op_teller.cc 103.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/tensorrt/op_teller.h"
16

17
#include <bitset>
18

19
#include "paddle/fluid/framework/block_desc.h"
20
#include "paddle/fluid/framework/data_layout.h"
W
weishengying 已提交
21 22 23 24
#include "paddle/fluid/framework/phi_utils.h"
#include "paddle/fluid/inference/tensorrt/dynamic_shape_infermeta_factory.h"
#include "paddle/phi/core/compat/op_utils.h"
#include "paddle/phi/core/kernel_factory.h"
25

W
wanghuancoder 已提交
26 27 28 29 30 31
namespace paddle {
namespace framework {
class OpDesc;
}  // namespace framework
}  // namespace paddle

32 33 34 35 36 37
namespace paddle {
namespace inference {
namespace tensorrt {

// Just tell by the op_types.
struct SimpleOpTypeSetTeller : public Teller {
38
  SimpleOpTypeSetTeller() {
39
#if IS_TRT_VERSION_GE(7130)
Z
Zhang Jun 已提交
40
    // use TensorRT plugin
41
    teller_set.insert("group_norm");
Z
Zhang Jun 已提交
42 43
    teller_set.insert("multiclass_nms3");
    teller_set.insert("multiclass_nms");
44 45
    int8_teller_set.insert("multiclass_nms3");
    int8_teller_set.insert("multiclass_nms");
46
#endif
W
wenbin 已提交
47 48
#if IS_TRT_VERSION_GE(7000)
    teller_set.insert("tile");
49
    teller_set.insert("flatten_contiguous_range");
50
    int8_teller_set.insert("flatten_contiguous_range");
Z
zhoutianzi666 已提交
51 52 53 54
    teller_set.insert("rnn");
    int8_teller_set.insert("rnn");
    teller_set.insert("fill_constant_batch_size_like");
    int8_teller_set.insert("fill_constant_batch_size_like");
W
wenbin 已提交
55
#endif
W
wenbin 已提交
56
#if CUDA_VERSION >= 10020
W
Wangzheee 已提交
57 58
    teller_set.insert("reshape");
    teller_set.insert("reshape2");
59 60
    int8_teller_set.insert("reshape");
    int8_teller_set.insert("reshape2");
61 62 63 64 65 66
#endif
#if IS_TRT_VERSION_GE(8000)
    teller_set.insert("sparse_fc");
    int8_teller_set.insert("sparse_fc");
    teller_set.insert("sparse_multihead_matmul");
    int8_teller_set.insert("sparse_multihead_matmul");
67
#endif
68 69 70 71 72
#if IS_TRT_VERSION_GE(8522)
    teller_set.insert("flash_multihead_matmul");
    int8_teller_set.insert("flash_multihead_matmul");
    teller_set.insert("cross_multihead_matmul");
    int8_teller_set.insert("cross_multihead_matmul");
73 74
    teller_set.insert("qk_multihead_matmul");
    int8_teller_set.insert("qk_multihead_matmul");
75
#endif
76 77 78
#if IS_TRT_VERSION_GE(8200)
    teller_set.insert("round");
    int8_teller_set.insert("round");
X
xjmxyt 已提交
79
    teller_set.insert("set_value");
X
xjmxyt 已提交
80 81
    teller_set.insert("index_select");
    int8_teller_set.insert("index_select");
82 83
#endif
  }
84

W
weishengying 已提交
85 86 87 88 89 90 91 92 93 94
  bool operator()(const framework::OpDesc& desc,
                  bool use_no_calib_int8 = false,
                  bool with_dynamic_shape = false) override {
    const std::string op_type = desc.Type();
    // do not support the op which is labeled the `skip_quant`
    if ((desc.HasAttr("namescope") &&
         PADDLE_GET_CONST(std::string, desc.GetAttr("op_namescope")) ==
             "/skip_quant_2/") ||
        desc.HasAttr("skip_quant"))
      return false;
95
    std::unordered_set<std::string> act_op_list = {
96 97 98 99 100 101 102 103 104 105 106 107
        "relu",       "relu6",       "sigmoid",
        "elu",        "selu",        "softsign",
        "softplus",   "stanh",       "thresholded_relu",
        "exp",        "log",         "sqrt",
        "abs",        "sin",         "cos",
        "tan",        "tanh",        "sinh",
        "cosh",       "asin",        "acos",
        "atan",       "asinh",       "acosh",
        "atanh",      "ceil",        "celu",
        "erf",        "floor",       "round",
        "sign",       "silu",        "logical_not",
        "reciprocal", "tanh_shrink", "logsigmoid"};
108
    if (act_op_list.find(op_type) != act_op_list.end()) {
J
JingZhuangzhuang 已提交
109
      auto* block = desc.Block();
110 111 112 113 114 115
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
J
JingZhuangzhuang 已提交
116 117 118 119 120 121 122 123
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 1) {
        VLOG(3) << op_type
                << " op does not support input's dim is 1 in tensorrt.";
        return false;
      }
124 125 126 127 128 129
#if !IS_TRT_VERSION_GE(7000)
      if (op_type == "erf") {
        VLOG(3) << op_type << " op does not support tensorrt.";
        return false;
      }
#endif
J
JingZhuangzhuang 已提交
130 131
    }

