activation.py 62.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
16
from paddle import _C_ops, _legacy_C_ops, in_dynamic_mode
17
from paddle.framework import core
18
from paddle.utils.inplace_utils import inplace_apis_in_dygraph_only
19 20

from ...fluid.data_feeder import check_dtype, check_variable_and_dtype
21
from ...fluid.framework import convert_np_dtype_to_dtype_
22 23 24 25 26
from ...fluid.layer_helper import LayerHelper
from ...tensor.manipulation import chunk
from ...tensor.math import tanh  # noqa: F401
from ...tensor.math import tanh_  # noqa: F401
from ...tensor.ops import sigmoid  # noqa: F401
27

28 29
__all__ = []

30

31 32 33 34
def celu(x, alpha=1.0, name=None):
    r"""
    celu activation.

35 36
    Apply the following operation to each element of the input Tensor accroding to the `Continuously Differentiable Exponential Linear Units <https://arxiv.org/abs/1704.07483>`_.

37 38
    .. math::

39
        \operatorname{celu}(x) = \max(0, x) + \min(0, \alpha * (\mathrm{e}^{x/\alpha}-1))
40 41

    Parameters:
42 43
        x (Tensor): The input Tensor with data type float16, float32, or float64.
        alpha (float, optional): The 'alpha' value of the CELU formula. Default is 1.0.
44
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
45 46

    Returns:
47
        A ``Tensor`` with the same data type and shape as ``x`` .
48 49 50 51

    Examples:
        .. code-block:: python

52 53 54 55 56 57 58 59 60
            >>> import paddle
            >>> import paddle.nn.functional as F

            >>> x = paddle.to_tensor([[-1., 6.], [1., 15.6]])
            >>> out = F.celu(x, alpha=0.2)
            >>> print(out)
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[-0.19865242,  6.        ],
             [ 1.        , 15.60000038]])
61 62 63
    """
    if alpha == 0:
        raise ZeroDivisionError("alpha cannot be 0 for celu")
64
    if in_dynamic_mode():
65
        return _C_ops.celu(x, alpha)
66 67
    else:
        check_variable_and_dtype(
68
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'celu'
69 70 71 72 73 74 75 76 77 78
        )
        helper = LayerHelper("celu", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='celu',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'alpha': alpha},
        )
        return out
79 80


81
def elu(x, alpha=1.0, name=None):
82
    r"""
83 84
    elu activation.

85
    .. math::
86

Z
zhupengyang 已提交
87 88 89 90 91 92 93
        elu(x)=
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * (e^{x} - 1),& &\text{if } \ x <= 0
                \end{array}
            \right.
94 95 96 97

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        alpha (float, optional): The 'alpha' value of the ELU formulation. Default is 1.0.
98
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
99

100 101
    Returns:
        A Tensor with the same data type and shape as ``x`` .
102

103 104 105
    Examples:
        .. code-block:: python

106 107
            >>> import paddle
            >>> import paddle.nn.functional as F
108

109 110 111 112 113 114
            >>> x = paddle.to_tensor([[-1., 6.], [1., 15.6]])
            >>> out = F.elu(x, alpha=0.2)
            >>> print(out)
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[-0.12642412,  6.        ],
             [ 1.        , 15.60000038]])
115 116
    """

117
    if in_dynamic_mode():
118
        return _C_ops.elu(x, alpha)
119

120 121
    else:
        check_variable_and_dtype(
122
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'elu'
123 124 125 126 127 128 129 130 131 132
        )
        helper = LayerHelper("elu", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='elu',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'alpha': alpha},
        )
        return out
133 134


135
@inplace_apis_in_dygraph_only
136 137 138 139 140
def elu_(x, alpha=1.0, name=None):
    r"""
    Inplace version of ``elu`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_elu`.
    """
141
    assert alpha >= 0.0, "elu_ only support alpha >= 0, please use elu instead."
142
    if in_dynamic_mode():
143 144
        return _C_ops.elu_(x, alpha)
    return _legacy_C_ops.elu_(x, 'alpha', alpha)
145 146


147
def gelu(x, approximate=False, name=None):
148
    r"""
149 150
    gelu activation.

151 152
    The activation function of Gelu is calculated element by element. More information refers to :ref: `Gaussian Error Linear Units`.

153
    if approximate is True
154 155 156

    .. math::

157
        gelu(x) = 0.5 * x * (1 + tanh(\sqrt{\frac{2}{\pi}} * (x + 0.044715x^{3})))
158

159
    else
160 161 162

    .. math::

163
        gelu(x) = 0.5 * x * (1 + erf(\frac{x}{\sqrt{2}}))
164

165 166
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
167 168
        approximate (bool, optional): Whether to enable approximation. Default is False.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
169

170 171
    Returns:
        A Tensor with the same data type and shape as ``x`` .
172

173 174 175
    Examples:
        .. code-block:: python

176 177 178 179 180 181 182 183 184 185 186 187 188 189
            >>> import paddle
            >>> import paddle.nn.functional as F

            >>> x = paddle.to_tensor([[-1, 0.5], [1, 1.5]])
            >>> out1 = F.gelu(x)
            >>> print(out1)
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[-0.15865529,  0.34573123],
             [ 0.84134471,  1.39978933]])
            >>> out2 = F.gelu(x, True)
            >>> print(out2)
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[-0.15880796,  0.34571400],
             [ 0.84119201,  1.39957154]])
190 191
    """

192
    if in_dynamic_mode():
193
        return _C_ops.gelu(x, approximate)
194 195
    else:
        check_variable_and_dtype(
196
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'gelu'
197 198 199 200 201 202 203 204 205 206
        )
        helper = LayerHelper("gelu", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='gelu',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'approximate': approximate},
        )
        return out
207 208


209
def hardshrink(x, threshold=0.5, name=None):
210
    r"""
211 212 213 214 215
    hard shrinkage activation

    .. math::

        hardshrink(x)=
216 217 218 219 220 221 222
            \left\{
                \begin{array}{rcl}
                x,&  &if \ {x > threshold}  \\
                x,&  &if \ {x < -threshold}   \\
                0,&  &if \ {others} &
                \end{array}
            \right.
223 224 225

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
226 227
        threshold (float, optional): The value of threshold for hardthrink. Default is 0.5.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
228 229 230 231 232 233 234

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

235 236 237 238 239 240 241 242
            >>> import paddle
            >>> import paddle.nn.functional as F

            >>> x = paddle.to_tensor([-1, 0.3, 2.5])
            >>> out = F.hardshrink(x)
            >>> print(out)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [-1.       ,  0.       , 2.50000000])
243 244 245


    """
246
    if in_dynamic_mode():
247
        return _C_ops.hardshrink(x, threshold)
248 249
    else:
        check_variable_and_dtype(
250
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'hardshrink'
251 252 253 254 255 256 257 258 259 260
        )
        helper = LayerHelper('hardshrink', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='hard_shrink',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'threshold': threshold},
        )
        return out
261 262


