aligned}
1506 1507

    Parameters:
1508 1509 1510 1511 1512 1513 1514
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` < 0, it works the same way as
            :math:`axis + D` . Default is -1.
        dtype (str|np.dtype|core.VarDesc.VarType, optional): The desired data
            type of the output tensor. If dtype is specified, ``x`` is casted
1515
            to ``dtype`` before the operation is performed. This is useful for
1516 1517 1518
            preventing data type overflows. Supported dtype: float32, float64.
            If ``dtype`` is None, the output Tensor has the same dtype as x.
            Default is None.
1519
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1520

1521
    Returns:
1522 1523
        A Tensor with the same shape and data type (use ``dtype`` if it is
        specified) as x.
1524 1525 1526 1527

    Examples:
        .. code-block:: python

1528 1529 1530
            import paddle
            import paddle.nn.functional as F

Z
zhupengyang 已提交
1531 1532 1533 1534 1535 1536
            x = [[[-2.0, 3.0, -4.0, 5.0],
                  [3.0, -4.0, 5.0, -6.0],
                  [-7.0, -8.0, 8.0, 9.0]],
                 [[1.0, -2.0, -3.0, 4.0],
                  [-5.0, 6.0, 7.0, -8.0],
                  [6.0, 7.0, 8.0, 9.0]]]
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
            x = paddle.to_tensor(x)
            out1 = F.log_softmax(x)
            out2 = F.log_softmax(x, dtype='float64')
            # out1's data type is float32; out2's data type is float64
            # out1 and out2's value is as follows:
            # [[[ -7.1278396   -2.1278396   -9.127839    -0.12783948]
            #   [ -2.1270514   -9.127051    -0.12705144 -11.127051  ]
            #   [-16.313261   -17.313261    -1.3132617   -0.31326184]]
            #  [[ -3.0518122   -6.051812    -7.051812    -0.051812  ]
            #   [-12.313267    -1.3132664   -0.3132665  -15.313267  ]
            #   [ -3.4401896   -2.4401896   -1.4401896   -0.44018966]]]
    """
1549 1550 1551

    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
1552

1553
    if in_dynamic_mode():
1554
        if dtype is not None:
1555 1556
            x = _C_ops.cast(x, dtype)
        return _C_ops.log_softmax(x, axis)
1557 1558 1559
    else:
        if dtype is None:
            check_variable_and_dtype(
1560 1561 1562 1563
                x,
                'x',
                ['float16', 'uint16', 'float32', 'float64'],
                'log_softmax',
1564 1565 1566 1567 1568 1569 1570 1571 1572
            )
        else:
            check_dtype(
                dtype,
                'dtype',
                ['float32', 'float64'],
                'log_softmax',
                'If dtype is not None, it only support float32 or float64.',
            )
1573

1574 1575
        helper = LayerHelper("log_softmax", **locals())
        out_cast = x
H
hong 已提交
1576
        if dtype is not None:
1577 1578 1579 1580 1581 1582 1583
            out_cast = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='cast',
                inputs={'X': x},
                outputs={'Out': out_cast},
                attrs={'in_dtype': x.dtype, 'out_dtype': dtype},
            )
1584

1585
        out = helper.create_variable_for_type_inference(out_cast.dtype)
1586
        helper.append_op(
1587 1588 1589 1590
            type='log_softmax',
            inputs={'X': out_cast},
            outputs={'Out': out},
            attrs={'axis': axis},
1591
        )
1592

1593
        return out
F
Feiyu Chan 已提交
1594 1595 1596 1597


def glu(x, axis=-1, name=None):
    r"""
1598
    The gated linear unit. The input is evenly splited into 2 parts along a
F
Feiyu Chan 已提交
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
    given axis. The first part is used as the content, and the second part is
    passed through a sigmoid function then used as the gate. The output is a
    elementwise multiplication of the content and the gate.