132 133
    // In static shape in Paddle-TRT, we can't allow that one op has a
    // 1D intermediate tensor as input.
134 135
    if (!with_dynamic_shape) {
      auto inputs = desc.Inputs();
136 137 138 139 140 141 142 143 144 145 146
      for (auto iter : inputs) {
        for (auto var_name : iter.second) {
          auto* block = desc.Block();
          if (block) {
            auto* var_desc = block->FindVar(var_name);
            // Can't get feed op's TensorDesc
            if (op_type != "feed" && var_desc && !var_desc->Persistable()) {
              const auto shape = var_desc->GetShape();
              if (shape.size() == 1) return false;
            }
          }
147 148 149 150
        }
      }
    }

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
    if (op_type == "dropout") {
      /*
       * Some OpDescs Attribute support both constant value and dynamic
       * runtime value (which is a Variable(s) type). But TensorRT maybe
       * only support constant value Attribute, so we shall distinguish
       * this case in time and return False in OpTeller.Tell().
       * If Attribute is Variable(s), HasAttr() will return False
       */
      if (!desc.HasAttr("dropout_prob", /*with_attr_var=*/false)) {
        VLOG(3)
            << "Skip to convert into TRT while found Attribute('dropout_prob') "
               "is Variable type in dropout.";
        return false;
      }
    }

167
    if (op_type == "pool2d") {
168 169 170 171 172 173 174
      // If Attribute is Variable(s), HasAttr() will return False
      if (!desc.HasAttr("ksize", /*with_attr_var=*/false)) {
        VLOG(3) << "Skip to convert into TRT while found Attribute('ksize') is "
                   "Variable type in pool2d.";
        return false;
      }

175
      std::vector<int> paddings =
R
Ruibiao Chen 已提交
176
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("paddings"));
177 178
      if (paddings.size() > 2) {
        return false;
179
      }
180 181 182 183 184 185 186 187 188 189
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "TRT Pool2d expect 1 input, but got "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "TRT Pool2d has only 1 output, but got "
                << desc.Output("Out").size();
        return false;
      }
W
wenbin 已提交
190 191
      if (desc.HasAttr("data_format")) {
        std::string data_format =
R
Ruibiao Chen 已提交
192
            PADDLE_GET_CONST(std::string, desc.GetAttr("data_format"));
W
wenbin 已提交
193 194 195 196
        if (data_format == "NHWC" || data_format == "NDHWC") {
          return false;
        }
      }
197 198 199 200
      if (!desc.HasAttr("pooling_type")) {
        return false;
      } else {
        std::string pool_type =
R
Ruibiao Chen 已提交
201
            PADDLE_GET_CONST(std::string, desc.GetAttr("pooling_type"));
202 203 204 205 206
        if (pool_type != "max" && pool_type != "avg") {
          VLOG(3) << "Wrong pool op type, the trt do not support the "
                  << pool_type << " pool type.";
          return false;
        }
207 208
        if (pool_type == "avg") {
          if (desc.HasAttr("global_pooling")) {
R
Ruibiao Chen 已提交
209
            if (!PADDLE_GET_CONST(bool, desc.GetAttr("global_pooling"))) {
210
              if (desc.HasAttr("exclusive")) {
R
Ruibiao Chen 已提交
211
                if (PADDLE_GET_CONST(bool, desc.GetAttr("exclusive"))) {
212
                  std::vector<int> ksize =
R
Ruibiao Chen 已提交
213
                      PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("ksize"));
214 215 216 217 218 219 220 221 222 223 224 225 226
                  for (size_t i = 0; i < ksize.size(); i++) {
                    if (ksize[i] <= paddings[i]) {
                      VLOG(3) << "the padding size should be less than the "
                                 "filter size "
                                 "for exclusive-counting pooling.";
                      return false;
                    }
                  }
                }
              }
            }
          }
        }
227 228 229 230
      }
    }

    if (op_type == "conv2d" || op_type == "conv2d_transpose" ||
231 232
        op_type == "conv2d_fusion" || op_type == "depthwise_conv2d" ||
        op_type == "depthwise_conv2d_transpose") {
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
      if (desc.Input("Input").size() != 1) {
        VLOG(3) << "TRT Conv2d expect 1 input, but got "
                << desc.Input("Input").size() << " input.";
        return false;
      }