263
def hardtanh(x, min=-1.0, max=1.0, name=None):
264
    r"""
265
    hardtanh activation. Calculate the `hardtanh` of input `x`.
266 267 268

    .. math::

269 270 271 272 273 274 275 276
        hardtanh(x)=
            \left\{
                \begin{array}{cll}
                    max,& & \text{if } x > max \\
                    min,& & \text{if } x < min \\
                    x,& & \text{otherwise}
                \end{array}
            \right.
277

278
    Parameters:
279 280 281
        x (Tensor): The input Tensor with data type float32, float64.
        min (float, optional): The minimum value of the linear region range. Default is -1.
        max (float, optional): The maximum value of the linear region range. Default is 1.
282
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
283 284 285 286 287 288 289

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

290 291
            >>> import paddle
            >>> import paddle.nn.functional as F
292

293 294 295 296 297
            >>> x = paddle.to_tensor([-1.5, 0.3, 2.5])
            >>> out = F.hardtanh(x)
            >>> print(out)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [-1.       , 0.30000001,  1.       ])
298 299
    """

300
    if in_dynamic_mode():
301
        return _C_ops.hardtanh(x, min, max)
302 303 304 305
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'hardtanh'
        )
H
hong 已提交
306

307 308 309 310 311 312 313 314 315
        helper = LayerHelper('hardtanh', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='brelu',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'t_min': min, 't_max': max},
        )
        return out
316 317


318 319 320 321 322 323 324 325 326 327
@inplace_apis_in_dygraph_only
def hardtanh_(x, min=-1.0, max=1.0, name=None):
    r"""
    Inplace version of ``hardtanh`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`paddle_nn_functional_hardtanh`.
    """
    if in_dynamic_mode():
        return _C_ops.hardtanh_(x, min, max)


328
def hardsigmoid(x, slope=0.1666667, offset=0.5, name=None):
329
    r"""
330
    hardsigmoid activation. Calculate the `hardsigmoid` of input `x`.
331 332 333 334 335 336
    A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
    which is much faster than sigmoid.

    .. math::

        hardsigmoid(x)=
337 338 339 340 341 342 343
            \left\{
                \begin{array}{lcl}
                0, & &\text{if } \ x \leq -3 \\
                1, & &\text{if } \ x \geq 3 \\
                slope * x + offset, & &\text{otherwise}
                \end{array}
            \right.
344 345 346

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
347 348
        slope (float, optional): The slope of hardsigmoid function. Default is 0.1666667.
        offset (float, optional): The offset of hardsigmoid function. Default is 0.5.
349
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
350 351 352 353 354 355 356

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

357 358
            >>> import paddle
            >>> import paddle.nn.functional as F
359

360 361 362 363 364
            >>> x = paddle.to_tensor([-4., 5., 1.])
            >>> out = F.hardsigmoid(x)
            >>> print(out)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.        , 1.        , 0.66666669])
365 366
    """

367
    if in_dynamic_mode():
368
        return _C_ops.hardsigmoid(x, slope, offset)
369 370
    else:
        check_variable_and_dtype(
371
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'hardsigmoid'
372
        )
H
hong 已提交
373

374 375 376 377 378 379 380 381 382
        helper = LayerHelper('hardsigmoid', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='hard_sigmoid',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'slope': slope, 'offset': offset},
        )
        return out
383 384 385


def hardswish(x, name=None):
386
    r"""
387 388 389
    hardswish activation. hardswish is proposed in MobileNetV3, and performs
    better in computational stability and efficiency compared to swish function.
    For more details please refer to: https://arxiv.org/pdf/1905.02244.pdf
390 391 392 393

    .. math::

        hardswish(x)=
394 395 396 397 398 399 400
            \left\{
                \begin{array}{cll}
                0 &, & \text{if } x \leq -3 \\
                x &, & \text{if } x \geq 3 \\
                \frac{x(x+3)}{6} &, & \text{otherwise}
                \end{array}
            \right.
401 402 403

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
404
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
405 406 407 408 409 410 411

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

412 413
            >>> import paddle
            >>> import paddle.nn.functional as F
414

415 416 417 418 419
            >>> x = paddle.to_tensor([-4., 5., 1.])
            >>> out = F.hardswish(x)
            >>> print(out)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [-0.       , 5.        , 0.66666669])
420
    """
421
    if in_dynamic_mode():
422
        return _C_ops.hardswish(x)
423 424
    else:
        check_variable_and_dtype(
425
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'hardswish'
426
        )
427

428 429 430
        threshold = 6.0
        scale = 6.0
        offset = 3.0
431 432 433
        helper = LayerHelper('hardswish', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
434 435 436 437
            type='hard_swish',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'threshold': threshold, 'scale': scale, 'offset': offset},
438 439
        )
        return out
440 441


442
def leaky_relu(x, negative_slope=0.01, name=None):
443
    r"""
444
    leaky_relu activation. The calculation formula is:
445

446
    .. math::
447 448 449 450 451 452 453
        leaky\_relu(x)=
        \left\{
            \begin{array}{rcl}
                x, & & if \ x >= 0 \\
                negative\_slope * x, & & otherwise \\
            \end{array}
        \right.
454 455 456 457 458

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        negative_slope (float, optional): Slope of the activation function at
            :math:`x < 0` . Default is 0.01.
459
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
460 461 462 463 464 465 466

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

467 468
            >>> import paddle
            >>> import paddle.nn.functional as F
469

470 471 472 473 474
            >>> x = paddle.to_tensor([-2., 0., 1.])
            >>> out = F.leaky_relu(x)
            >>> print(out)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [-0.02000000,  0.        ,  1.        ])
475 476

    """
477
    if in_dynamic_mode():
478
        return _C_ops.leaky_relu(x, negative_slope)
479 480
    else:
        check_variable_and_dtype(
481
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'leaky_relu'
482 483 484 485 486 487 488 489 490 491
        )
        helper = LayerHelper('leaky_relu', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='leaky_relu',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'alpha': negative_slope},
        )
        return out
492 493


494 495 496 497 498 499 500 501 502 503
@inplace_apis_in_dygraph_only
def leaky_relu_(x, negative_slope=0.01, name=None):
    r"""
    Inplace version of ``leaky_relu`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`paddle_nn_functional_leaky_relu`.
    """
    if in_dynamic_mode():
        return _C_ops.leaky_relu_(x, negative_slope)


504
def prelu(x, weight, data_format="NCHW", name=None):
505
    """
506
    prelu activation. The calculation formula is follows:
507 508 509 510 511

    .. math::

        prelu(x) = max(0, x) + weight * min(0, x)

512 513
    x and weight is input Tensor.