    .. math::

        \mathrm{GLU}(a, b) = a \otimes \sigma(b)

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
1609 1610 1611
        axis (int, optional): The axis along which split the input tensor. It
            should be in range [-D, D), where D is the dimensions of ``x`` .
            If ``axis`` < 0, it works the same way as :math:`axis + D` .
F
Feiyu Chan 已提交
1612
            Default is -1.
1613
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1614

F
Feiyu Chan 已提交
1615
    Returns:
1616
        A Tensor with the same data type as x. The size of the given aixs is
F
Feiyu Chan 已提交
1617
        halved.
1618

F
Feiyu Chan 已提交
1619 1620
    Examples:
        .. code-block:: python
1621

F
Feiyu Chan 已提交
1622 1623
            import paddle
            from paddle.nn import functional as F
1624

F
Feiyu Chan 已提交
1625 1626
            x = paddle.to_tensor(
                [[-0.22014759, -1.76358426,  0.80566144,  0.04241343],
1627
                    [-1.94900405, -1.89956081,  0.17134808, -1.11280477]]
F
Feiyu Chan 已提交
1628
            )
1629 1630 1631 1632
            print(F.glu(x))
            # Tensor(shape=[2, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[-0.15216254, -0.90048921],
            #         [-1.05778778, -0.46985325]])
1633

F
Feiyu Chan 已提交
1634
    """
1635 1636 1637
    check_variable_and_dtype(
        x, 'input', ['float16', 'float32', 'float64'], "glu"
    )
1638 1639 1640 1641 1642 1643 1644
    rank = len(x.shape)
    if not (-rank <= axis < rank):
        raise ValueError(
            "Expected value range of `axis` is [{}, {}), but received axis: {}".format(
                -rank, rank, axis
            )
        )
F
Feiyu Chan 已提交
1645 1646 1647 1648
    a, b = chunk(x, 2, axis=axis, name=name)
    gate = sigmoid(b, name=name)
    out = paddle.multiply(a, gate, name=name)
    return out
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673


def gumbel_softmax(x, temperature=1.0, hard=False, axis=-1, name=None):
    r"""
    Samples from the Gumbel-Softmax distribution and optionally discretizes.
    temperature is denoted by t. The calculation process is as follows:

    First, generate gumbel noise:

    .. math::

        G_i = -log(-log(U_i)), U_i \sim U(0,1)

    Second, add noise to ``x``:

    .. math::

        v = [x_1 + G_1,...,x_n + G_n]

    Finally, calculate gumbel_softmax and generate samples:

    .. math::
        gumbel\_softmax(v_i)=\frac{e^{v_i/t}}{\sum_{j=1}^n{e^{v_j/t}}},i=1,2,3...n

    Parameters:
1674 1675
        x (Tensor): An N-D Tensor, the first N - 1 dimensions index into a batch
            of independent distributions and the last dimension represents
1676
            a vector of probabilities with datatype float16, float32, float64.
1677 1678
        temperature (float, optional): non-negative scalar temperature.
            Default is 1.0.
1679 1680
        hard (bool, optional): if True, the returned samples will be discretized as
            one-hot vectors, but will be differentiated as if it is the soft sample
1681
            in autograd. Default is False.
1682
        axis (int, optional): The axis along will be calculated softmax value.
1683
            Default is -1.
1684
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1685

1686
    Returns:
1687 1688
        Sampled tensor of same shape as ``x`` from the Gumbel-Softmax distribution.
        If ``hard = True``, the returned samples will be one-hot, otherwise they will be
1689
        probability distributions that sum to 1 across ``axis``.
1690

1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            logits = paddle.randn([4, 6])
            temperature = 0.01
            gumbel_softmax = F.gumbel_softmax(logits, temperature)
            print(gumbel_softmax)
            # out's value is as follows:
            # [[0.00000001, 1.        , 0.00000000, 0.00000000, 0.00000006, 0.00000000],
            # [0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 1.        ],
            # [0.00000062, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.99999940],
            # [0.00000000, 0.00000000, 0.00000000, 0.00001258, 0.99998736, 0.00000000]]
1706

1707
    """
Z
zhiboniu 已提交
1708
    if in_dynamic_mode():
1709
        return _C_ops.gumbel_softmax(x, temperature, hard, axis)
1710 1711

    helper = LayerHelper("gumbel_softmax", **locals())
1712 1713 1714
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'gumbel_softmax'
    )
1715
    out = helper.create_variable_for_type_inference(x.dtype)
1716 1717 1718 1719 1720 1721
    helper.append_op(
        type='gumbel_softmax',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'temperature': temperature, 'hard': hard, 'axis': axis},
    )
1722
    return out