      if (desc.Input("Filter").size() != 1) {
        VLOG(3) << "TRT Conv2d expect 1 filter, but got "
                << desc.Input("Filter").size() << " filter.";
        return false;
      }

      if (desc.HasAttr("enable_int8")) {
        if (op_type == "conv2d" || op_type == "conv2d_fusion") {
          if (!desc.HasAttr("Input_scale")) {
            VLOG(3) << "Input scale not found. TRT int8"
                       " requires conv/deconv to have "
                       "input quantization scales.";
            return false;
          }
        }
      }

256 257
      if (op_type == "conv2d_transpose" ||
          op_type == "depthwise_conv2d_transpose") {
258 259 260 261
        if (!desc.HasAttr("dilations")) {
          return false;
        } else {
          const std::vector<int> dilations =
R
Ruibiao Chen 已提交
262
              PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("dilations"));
263 264 265 266 267 268 269 270 271 272 273 274 275 276
          if (dilations[0] != 1 || dilations[1] != 1) {
            VLOG(3) << "In conv2d_transpose, Dilations must be (1, 1) for "
                       "tensorRT, but given ("
                    << dilations[0] << ", " << dilations[1] << ")";
            return false;
          }
        }
      }

      if (desc.Output("Output").size() != 1) {
        VLOG(3) << "TRT Conv2d expect 1 output, but got "
                << desc.Output("Output").size() << " output.";
        return false;
      }
277

W
wenbin 已提交
278
// strides > 1 and 'SAME' is only supported by trt7.0 above
279
#if !IS_TRT_VERSION_GE(7000)
W
wenbin 已提交
280 281 282 283
      if (op_type == "conv2d" || op_type == "conv2d_fusion" ||
          op_type == "depthwise_conv2d") {
        if (desc.HasAttr("padding_algorithm") && with_dynamic_shape) {
          auto padding_algorithm =
R
Ruibiao Chen 已提交
284
              PADDLE_GET_CONST(std::string, desc.GetAttr("padding_algorithm"));
W
wenbin 已提交
285 286
          if (padding_algorithm == "SAME" && desc.HasAttr("strides")) {
            const std::vector<int> strides =
R
Ruibiao Chen 已提交
287
                PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("strides"));
W
wenbin 已提交
288 289 290 291 292 293
            // there is no issue if strides.size() less than 2
            if (strides.size() > 1) {
              for (size_t i = 0; i < strides.size(); i++) {
                if (strides[i] > 1) return false;
              }
            }
294 295 296 297
          }
        }
      }
#endif
298 299 300 301 302 303 304 305 306
      auto* block = desc.Block();
      if (block) {
        auto* filter_var_desc = block->FindVar(desc.Input("Filter")[0]);
        if (!filter_var_desc->Persistable()) {
          VLOG(3) << "Trt not support filter is  a intermediate tensor in "
                     "conv2d op.";
          return false;
        }
      }
307 308
    }

W
wangxinxin08 已提交
309
    if (op_type == "deformable_conv") {
310 311 312
      if (!desc.HasAttr("groups") || !desc.HasAttr("strides") ||
          !desc.HasAttr("paddings"))
        return false;
W
wangxinxin08 已提交
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
      auto* block = desc.Block();
      auto input_name = desc.Input("Input")[0];
      auto* input_desc = block->FindVar(input_name);
      const auto input_shape = input_desc->GetShape();

      if (input_shape.size() != 4) {
        VLOG(3) << "Input of deformable conv should be 4-D Tensor, but got "
                << input_shape.size();
        return false;
      }

      auto filter_name = desc.Input("Filter")[0];
      auto* filter_desc = block->FindVar(filter_name);
      const auto filter_shape = filter_desc->GetShape();

R
Ruibiao Chen 已提交
328
      int groups = PADDLE_GET_CONST(int, desc.GetAttr("groups"));
W
wangxinxin08 已提交
329 330 331 332 333 334 335 336
      if (input_shape[1] != filter_shape[1] * groups) {
        VLOG(3) << "The number of input channels should be equal to filter "
                << "channels * groups. But got input channels "
                << input_shape[1] << "filter channels " << filter_shape[1];
        return false;
      }

      const std::vector<int> strides =
R
Ruibiao Chen 已提交
337
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("strides"));
W
wangxinxin08 已提交
338 339 340 341 342 343 344
      if (strides.size() != 2) {
        VLOG(3) << "The size of strides should be 2, but got "
                << strides.size();
        return false;
      }

      const std::vector<int> paddings =
R
Ruibiao Chen 已提交
345
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("paddings"));
W
wangxinxin08 已提交
346 347 348 349 350 351 352
      if (paddings.size() != 2) {
        VLOG(3) << "The size of paddings shoule be 2, but got "
                << paddings.size();
        return false;
      }
    }