514 515 516
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        weight (Tensor): The learnable parameter with data type same as ``x``.
517
            The weight shape is [], [1] or [in], where `in` is the input channel of ``x``.
518
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
519 520
        data_format(str, optional): Data format that specifies the layout of input.
            It may be "NC", "NCL", "NCHW", "NCDHW", "NLC", "NHWC" or "NDHWC". Default: "NCHW".
521 522 523 524 525 526 527

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
            >>> import paddle
            >>> import paddle.nn.functional as F

            >>> data = paddle.to_tensor([[[[-2.0,  3.0, -4.0,  5.0],
            ...                            [ 3.0, -4.0,  5.0, -6.0],
            ...                            [-7.0, -8.0,  8.0,  9.0]],
            ...                           [[ 1.0, -2.0, -3.0,  4.0],
            ...                            [-5.0,  6.0,  7.0, -8.0],
            ...                            [ 6.0,  7.0,  8.0,  9.0]]]], dtype='float32')

            >>> w = paddle.to_tensor([0.25], dtype='float32')
            >>> out = F.prelu(data, w)
            >>> print(out)
            Tensor(shape=[1, 2, 3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[[[-0.50000000,  3.        , -1.        ,  5.        ],
               [ 3.        , -1.        ,  5.        , -1.50000000],
               [-1.75000000, -2.        ,  8.        ,  9.        ]],
              [[ 1.        , -0.50000000, -0.75000000,  4.        ],
               [-1.25000000,  6.        ,  7.        , -2.        ],
               [ 6.        ,  7.        ,  8.        ,  9.        ]]]])
548
    """
549
    assert (
550 551
        len(weight.shape) == 0 or len(weight.shape) == 1
    ), "The dim count of weight shape should be 0 or 1 in prelu()."
552 553

    mode = 'all'
554
    if len(weight.shape) == 1 and weight.shape[0] > 1:
555
        true_data_format = [
556 557 558 559 560 561 562
            'NC',
            'NCL',
            'NCHW',
            'NCDHW',
            'NLC',
            'NHWC',
            'NDHWC',
563 564 565 566
        ]
        if data_format not in true_data_format:
            raise ValueError(
                "data_format must be one of 'NC', 'NCL', 'NCHW', 'NCDHW', "
567 568
                "'NLC', 'NHWC', 'NDHWC' but receive {}".format(data_format)
            )
569 570 571

        data_format = 'NCHW' if data_format[1] == 'C' else 'NHWC'

572 573 574
        assert (
            len(x.shape) > 1
        ), "The dim count of x should be equal or larger than 2 in prelu() when weight shape is not [1]."
575

576
        # NOTE(GuoxiaWang): support NHWC data format
577
        if data_format == 'NHWC':
578 579 580
            assert (
                weight.shape[0] == x.shape[-1]
            ), "The weight size should be equal to x input channel in prelu() when weight shape is not [1]."
581
        else:
582 583 584
            assert (
                weight.shape[0] == x.shape[1]
            ), "The weight size should be equal to x input channel in prelu() when weight shape is not [1]."
585 586
        mode = 'channel'

587
    if in_dynamic_mode():
588
        return _C_ops.prelu(x, weight, data_format, mode)
589
    else:
W
Weilong Wu 已提交
590
        check_variable_and_dtype(
591
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], 'prelu'
W
Weilong Wu 已提交
592 593
        )
        check_variable_and_dtype(
594 595 596 597
            weight,
            'weight',
            ['float16', 'float32', 'float64', 'uint16'],
            'prelu',
W
Weilong Wu 已提交
598
        )
599 600 601 602 603 604 605
        helper = LayerHelper('prelu', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type="prelu",
            inputs={"X": x, "Alpha": weight},
            outputs={"Out": out},
            attrs={"mode": mode, "data_format": data_format},
606
        )
607
        return out
608 609


610
def rrelu(x, lower=1.0 / 8.0, upper=1.0 / 3.0, training=True, name=None):
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
    r"""
    rrelu activation.

    Applies the randomized leaky rectified liner unit function to improve generalization performance,
    as described in the paper:
    `Empirical Evaluation of Rectified Activations in Convolutional Network <https://arxiv.org/abs/1505.00853>`_

    During training, randomly samples the negative slope for activation values as described below:

    .. math::

        rrelu(x)=
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    a * x, & & otherwise \\
                \end{array}
            \right.

    where :math:`x` is the input tensor,
    :math:`a` is randomly sampled from uniform distribution in range (:math:`lower`, :math:`upper`),

    In the test phase, the negative slope will take the average value of :math:`lower` and :math:`upper`:

    .. math::

        rrelu(x)=
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    (lower + upper) * 0.5 * x, & & otherwise \\
                \end{array}
            \right.

    where :math:`x` is the input tensor,
    :math:`lower` and :math:`upper` are the bounds of uniform distribution.

    Parameters:
        x (Tensor): The input Tensor with data type float16, float32, float64.
650 651
        lower (float, optional): The lower bound of uniform distribution. Default: 0.125.
        upper (float, optional): The upper bound of uniform distribution. Default: 0.3333333333333333.
652
        training (bool, optional): Current mode is in training or others.  Default is True.
653
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
654 655 656 657 658 659 660

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
            >>> import paddle
            >>> import paddle.nn.functional as F
            >>> paddle.seed(1)
            >>> input_tensor = paddle.to_tensor([[[[-2.0,  3.0, -4.0,  5.0],
            ...                                    [ 3.0, -4.0,  5.0, -6.0],
            ...                                    [-7.0, -8.0,  8.0,  9.0]],
            ...                                   [[ 1.0, -2.0, -3.0,  4.0],
            ...                                    [-5.0,  6.0,  7.0, -8.0],
            ...                                    [ 6.0,  7.0,  8.0,  9.0]]]], dtype='float32')
            >>> out = F.rrelu(input_tensor, 0.1, 0.3)
            >>> print(out)
            Tensor(shape=[1, 2, 3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[[[-0.20715050,  3.        , -1.01193857,  5.        ],
               [ 3.        , -0.94084597,  5.        , -0.65544695],
               [-1.24268556, -2.34339547,  8.        ,  9.        ]],
              [[ 1.        , -0.44942653, -0.68969047,  4.        ],
               [-1.03736508,  6.        ,  7.        , -0.95799232],
               [ 6.        ,  7.        ,  8.        ,  9.        ]]]])
679 680 681
    """
    if not isinstance(lower, float) or not isinstance(upper, float):
        raise TypeError(
682 683 684 685
            "The lower and upper values must be float type. Received: lower {}, upper {}.".format(
                lower, upper
            )
        )
686 687 688

    if lower < 0 or lower > 1:
        raise ValueError(
689 690 691 692
            "The lower value must be no less than zero or greater than one. Received: {}.".format(
                lower
            )
        )
693 694 695

    if upper < lower:
        raise ValueError(
696 697 698 699
            "The upper value must be greater than lower value. Received: lower {}, upper {}.".format(
                lower, upper
            )
        )
700 701 702 703

    if upper > 1:
        raise ValueError(
            "The upper value must be no greater than one. Received: {}.".format(
704 705 706
                upper
            )
        )
707 708 709

    is_test = not training

710
    if in_dynamic_mode():
W
Weilong Wu 已提交
711
        return _C_ops.rrelu(x, lower, upper, is_test)
712
    else:
W
Weilong Wu 已提交
713
        check_variable_and_dtype(
714
            x, 'X', ['float16', 'uint16', 'float32', 'float64'], 'rrelu'
W
Weilong Wu 已提交
715
        )
716 717 718 719 720 721 722 723 724 725 726
        helper = LayerHelper('rrelu', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        noise = helper.create_variable_for_type_inference(dtype=x.dtype)
        attrs = {'lower': lower, 'upper': upper, 'is_test': is_test}
        helper.append_op(
            type='rrelu',
            inputs={"X": x},
            outputs={"Out": out, "Noise": noise},
            attrs=attrs,
        )
        return out
727 728


729
def relu(x, name=None):
730
    """
731
    relu activation. The calculation formula is follows:
732

733
    .. math::
734 735 736

        out = max(x, 0)

737 738
    x is input Tensor.