353 354 355 356 357 358
    if (op_type == "bmm") {
      if (!with_dynamic_shape) {
        return false;
      }
    }

359 360 361 362
    if (op_type == "range") {
      if (!with_dynamic_shape) {
        return false;
      }
363 364 365 366 367 368 369 370 371
#if IS_TRT_VERSION_LT(8400)
      auto* block = desc.Block();
      auto start_var_name = desc.Input("Start")[0];
      auto* start_var_desc = block->FindVar(start_var_name);
      auto start_dtype = start_var_desc->GetDataType();
      if (start_dtype == framework::proto::VarType::FP32) {
        return false;
      }
#endif
372 373
    }

374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
    if (op_type == "sign") {
#if IS_TRT_VERSION_GE(8200)
      if (!with_dynamic_shape) {
        return false;
      }
#else
      VLOG(3) << "sign op is only supported by trt8.2 above ";
      return false;
#endif
    }

    if (op_type == "logical_not") {
#if IS_TRT_VERSION_GE(8400)
      if (!with_dynamic_shape) {
        return false;
      }
#else
      VLOG(3) << "logical_not op is only supported by trt8.4 above because of "
                 "cast op";
      return false;
#endif
    }
W
Wilber 已提交
396 397 398 399 400 401 402 403 404 405 406 407
    if (op_type == "softmax") {
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
    }
408
    if (op_type == "group_norm") {
409 410 411 412
      if (!desc.HasAttr("epsilon") || !desc.HasAttr("groups") ||
          !desc.HasAttr("data_layout"))
        return false;

413 414
      auto registry = GetPluginRegistry();
      if (registry == nullptr) return false;
415 416 417 418 419 420 421
      std::string layout_str =
          PADDLE_GET_CONST(std::string, desc.GetAttr("data_layout"));
      if (layout_str != "NCHW") {
        VLOG(3) << "Group norm trt plugin only support NCHW layout, but got "
                << layout_str;
        return false;
      }
422 423 424 425
    }
    if (op_type == "concat") {
      if (!desc.HasAttr("axis")) {
        return false;
W
Wilber 已提交
426
      }
R
Ruibiao Chen 已提交
427
      int axis = PADDLE_GET_CONST(int, desc.GetAttr("axis"));
428 429
      if (!with_dynamic_shape) {
        if (axis == 0) return false;
W
Wilber 已提交
430 431 432 433 434
      }
      auto concat_inputs = desc.Inputs();
      if (concat_inputs.find("AxisTensor") != concat_inputs.end()) {
        if (desc.Input("AxisTensor").size() >= 1) {
          return false;
435
        }
436 437
      }
    }
438 439 440
    if (op_type == "transpose2" || op_type == "transpose") {
      if (!desc.HasAttr("axis")) {
        return false;
441 442
      }
      std::vector<int> axis =
R
Ruibiao Chen 已提交
443
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("axis"));
444 445 446 447
      if (!with_dynamic_shape && axis[0] != 0) return false;
      if (axis.size() >= nvinfer1::Dims::MAX_DIMS) return false;

      auto* block = desc.Block();
448 449 450 451 452 453
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
454 455 456
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
W
wenbin 已提交
457
      if (axis.size() != x_shape.size()) return false;
458
      int dims = x_shape.size();
W
wenbin 已提交
459

460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
      std::vector<int> perm(nvinfer1::Dims::MAX_DIMS);
      for (int i = 0; i < dims; i++) {
        perm[i] = axis[i];
      }
      auto is_valid_permutation = [&](int dims,
                                      const std::vector<int>& permutation) {
        std::bitset<nvinfer1::Dims::MAX_DIMS> found;
        for (int i = 0; i < dims; ++i) {
          const int x = permutation[i];
          if ((x < 0) || (x >= dims) || found[x])
            return false;  // Out of bounds or duplicate
          found.set(x);
        }
        return true;
      };
      if (!is_valid_permutation(dims, perm)) {
        VLOG(3) << "Invalid permutation dimensions for trt transpose op "
                   "converter: duplicate or out of bound.";
W
wenbin 已提交
478
        return false;
479 480
      }
    }
481
    if (op_type == "flatten2" || op_type == "flatten") {
482 483 484
      if (!desc.HasAttr("axis")) {
        return false;
      } else {
485 486
#if IS_TRT_VERSION_GE(7130)
#else
487
        if (with_dynamic_shape) return false;
488
#endif
R
Ruibiao Chen 已提交
489
        int axis = PADDLE_GET_CONST(int, desc.GetAttr("axis"));
490 491 492
        if (axis != 1) return false;
      }
    }
493 494
    if (op_type == "flatten_contiguous_range") {
      if (!with_dynamic_shape) {
495 496 497
        if (!desc.HasAttr("start_axis") || !desc.HasAttr("stop_axis")) {
          return false;
        }
R
Ruibiao Chen 已提交
498 499
        int start_axis = PADDLE_GET_CONST(int, desc.GetAttr("start_axis"));
        int stop_axis = PADDLE_GET_CONST(int, desc.GetAttr("stop_axis"));
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
        auto x_var_name = desc.Input("X")[0];
        auto* block = desc.Block();
        if (block == nullptr) {
          VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                     "Developers need to check whether block_desc is passed in "
                     "the pass.";
          return false;
        }
        auto* x_var_desc = block->FindVar(x_var_name);
        const auto x_shape = x_var_desc->GetShape();
        int dims = x_shape.size();
        if (start_axis < 0) start_axis += dims;
        if (start_axis == 0) {
          VLOG(3) << "TRT flatten_contiguous_range not support the "
                     "batch-dimension being changed";
          return false;
        }
        if (stop_axis < 0) stop_axis += dims;
        for (int i = start_axis; i <= stop_axis; ++i) {
          if (x_shape[i] < 0) {
            VLOG(3) << "On TRT static shape,flatten_contiguous_range input dim "
                       "should be > 0";
            return false;
          }
        }
      }
    }
527

528
    if (op_type == "gather") {
529 530 531 532 533 534 535 536 537
      auto gather_inputs = desc.Inputs();
      if (gather_inputs.find("Axis") != gather_inputs.end()) {
        if (desc.Input("Axis").size() >= 1) {
          return false;
        }
      }
      if (!with_dynamic_shape) {
        return false;
      } else {
538
        auto* block = desc.Block();
539 540 541 542 543 544
        if (block == nullptr) {
          VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                     "Developers need to check whether block_desc is passed in "
                     "the pass.";
          return false;
        }
F
feng_shuai 已提交
545 546 547 548 549 550 551 552 553 554

        auto index_var_name = desc.Input("Index")[0];
        auto* index_var_desc = block->FindVar(index_var_name);

        // The index input must be int32 datatype.
        if (index_var_desc->GetDataType() !=
            paddle::framework::proto::VarType_Type::VarType_Type_INT32) {
          VLOG(3) << "gather op Index input data type must be int32";
          return false;
        }
F
feng_shuai 已提交
555
#if !IS_TRT_VERSION_GE(7000)
556 557 558 559 560 561
        auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
        const auto x_shape = x_var_desc->GetShape();
        if (x_shape.size() == 1) {
          VLOG(3) << "Gather does not support 1-dimensional input in tensorrt";
          return false;
        }
F
feng_shuai 已提交
562
#endif
563
      }
564
    }
Z
zlsh80826 已提交
565

566
    if (op_type == "gather_nd") {
567 568
      if (!with_dynamic_shape) return false;

569
      auto* block = desc.Block();
570 571 572 573 574 575
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
576
#if IS_TRT_VERSION_LT(8200)
577 578
      auto index_var_name = desc.Input("Index")[0];
      auto* index_var_desc = block->FindVar(index_var_name);
579 580
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
581 582
      const auto index_shape = index_var_desc->GetShape();
      const auto x_shape = x_var_desc->GetShape();
583 584 585 586 587 588
      if (x_shape.size() <= 2) {
        VLOG(3) << "gather_nd op requires the input's dimension to be greater "
                   "than 2";
        return false;
      }

589 590 591 592 593
      if (x_shape.size() != index_shape.size()) {
        VLOG(3) << "gather_nd op Index input dims size [" << index_shape.size()
                << " ] not equal to x dims size [" << x_shape.size() << "]";
        return false;
      }
594
#endif
595
    }
X
xjmxyt 已提交
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
    if (op_type == "index_select") {
#if !IS_TRT_VERSION_GE(8200)
      return false;
#endif
      auto gather_inputs = desc.Inputs();
      if (!with_dynamic_shape) {
        return false;
      } else {
        auto* block = desc.Block();
        if (block == nullptr) {
          VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                     "Developers need to check whether block_desc is passed in "
                     "the pass.";
          return false;
        }

        auto index_var_name = desc.Input("Index")[0];
        auto* index_var_desc = block->FindVar(index_var_name);
614