739
    Parameters:
740
        x (Tensor): The input Tensor with data type float32, float64.
741
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
742 743

    Returns:
744
        A Tensor with the same data type and shape as ``x`` .
745 746 747 748

    Examples:
        .. code-block:: python

749 750
            >>> import paddle
            >>> import paddle.nn.functional as F
751

752 753 754 755 756
            >>> x = paddle.to_tensor([-2, 0, 1], dtype='float32')
            >>> out = F.relu(x)
            >>> print(out)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0., 0., 1.])
757 758
    """

759
    if in_dynamic_mode():
W
wanghuancoder 已提交
760
        return _C_ops.relu(x)
761 762
    else:
        check_variable_and_dtype(
763
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'relu'
764 765 766 767 768
        )
        helper = LayerHelper('relu', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='relu', inputs={'X': x}, outputs={'Out': out})
        return out
769 770


771
@inplace_apis_in_dygraph_only
772 773 774 775 776
def relu_(x, name=None):
    """
    Inplace version of ``relu`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_relu`.
    """
777
    return _C_ops.relu_(x)
778 779


780
def log_sigmoid(x, name=None):
781
    r"""
782
    log_sigmoid activation.
783

784
    .. math::
785

786
        log\_sigmoid(x) = log \frac{1}{1 + e^{-x}}
787

788 789
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
790
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
791

792 793
    Returns:
        A Tensor with the same data type and shape as ``x`` .
794

795 796 797
    Examples:
        .. code-block:: python

798 799
            >>> import paddle
            >>> import paddle.nn.functional as F
800

801 802 803 804 805
            >>> x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            >>> out = F.log_sigmoid(x)
            >>> print(out)
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [-0.31326166, -0.12692805, -0.04858733, -0.01814996])
806 807
    """

808
    if in_dynamic_mode():
809
        return _C_ops.logsigmoid(x)
810 811 812 813 814 815 816 817 818 819
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'log_sigmoid'
        )
        helper = LayerHelper("log_sigmoid", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='logsigmoid', inputs={'X': x}, outputs={'Out': out}
        )
        return out
820 821


822
def maxout(x, groups, axis=1, name=None):
823
    r"""
824 825 826 827 828 829 830 831
    maxout activation.

    Assumed the input shape is (N, Ci, H, W).
    The output shape is (N, Co, H, W).
    Then Co = Ci/groups and the operator formula is as follows:

    .. math::

832 833 834 835 836 837 838 839 840
        \begin{array}{l}
        &out_{si+j} = \max_{k} x_{gsi + sk + j} \\
        &g = groups \\
        &s = \frac{input.size}{num\_channels} \\
        &0 \le i < \frac{num\_channels}{groups} \\
        &0 \le j < s \\
        &0 \le k < groups
        \end{array}

841 842 843

    Parameters:
        x (Tensor): The input is 4-D Tensor with shape [N, C, H, W] or [N, H, W, C], the data type
844
            of input is float16, float32 or float64.
845
        groups (int): The groups number of maxout. `groups` specifies the
846
            index of channel dimension where maxout will be performed. This must be
847
            a factor of number of features.
848 849 850 851 852
        axis (int, optional): The axis along which to perform maxout calculations.
            It should be 1 when data format is NCHW, be -1 or 3 when data format
            is NHWC. If ``axis`` < 0, it works the same way as :math:`axis + D` ,
            where D is the dimensions of ``x`` . ``axis`` only supports 1, 3 or -1.
            Default is 1.
853
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
854 855 856 857 858 859 860

    Returns:
        A Tensor with the same data type as ``x`` .

    Examples:
        .. code-block:: python

861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
            >>> import paddle
            >>> import paddle.nn.functional as F

            >>> paddle.seed(2023)
            >>> x = paddle.rand([1, 2, 3, 4])
            >>> print(x)
            Tensor(shape=[1, 2, 3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[[[0.86583614, 0.52014720, 0.25960937, 0.90525323],
               [0.42400089, 0.40641287, 0.97020894, 0.74437362],
               [0.51785129, 0.73292869, 0.97786582, 0.04315904]],
              [[0.42639419, 0.71958369, 0.20811461, 0.19731510],
               [0.38424349, 0.14603184, 0.22713774, 0.44607511],
               [0.21657862, 0.67685395, 0.46460176, 0.92382854]]]])
            >>> out = F.maxout(x, groups=2)
            >>> print(out)
            Tensor(shape=[1, 1, 3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[[[0.86583614, 0.71958369, 0.25960937, 0.90525323],
               [0.42400089, 0.40641287, 0.97020894, 0.74437362],
               [0.51785129, 0.73292869, 0.97786582, 0.92382854]]]])
880
    """
881
    if in_dynamic_mode():
882
        return _C_ops.maxout(x, groups, axis)
883
    else:
884 885 886
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'maxout'
        )
887 888 889 890 891 892 893
        if axis not in [1, -1, 3]:
            raise ValueError(
                "Attr(axis) should be 1 when data format is NCHW, -1 or 3 when data format is NHWC. Received "
                "Attr(axis): %s." % str(axis)
            )
        if axis == -1:
            axis = 3
894

895 896 897 898 899 900 901 902 903
        helper = LayerHelper('maxout', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='maxout',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'groups': groups, 'axis': axis},
        )
        return out
904 905


906 907 908 909 910 911
def relu6(x, name=None):
    """
    relu6 activation

    .. math::

912
        relu6(x) = min(max(0,x), 6)
913

914
    Parameters:
915
        x (Tensor): The input Tensor with data type float32, float64.
916
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
917 918 919 920 921 922 923

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

924 925
            >>> import paddle
            >>> import paddle.nn.functional as F
926

927 928 929 930 931
            >>> x = paddle.to_tensor([-1, 0.3, 6.5])
            >>> out = F.relu6(x)
            >>> print(out)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.        , 0.30000001, 6.        ])
932 933
    """
    threshold = 6.0
Z
zhiboniu 已提交
934
    if in_dynamic_mode():
935
        return _C_ops.relu6(x)
936