X
xjmxyt 已提交
615 616 617 618 619 620 621 622 623 624 625
        // The index input must be int32 or int64 datatype.
        if (index_var_desc->GetDataType() !=
                paddle::framework::proto::VarType_Type::VarType_Type_INT32 &&
            index_var_desc->GetDataType() !=
                paddle::framework::proto::VarType_Type::VarType_Type_INT64) {
          VLOG(3)
              << "Index select op Index input data type must be int32 or int64";
          return false;
        }
      }
    }
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
    if (op_type == "take_along_axis") {
#if IS_TRT_VERSION_GE(8200)
      if (!with_dynamic_shape) return false;
      auto* block = desc.Block();
      auto input_var_name = desc.Input("Input")[0];
      auto index_var_name = desc.Input("Index")[0];
      auto* input_var_desc = block->FindVar(input_var_name);
      auto* index_var_desc = block->FindVar(index_var_name);

      // The index input must be int32 datatype.
      if (index_var_desc->GetDataType() !=
          paddle::framework::proto::VarType_Type::VarType_Type_INT32) {
        VLOG(3) << "take_along_axis op Index input data type must be int32";
        return false;
      }

      const auto input_shape = input_var_desc->GetShape();
      const auto index_shape = index_var_desc->GetShape();
      if (input_shape.size() != index_shape.size()) {
        VLOG(3) << "take_along_axis op Index input dims size ["
                << index_shape.size() << " ] not equal to input dims size ["
                << input_shape.size() << "]";
        return false;
      }
#else
      VLOG(3) << "take_along_axis op is only supported by trt8.2 above ";
      return false;
#endif
    }

656 657 658 659
    if (op_type == "anchor_generator") {
      if (!with_dynamic_shape) return false;
    }

Z
zlsh80826 已提交
660 661 662 663 664 665
    if (op_type == "yolo_box") {
      if (with_dynamic_shape) return false;
      bool has_attrs =
          (desc.HasAttr("class_num") && desc.HasAttr("anchors") &&
           desc.HasAttr("downsample_ratio") && desc.HasAttr("conf_thresh") &&
           desc.HasAttr("clip_bbox") && desc.HasAttr("scale_x_y"));
Z
zlsh80826 已提交
666
      if (!has_attrs) return false;
Z
zlsh80826 已提交
667 668
    }

669 670 671 672 673 674
    if (op_type == "yolo_box_head") {
      if (with_dynamic_shape) return false;
      bool has_attrs = desc.HasAttr("class_num") && desc.HasAttr("anchors");
      if (!has_attrs) return false;
    }

675
    if (op_type == "arg_max" || op_type == "arg_min") {
676 677 678 679 680 681
      if (!desc.HasAttr("axis", /*with_attr_var=*/false)) {
        VLOG(3) << "Skip to convert into TRT while found Attribute('axis') is "
                   "Variable type in arg_max.";
        return false;
      }

682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      auto x_dtype = x_var_desc->GetDataType();

      if (!(x_dtype == framework::proto::VarType::FP32 ||
            x_dtype == framework::proto::VarType::FP16)) {
        return false;
      }

698
      int axis = desc.HasAttr("axis")
R
Ruibiao Chen 已提交
699
                     ? PADDLE_GET_CONST(int64_t, desc.GetAttr("axis"))
700
                     : -1;
X
xiaoxiaohehe001 已提交
701 702 703 704 705 706
      bool flatten = desc.HasAttr("flatten")
                         ? PADDLE_GET_CONST(bool, desc.GetAttr("flatten"))
                         : false;
      int dtype = desc.HasAttr("dtype")
                      ? PADDLE_GET_CONST(int, desc.GetAttr("dtype"))
                      : 3;
707
      if (axis == 0 || flatten || (dtype != 2 && dtype != 3)) return false;
708 709
    }

710 711
    if (op_type == "affine_channel") {
      if (!desc.HasAttr("data_layout")) return false;
712
      auto data_layout = phi::StringToDataLayout(
R
Ruibiao Chen 已提交
713
          PADDLE_GET_CONST(std::string, desc.GetAttr("data_layout")));
714
      if (data_layout != phi::DataLayout::kNCHW) return false;
715 716

      auto* block = desc.Block();
717 718 719 720 721 722
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
723 724 725 726 727 728
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 2) {
        return false;
      }
729 730
    }

731
    if (op_type == "multiclass_nms" || op_type == "multiclass_nms3") {
Z
zlsh80826 已提交
732
      auto* block = desc.Block();
733 734 735 736 737 738
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
739 740 741 742 743 744 745 746
      auto multiclass_nms_inputs = desc.Inputs();
      if (multiclass_nms_inputs.find("RoisNum") !=
          multiclass_nms_inputs.end()) {
        if (desc.Input("RoisNum").size() >= 1) {
          return false;
        }
      }
      for (auto& param_name : multiclass_nms_inputs) {
Z
zlsh80826 已提交
747 748 749 750
        for (auto& var_name : param_name.second) {
          auto* var_desc = block->FindVar(var_name);
          const auto shape = var_desc->GetShape();
          if (shape.size() != 3) {
751
            VLOG(3) << "multiclass_nms op dims != 3 not supported in tensorrt, "
Z
zlsh80826 已提交
752 753 754 755 756 757 758 759 760 761 762 763
                       "but got dims "
                    << shape.size() << ", so jump it.";
            return false;
          }
        }
      }
      bool has_attrs =
          (desc.HasAttr("background_label") &&
           desc.HasAttr("score_threshold") && desc.HasAttr("nms_top_k") &&
           desc.HasAttr("keep_top_k") && desc.HasAttr("normalized"));
      if (has_attrs == false) return false;

764 765 766
      // TODO(wangxinxin08): tricky solution because the outputs of batchedNMS
      // plugin are not constient with those of multiclass_nms3
      if (desc.HasAttr("nms_eta") == false) return false;
R
Ruibiao Chen 已提交
767
      auto nms_eta = PADDLE_GET_CONST(float, desc.GetAttr("nms_eta"));
768 769
      if (nms_eta <= 1.0) return false;

R
Ruibiao Chen 已提交
770
      auto nms_top_k = PADDLE_GET_CONST(int, desc.GetAttr("nms_top_k"));
Z
zlsh80826 已提交
771 772
      if (nms_top_k < 0) return false;

R
Ruibiao Chen 已提交
773
      auto keep_top_k = PADDLE_GET_CONST(int, desc.GetAttr("keep_top_k"));
Z
zlsh80826 已提交
774 775 776 777 778 779
      if (keep_top_k < 0) return false;

      auto registry = GetPluginRegistry();
      if (registry == nullptr) return false;
    }

780
    if (op_type == "nearest_interp") {
C
ccrrong 已提交
781 782
      std::vector<std::string> attrs{
          "interp_method", "align_corners", "scale", "out_h", "out_w"};
783
      for (auto const& attr : attrs) {
784 785
        if (!desc.HasAttr(attr)) return false;
      }
786
      if (desc.HasAttr("data_layout")) {
787
        auto data_layout = phi::StringToDataLayout(
R
Ruibiao Chen 已提交
788
            PADDLE_GET_CONST(std::string, desc.GetAttr("data_layout")));
789 790
        if (data_layout != phi::DataLayout::kNCHW &&
            data_layout != phi::DataLayout::kNHWC)
791 792
          return false;
      }
793
      auto interp_method =
R
Ruibiao Chen 已提交
794
          PADDLE_GET_CONST(std::string, desc.GetAttr("interp_method"));
795
      if (interp_method != "nearest") return false;
R
Ruibiao Chen 已提交
796 797 798 799 800
      auto scale = PADDLE_GET_CONST(float, desc.GetAttr("scale"));
      auto out_h = PADDLE_GET_CONST(int, desc.GetAttr("out_h"));
      auto out_w = PADDLE_GET_CONST(int, desc.GetAttr("out_w"));
      auto align_corners =
          PADDLE_GET_CONST(bool, desc.GetAttr("align_corners"));
801 802 803 804
      if (!(scale > 0.f && (out_h <= 0 && out_w <= 0))) {
        if (out_h <= 0) {
          VLOG(3) << "out_h must be greater than 0 if scale is not set.";
          return false;
805
        }
806 807
        if (out_w <= 0) {
          VLOG(3) << "out_w must be greater than 0 if scale is not set.";
已提交
808 809
          return false;
        }
810
      }
811 812 813 814 815 816 817 818 819
      if ((scale <= 0.f) && with_dynamic_shape) {
        VLOG(3) << "dynamic shape not support scale not set.";
        return false;
      }
      // When align_corners = true, the paddle's and trt_layer's results has
      // diff
      if (align_corners && scale != 1) {
        return false;
      }
820
    }
821

822
    if (op_type == "nearest_interp_v2") {
C
ccrrong 已提交
823 824 825 826 827 828
      std::vector<std::string> attrs{"data_layout",
                                     "interp_method",
                                     "align_corners",
                                     "scale",
                                     "out_h",
                                     "out_w"};
829
      for (auto const& attr : attrs) {
830 831
        if (!desc.HasAttr(attr)) return false;
      }
832
      auto data_layout = phi::StringToDataLayout(
R
Ruibiao Chen 已提交
833
          PADDLE_GET_CONST(std::string, desc.GetAttr("data_layout")));
834 835
      if (data_layout != phi::DataLayout::kNCHW &&
          data_layout != phi::DataLayout::kNHWC)
836 837
        return false;
      auto interp_method =
R
Ruibiao Chen 已提交
838
          PADDLE_GET_CONST(std::string, desc.GetAttr("interp_method"));
839
      if (interp_method != "nearest") return false;
840