937 938 939
    check_variable_and_dtype(
        x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'relu6'
    )
940 941
    helper = LayerHelper('relu6', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
942 943 944 945 946 947
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold},
    )
948 949 950
    return out


951 952 953 954 955 956
def selu(
    x,
    scale=1.0507009873554804934193349852946,
    alpha=1.6732632423543772848170429916717,
    name=None,
):
957
    r"""
958 959 960 961
    selu activation

    .. math::

962
        selu(x)= scale *
963 964 965 966 967 968
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * e^{x} - alpha,& &\text{if } \ x <= 0
                \end{array}
            \right.
969

970
    Parameters:
971
        x (Tensor): The input Tensor with data type float32, float64.
972 973
        scale (float, optional): The value of scale(must be greater than 1.0) for selu. Default is 1.0507009873554804934193349852946.
        alpha (float, optional): The value of alpha(must be no less than zero) for selu. Default is 1.6732632423543772848170429916717.
974
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
975 976 977 978 979 980 981

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

982 983
            >>> import paddle
            >>> import paddle.nn.functional as F
984

985 986 987 988 989 990
            >>> x = paddle.to_tensor([[0.0, 1.0],[2.0, 3.0]])
            >>> out = F.selu(x)
            >>> print(out)
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.        , 1.05070102],
             [2.10140204, 3.15210295]])
991
    """
992 993
    if scale <= 1.0:
        raise ValueError(
994
            f"The scale must be greater than 1.0. Received: {scale}."
995
        )
996 997 998

    if alpha < 0:
        raise ValueError(
999
            f"The alpha must be no less than zero. Received: {alpha}."
1000
        )
1001

1002
    if in_dynamic_mode():
1003
        return _C_ops.selu(x, scale, alpha)
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'selu'
        )
        helper = LayerHelper('selu', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='selu',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'scale': scale, 'alpha': alpha},
        )
        return out
1017 1018


M
minghaoBD 已提交
1019
def silu(x, name=None):
1020 1021 1022 1023 1024
    r"""
    silu activation

    .. math::

M
minghaoBD 已提交
1025
        silu(x) = \frac{x}{1 + e^{-x}}
1026

1027 1028
    Where :math:`x` is the input Tensor.

M
minghaoBD 已提交
1029
    Parameters:
1030
        x (Tensor): The input Tensor with data type bfloat16, float16, float32, float64.
1031
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1032

M
minghaoBD 已提交
1033
    Returns:
1034
        A Tensor with the same data type and shape as :attr:`x`.
1035

M
minghaoBD 已提交
1036 1037
    Examples:
        .. code-block:: python
1038

1039 1040
            >>> import paddle
            >>> import paddle.nn.functional as F
1041

1042 1043 1044 1045 1046
            >>> x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            >>> out = F.silu(x)
            >>> print(out)
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.73105860, 1.76159406, 2.85772228, 3.92805505])
M
minghaoBD 已提交
1047 1048
    """

1049
    if in_dynamic_mode():
W
wanghuancoder 已提交
1050
        return _C_ops.silu(x)
1051 1052
    else:
        check_variable_and_dtype(
1053
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'silu'
1054 1055 1056 1057 1058
        )
        helper = LayerHelper("silu", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='silu', inputs={'X': x}, outputs={'Out': out})
        return out
M
minghaoBD 已提交
1059 1060


1061
def softmax(x, axis=-1, dtype=None, name=None):
1062
    r"""
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
    This operator implements the softmax layer. The calculation process is as follows:

    1. The dimension :attr:`axis` of ``x`` will be permuted to the last.

    2. Then ``x`` will be logically flattened to a 2-D matrix. The matrix's second
    dimension(row length) is the same as the dimension :attr:`axis` of ``x``,
    and the first dimension(column length) is the product of all other dimensions
    of ``x``. For each row of the matrix, the softmax operator squashes the
    K-dimensional(K is the width of the matrix, which is also the size of ``x``'s
    dimension :attr:`axis`) vector of arbitrary real values to a K-dimensional
    vector of real values in the range [0, 1] that add up to 1.

    3. After the softmax operation is completed, the inverse operations of steps 1 and 2
    are performed to restore the two-dimensional matrix to the same dimension as the ``x`` .

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

    For each row :math:`i` and each column :math:`j` in the matrix, we have:

    .. math::

1088
        softmax[i, j] = \frac{\exp(x[i, j])}{\sum_j(exp(x[i, j])}
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136

    Example:

    .. code-block:: text

        Case 1:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]

          Attrs:
            axis = -1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
                        [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]

        Case 2:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]
          Attrs:
            axis = 1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
                         [0.01786798, 0.01786798, 0.04661262, 0.04661262],
                         [0.97555875, 0.97555875, 0.93623955, 0.93623955]],
                        [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
                         [0.26762315, 0.26762315, 0.26762315, 0.26762315],
                         [0.72747516, 0.72747516, 0.72747516, 0.72747516]]]

1137
    Parameters:
1138
        x (Tensor): The input Tensor with data type bfloat16, float16, float32, float64.
1139
        axis (int, optional): The axis along which to perform softmax
1140
            calculations. It should be in range [-D, D), where D is the
1141
            rank of ``x`` . If ``axis`` < 0, it works the same way as
1142
            :math:`axis + D` . Default is -1.
1143
        dtype (str, optional): The data type of the output tensor, can be bfloat16, float16, float32, float64.
1144
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1145 1146

    Returns:
1147 1148
        A Tensor with the same shape and data type (use ``dtype`` if it is
        specified) as x.
1149 1150 1151 1152

    Examples:
        .. code-block:: python

1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
            >>> import paddle
            >>> import paddle.nn.functional as F

            >>> x = paddle.to_tensor([[[2.0, 3.0, 4.0, 5.0],
            ...                        [3.0, 4.0, 5.0, 6.0],
            ...                        [7.0, 8.0, 8.0, 9.0]],
            ...                       [[1.0, 2.0, 3.0, 4.0],
            ...                        [5.0, 6.0, 7.0, 8.0],
            ...                        [6.0, 7.0, 8.0, 9.0]]],dtype='float32')
            >>> out1 = F.softmax(x)
            >>> out2 = F.softmax(x, dtype='float64')
            >>> #out1's data type is float32; out2's data type is float64
            >>> #out1 and out2's value is as follows:
            >>> print(out1)
            >>> print(out2)
            Tensor(shape=[2, 3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[[0.03205860, 0.08714432, 0.23688284, 0.64391428],
              [0.03205860, 0.08714432, 0.23688284, 0.64391428],
              [0.07232949, 0.19661194, 0.19661194, 0.53444666]],
             [[0.03205860, 0.08714432, 0.23688284, 0.64391428],
              [0.03205860, 0.08714432, 0.23688284, 0.64391428],
              [0.03205860, 0.08714432, 0.23688284, 0.64391428]]])
            Tensor(shape=[2, 3, 4], dtype=float64, place=Place(cpu), stop_gradient=True,
            [[[0.03205860, 0.08714432, 0.23688282, 0.64391426],
              [0.03205860, 0.08714432, 0.23688282, 0.64391426],
              [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
             [[0.03205860, 0.08714432, 0.23688282, 0.64391426],
              [0.03205860, 0.08714432, 0.23688282, 0.64391426],
              [0.03205860, 0.08714432, 0.23688282, 0.64391426]]])
1182
    """
1183 1184 1185

    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
1186
    if in_dynamic_mode():
1187
        outs_cast = x if dtype is None else _C_ops.cast(x, dtype)
1188
        return _C_ops.softmax(outs_cast, axis)
1189 1190 1191 1192
    else:
        use_cudnn = True
        if dtype is None:
            check_variable_and_dtype(
1193
                x, 'x', ['uint16', 'float16', 'float32', 'float64'], 'softmax'
1194 1195 1196 1197 1198
            )
        else:
            check_dtype(
                dtype,
                'dtype',
1199
                ['uint16', 'float16', 'float32', 'float64'],
1200
                'softmax',
1201
                'If dtype is not None, it only support uint16, float16, float32 or float64.',
1202
            )
H
hong 已提交
1203

1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
        helper = LayerHelper("softmax", **locals())
        outs_cast = x
        if dtype is not None:
            outs_cast = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='cast',
                inputs={'X': x},
                outputs={'Out': outs_cast},
                attrs={'in_dtype': x.dtype, 'out_dtype': dtype},
            )
1214

1215 1216
        outs_softmax = helper.create_variable_for_type_inference(
            outs_cast.dtype
1217 1218
        )
        helper.append_op(
1219 1220 1221 1222
            type='softmax',
            inputs={'X': outs_cast},
            outputs={'Out': outs_softmax},
            attrs={'axis': axis, 'use_cudnn': use_cudnn},
1223
        )
1224

1225
        return outs_softmax
1226 1227


1228
@inplace_apis_in_dygraph_only
1229 1230 1231 1232 1233 1234 1235
def softmax_(x, axis=-1, dtype=None, name=None):
    r"""
    Inplace version of ``softmax`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_softmax`.
    """
    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
1236 1237 1238 1239 1240 1241
    outs_cast = (
        x
        if dtype is None
        else _legacy_C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
    )
    return _C_ops.softmax_(outs_cast, axis)
1242 1243


1244
def softplus(x, beta=1, threshold=20, name=None):
1245
    r"""
1246 1247 1248
    softplus activation

    .. math::
1249 1250 1251 1252
        softplus(x)=\begin{cases}
                \frac{1}{\beta} * \log(1 + e^{\beta * x}),&x\leqslant\frac{\varepsilon}{\beta};\\
                x,&x>\frac{\varepsilon}{\beta}.
            \end{cases}
1253

1254
    Parameters:
1255
        x (Tensor): The input Tensor with data type float32, float64.
1256 1257
        beta (float, optional): The value of :math:`\beta` for softplus. Default is 1
        threshold (float, optional): The value of :math:`\varepsilon` for softplus. Default is 20
1258
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1259 1260 1261 1262 1263 1264 1265

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1266 1267
            >>> import paddle
            >>> import paddle.nn.functional as F
1268

1269 1270 1271 1272 1273
            >>> x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3], dtype='float32')
            >>> out = F.softplus(x)
            >>> print(out)
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.51301527, 0.59813893, 0.74439669, 0.85435522])
1274
    """
W
Wang Bojun 已提交
1275

1276
    if in_dynamic_mode():
1277
        return _C_ops.softplus(x, beta, threshold)
1278 1279
    else:
        check_variable_and_dtype(
1280
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'softplus'
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
        )
        helper = LayerHelper('softplus', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='softplus',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'beta': beta, 'threshold': threshold},
        )
        return out
1291 1292 1293


def softshrink(x, threshold=0.5, name=None):
1294
    r"""
1295 1296 1297 1298
    softshrink activation

    .. math::

1299
        softshrink(x)=
1300 1301 1302 1303 1304 1305 1306
            \left\{
                \begin{array}{rcl}
                x - threshold,& & \text{if } x > threshold \\
                x + threshold,& & \text{if } x < -threshold \\
                0,& &  \text{otherwise}
            \end{array}
            \right.
1307

1308
    Parameters:
1309 1310
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold(must be no less than zero) for softplus. Default is 0.5
1311
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1312 1313 1314 1315 1316 1317 1318

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1319 1320
            >>> import paddle
            >>> import paddle.nn.functional as F
1321

1322 1323 1324 1325 1326
            >>> x = paddle.to_tensor([-0.9, -0.2, 0.1, 0.8])
            >>> out = F.softshrink(x)
            >>> print(out)
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [-0.39999998,  0.        ,  0.        ,  0.30000001])
1327
    """
1328 1329 1330
    if threshold < 0:
        raise ValueError(
            "The threshold must be no less than zero. Received: {}.".format(
1331 1332 1333
                threshold
            )
        )
1334

1335
    if in_dynamic_mode():
1336
        return _C_ops.softshrink(x, threshold)
1337 1338
    else:
        check_variable_and_dtype(
1339
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'softshrink'
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
        )
        helper = LayerHelper('softshrink', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='softshrink',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'lambda': threshold},
        )
        return out
1350 1351 1352


def softsign(x, name=None):
1353
    r"""
1354 1355 1356 1357
    softsign activation

    .. math::

1358
        softsign(x) = \frac{x}{1 + |x|}
1359

1360
    Parameters:
1361
        x (Tensor): The input Tensor with data type float32, float64.
1362
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1363 1364 1365 1366 1367 1368 1369

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1370 1371
            >>> import paddle
            >>> import paddle.nn.functional as F
1372

1373 1374 1375 1376 1377
            >>> x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            >>> out = F.softsign(x)
            >>> print(out)
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [-0.28571430, -0.16666666,  0.09090909,  0.23076925])
1378
    """
1379
    if in_dynamic_mode():
1380
        return _C_ops.softsign(x)
1381

1382
    check_variable_and_dtype(
1383
        x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'softsign'
1384
    )
1385 1386 1387 1388 1389 1390
    helper = LayerHelper('softsign', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='softsign', inputs={'X': x}, outputs={'Out': out})
    return out


1391
def swish(x, name=None):
1392
    r"""
1393 1394 1395 1396
    swish activation.

    .. math::

1397
        swish(x) = \frac{x}{1 + e^{-x}}
1398 1399 1400

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
1401
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1402 1403 1404 1405 1406 1407 1408

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1409 1410
            >>> import paddle
            >>> import paddle.nn.functional as F
1411

1412 1413 1414 1415 1416
            >>> x = paddle.to_tensor([-2., 0., 1.])
            >>> out = F.swish(x)
            >>> print(out)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [-0.23840584,  0.        ,  0.73105860])
1417
    """
1418
    if in_dynamic_mode():
1419
        return _C_ops.swish(x)
1420 1421
    else:
        check_variable_and_dtype(
1422
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'swish'
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
        )
        helper = LayerHelper('swish', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='swish',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'beta': 1.0},
        )
        return out
1433 1434


1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
def mish(x, name=None):
    r"""
    mish activation.

    ..  math::

        softplus(x) = \begin{cases}
                x, \text{if } x > \text{threshold} \\
                \ln(1 + e^{x}),  \text{otherwise}
            \end{cases}

        mish(x) = x * \tanh(softplus(x))
1447

1448 1449
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
1450
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1451 1452 1453 1454 1455 1456 1457

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1458 1459
            >>> import paddle
            >>> import paddle.nn.functional as F
1460

1461 1462 1463 1464 1465
            >>> x = paddle.to_tensor([-5., 0., 5.])
            >>> out = F.mish(x)
            >>> print(out)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [-0.03357624,  0.        ,  4.99955177])
1466
    """
1467
    if in_dynamic_mode():
1468
        return _C_ops.mish(x, 20)
1469 1470
    else:
        check_variable_and_dtype(
1471
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'mish'
1472 1473 1474 1475 1476
        )
        helper = LayerHelper('mish', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='mish', inputs={'X': x}, outputs={'Out': out})
        return out
1477 1478


1479 1480 1481 1482 1483 1484
def tanhshrink(x, name=None):
    """
    tanhshrink activation

    .. math::

1485
        tanhshrink(x) = x - tanh(x)
1486 1487 1488

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
1489
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1490 1491 1492 1493 1494 1495 1496

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1497 1498
            >>> import paddle
            >>> import paddle.nn.functional as F
1499

1500 1501 1502 1503 1504
            >>> x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            >>> out = F.tanhshrink(x)
            >>> print(out)
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [-0.02005100, -0.00262472,  0.00033201,  0.00868741])
1505
    """
1506
    if in_dynamic_mode():
1507
        return _C_ops.tanh_shrink(x)
1508 1509
    else:
        check_variable_and_dtype(
1510
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'tanhshrink'
1511 1512 1513 1514 1515 1516 1517
        )
        helper = LayerHelper('tanh_shrink', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='tanh_shrink', inputs={'X': x}, outputs={'Out': out}
        )
        return out
1518 1519


1520
def thresholded_relu(x, threshold=1.0, name=None):
1521
    r"""
1522 1523 1524 1525
    thresholded relu activation.

    .. math::

1526
        thresholded\_relu(x) =
1527 1528 1529 1530 1531 1532 1533
            \left\{
                \begin{array}{rl}
                x,& \text{if } \ x > threshold \\
                0,& \text{otherwise}
                \end{array}
            \right.

1534 1535 1536 1537

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold for thresholded_relu. Default is 1.0
1538
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1539 1540 1541 1542 1543 1544 1545

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1546 1547
            >>> import paddle
            >>> import paddle.nn.functional as F
1548

1549 1550 1551 1552 1553
            >>> x = paddle.to_tensor([2., 0., 1.])
            >>> out = F.thresholded_relu(x)
            >>> print(out)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [2., 0., 0.])
1554 1555
    """

1556
    if in_dynamic_mode():
1557
        return _C_ops.thresholded_relu(x, threshold)
1558 1559
    else:
        check_variable_and_dtype(
1560 1561 1562 1563
            x,
            'x',
            ['float16', 'uint16', 'float32', 'float64'],
            'thresholded_relu',
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
        )
        helper = LayerHelper('thresholded_relu', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='thresholded_relu',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'threshold': threshold},
        )
        return out
1574 1575


1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
@inplace_apis_in_dygraph_only
def thresholded_relu_(x, threshold=1.0, name=None):
    r"""
    Inplace version of ``thresholded_relu`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`paddle_nn_functional_thresholded_relu`.
    """
    if in_dynamic_mode():
        return _C_ops.thresholded_relu_(x, threshold)


1586
def log_softmax(x, axis=-1, dtype=None, name=None):
1587
    r"""
1588 1589
    This operator implements the log_softmax layer. The calculation process is
    as follows:
1590 1591 1592

    .. math::

1593
        \begin{aligned}
1594 1595 1596
        log\_softmax[i, j] &= log(softmax(x)) \\
        &= log(\frac{\exp(X[i, j])}{\sum_j(\exp(X[i, j])})
        \end{aligned}
1597 1598

    Parameters:
1599 1600 1601 1602 1603 1604 1605
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` < 0, it works the same way as
            :math:`axis + D` . Default is -1.
        dtype (str|np.dtype|core.VarDesc.VarType, optional): The desired data
            type of the output tensor. If dtype is specified, ``x`` is casted
1606
            to ``dtype`` before the operation is performed. This is useful for
1607 1608 1609
            preventing data type overflows. Supported dtype: float32, float64.
            If ``dtype`` is None, the output Tensor has the same dtype as x.
            Default is None.
1610
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1611

1612
    Returns:
1613 1614
        A Tensor with the same shape and data type (use ``dtype`` if it is
        specified) as x.
1615 1616 1617 1618

    Examples:
        .. code-block:: python

1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
            >>> import paddle
            >>> import paddle.nn.functional as F
            >>> x = [[[-2.0, 3.0, -4.0, 5.0],
            ...       [3.0, -4.0, 5.0, -6.0],
            ...       [-7.0, -8.0, 8.0, 9.0]],
            ...      [[1.0, -2.0, -3.0, 4.0],
            ...       [-5.0, 6.0, 7.0, -8.0],
            ...       [6.0, 7.0, 8.0, 9.0]]]
            >>> x = paddle.to_tensor(x)
            >>> out1 = F.log_softmax(x)
            >>> out2 = F.log_softmax(x, dtype='float64')
            >>> #out1's data type is float32; out2's data type is float64
            >>> #out1 and out2's value is as follows:
            >>> print(out1)
            Tensor(shape=[2, 3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[[-7.12783957 , -2.12783957 , -9.12783909 , -0.12783945 ],
              [-2.12705135 , -9.12705135 , -0.12705141 , -11.12705135],
              [-16.31326103, -17.31326103, -1.31326187 , -0.31326184 ]],
             [[-3.05181193 , -6.05181217 , -7.05181217 , -0.05181199 ],
              [-12.31326675, -1.31326652 , -0.31326646 , -15.31326675],
              [-3.44018984 , -2.44018984 , -1.44018972 , -0.44018975 ]]])
            >>> print(out2)
            Tensor(shape=[2, 3, 4], dtype=float64, place=Place(cpu), stop_gradient=True,
            [[[-7.12783948 , -2.12783948 , -9.12783948 , -0.12783948 ],
              [-2.12705141 , -9.12705141 , -0.12705141 , -11.12705141],
              [-16.31326180, -17.31326180, -1.31326180 , -0.31326180 ]],
             [[-3.05181198 , -6.05181198 , -7.05181198 , -0.05181198 ],
              [-12.31326640, -1.31326640 , -0.31326640 , -15.31326640],
              [-3.44018970 , -2.44018970 , -1.44018970 , -0.44018970 ]]])
1648
    """
1649 1650 1651

    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
1652

1653
    if in_dynamic_mode():
1654
        if dtype is not None:
1655 1656
            x = _C_ops.cast(x, dtype)
        return _C_ops.log_softmax(x, axis)
1657 1658 1659
    else:
        if dtype is None:
            check_variable_and_dtype(
1660 1661 1662 1663
                x,
                'x',
                ['float16', 'uint16', 'float32', 'float64'],
                'log_softmax',
1664 1665 1666 1667 1668 1669 1670 1671 1672
            )
        else:
            check_dtype(
                dtype,
                'dtype',
                ['float32', 'float64'],
                'log_softmax',
                'If dtype is not None, it only support float32 or float64.',
            )
1673

1674 1675
        helper = LayerHelper("log_softmax", **locals())
        out_cast = x
H
hong 已提交
1676
        if dtype is not None:
1677 1678 1679 1680 1681 1682 1683
            out_cast = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='cast',
                inputs={'X': x},
                outputs={'Out': out_cast},
                attrs={'in_dtype': x.dtype, 'out_dtype': dtype},
            )
1684

1685
        out = helper.create_variable_for_type_inference(out_cast.dtype)
1686
        helper.append_op(
1687 1688 1689 1690
            type='log_softmax',
            inputs={'X': out_cast},
            outputs={'Out': out},
            attrs={'axis': axis},
1691
        )
1692

1693
        return out
F
Feiyu Chan 已提交
1694 1695 1696 1697


def glu(x, axis=-1, name=None):
    r"""
1698
    The gated linear unit. The input is evenly splited into 2 parts along a
F
Feiyu Chan 已提交
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
    given axis. The first part is used as the content, and the second part is
    passed through a sigmoid function then used as the gate. The output is a
    elementwise multiplication of the content and the gate.

    .. math::

        \mathrm{GLU}(a, b) = a \otimes \sigma(b)

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
1709 1710 1711
        axis (int, optional): The axis along which split the input tensor. It
            should be in range [-D, D), where D is the dimensions of ``x`` .
            If ``axis`` < 0, it works the same way as :math:`axis + D` .
F
Feiyu Chan 已提交
1712
            Default is -1.
1713
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1714

F
Feiyu Chan 已提交
1715
    Returns:
1716
        A Tensor with the same data type as x. The size of the given aixs is
F
Feiyu Chan 已提交
1717
        halved.
1718

F
Feiyu Chan 已提交
1719 1720
    Examples:
        .. code-block:: python
1721

1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
            >>> import paddle
            >>> from paddle.nn import functional as F
            >>> x = paddle.to_tensor(
            ...     [[-0.22014759, -1.76358426,  0.80566144,  0.04241343],
            ...         [-1.94900405, -1.89956081,  0.17134808, -1.11280477]]
            ... )
            >>> print(F.glu(x))
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[-0.15216254, -0.90048921],
            [-1.05778778, -0.46985325]])
1732

F
Feiyu Chan 已提交
1733
    """
1734 1735 1736
    check_variable_and_dtype(
        x, 'input', ['float16', 'float32', 'float64'], "glu"
    )
1737 1738 1739 1740 1741 1742 1743
    rank = len(x.shape)
    if not (-rank <= axis < rank):
        raise ValueError(
            "Expected value range of `axis` is [{}, {}), but received axis: {}".format(
                -rank, rank, axis
            )
        )
F
Feiyu Chan 已提交
1744 1745 1746 1747
    a, b = chunk(x, 2, axis=axis, name=name)
    gate = sigmoid(b, name=name)
    out = paddle.multiply(a, gate, name=name)
    return out
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772


def gumbel_softmax(x, temperature=1.0, hard=False, axis=-1, name=None):
    r"""
    Samples from the Gumbel-Softmax distribution and optionally discretizes.
    temperature is denoted by t. The calculation process is as follows:

    First, generate gumbel noise:

    .. math::

        G_i = -log(-log(U_i)), U_i \sim U(0,1)

    Second, add noise to ``x``:

    .. math::

        v = [x_1 + G_1,...,x_n + G_n]

    Finally, calculate gumbel_softmax and generate samples:

    .. math::
        gumbel\_softmax(v_i)=\frac{e^{v_i/t}}{\sum_{j=1}^n{e^{v_j/t}}},i=1,2,3...n

    Parameters:
1773 1774
        x (Tensor): An N-D Tensor, the first N - 1 dimensions index into a batch
            of independent distributions and the last dimension represents
1775
            a vector of probabilities with datatype float16, float32, float64.
1776 1777
        temperature (float, optional): non-negative scalar temperature.
            Default is 1.0.
1778 1779
        hard (bool, optional): if True, the returned samples will be discretized as
            one-hot vectors, but will be differentiated as if it is the soft sample
1780
            in autograd. Default is False.
1781
        axis (int, optional): The axis along will be calculated softmax value.
1782
            Default is -1.
1783
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1784

1785
    Returns:
1786 1787
        Sampled tensor of same shape as ``x`` from the Gumbel-Softmax distribution.
        If ``hard = True``, the returned samples will be one-hot, otherwise they will be
1788
        probability distributions that sum to 1 across ``axis``.
1789

1790 1791 1792
    Examples:
        .. code-block:: python

1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
            >>> import paddle
            >>> import paddle.nn.functional as F

            >>> paddle.seed(2023)
            >>> logits = paddle.randn([4, 6])
            >>> temperature = 0.01
            >>> gumbel_softmax = F.gumbel_softmax(logits, temperature)
            >>> print(gumbel_softmax)
            Tensor(shape=[4, 6], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.00000000, 1.        , 0.00000000, 0.00000000, 0.00000000, 0.00000000],
             [0.00000000, 0.00000000, 1.        , 0.00000000, 0.00000000, 0.00000000],
             [0.00000000, 0.00000004, 0.00000000, 0.00000000, 1.        , 0.00000000],
             [0.00000000, 1.        , 0.00000000, 0.00000000, 0.00000000, 0.00000000]])
1806

1807
    """
Z
zhiboniu 已提交
1808
    if in_dynamic_mode():
1809
        return _C_ops.gumbel_softmax(x, temperature, hard, axis)
1810 1811

    helper = LayerHelper("gumbel_softmax", **locals())
1812 1813 1814
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'gumbel_softmax'
    )
1815
    out = helper.create_variable_for_type_inference(x.dtype)
1816 1817 1818 1819 1820 1821
    helper.append_op(
        type='gumbel_softmax',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'temperature': temperature, 'hard': hard, 'axis': axis},
    )
1822
    return out