841
#if IS_TRT_VERSION_GE(8200)
842 843 844 845 846 847
      auto resize_inputs = desc.Inputs();
      if (with_dynamic_shape &&
          resize_inputs.find("SizeTensor") != resize_inputs.end() &&
          desc.Input("SizeTensor").size() == 2) {
        return true;
      }
848
#endif
849

R
Ruibiao Chen 已提交
850 851 852
      auto scale = PADDLE_GET_CONST(std::vector<float>, desc.GetAttr("scale"));
      auto out_h = PADDLE_GET_CONST(int, desc.GetAttr("out_h"));
      auto out_w = PADDLE_GET_CONST(int, desc.GetAttr("out_w"));
853
      if (!(out_h > 0 && out_w > 0)) {
W
wenbin 已提交
854
        if (scale.size() < 2) return false;
855 856 857 858 859 860 861 862
        if (scale[0] <= 0.f || scale[1] <= 0.f) {
          VLOG(3) << "scale factor must be greater than 0 if out_h or out_w is "
                     "not set.";
          return false;
        }
      }
    }

863
    if (op_type == "bilinear_interp_v2") {
864 865 866 867
      // trt 7011 result in test_solov2_trt_fp32.py TRT fp32 diff
#if IS_TRT_VERSION_LT(7100)
      return false;
#endif
C
ccrrong 已提交
868 869 870 871 872 873
      std::vector<std::string> attrs{"data_layout",
                                     "interp_method",
                                     "align_corners",
                                     "scale",
                                     "out_h",
                                     "out_w"};
874
      for (auto const& attr : attrs) {
875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
        if (!desc.HasAttr(attr)) {
          VLOG(3) << "The op_type " << op_type << " doesn't have the attr "
                  << attr << " and return false";
          return false;
        }
      }

      auto resize_inputs = desc.Inputs();
      if (resize_inputs.find("SizeTensor") != resize_inputs.end()) {
        if (desc.Input("SizeTensor").size() >= 1) {
          VLOG(3)
              << "The Paddle-TRT doesn't support the SizeTensor for op_type "
              << op_type;
          return false;
        }
      }

      if (resize_inputs.find("OutSize") != resize_inputs.end()) {
893 894
        if (!with_dynamic_shape) {
          VLOG(3) << "Static shape don't support the OutSize for op_type "
895 896 897 898 899
                  << op_type;
          return false;
        }
      }

900
      auto data_layout = phi::StringToDataLayout(
R
Ruibiao Chen 已提交
901
          PADDLE_GET_CONST(std::string, desc.GetAttr("data_layout")));
902 903
      if (data_layout != phi::DataLayout::kNCHW &&
          data_layout != phi::DataLayout::kNHWC) {
904 905 906 907 908
        VLOG(3) << "The op_type " << op_type
                << " is not NCHW or NHWC return false";
        return false;
      }
      auto interp_method =
R
Ruibiao Chen 已提交
909
          PADDLE_GET_CONST(std::string, desc.GetAttr("interp_method"));
910 911 912 913 914 915
      if (interp_method != "bilinear") {
        VLOG(3) << "The interp_method of op_type " << op_type
                << " is not bilinear";
        return false;
      }

R
Ruibiao Chen 已提交
916 917
      auto align_corners =
          PADDLE_GET_CONST(bool, desc.GetAttr("align_corners"));
918 919 920 921 922 923 924 925 926 927 928
      if (align_corners != false) {
        VLOG(3)
            << "The bilinear_interp_v2 only supports align_corners with false.";
        return false;
      }

      bool has_scale_input_size =
          (resize_inputs.find("Scale") != resize_inputs.end());

      if (has_scale_input_size && desc.Input("Scale").size() != 1) {
        const std::vector<float> scale =
R
Ruibiao Chen 已提交
929
            PADDLE_GET_CONST(std::vector<float>, desc.GetAttr("scale"));
930 931 932 933 934 935 936
        if (scale.size() <= 1) {
          if (!desc.HasAttr("out_h") || !desc.HasAttr("out_w")) {
            VLOG(3) << "The op_type " << op_type
                    << " doesn't have Scale and the scale size <=1 and without "
                       "out_h / out_w, it will return false";
            return false;
          }
R
Ruibiao Chen 已提交
937 938
          auto out_h = PADDLE_GET_CONST(int, desc.GetAttr("out_h"));
          auto out_w = PADDLE_GET_CONST(int, desc.GetAttr("out_w"));
939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
          if (!(out_h <= 0 && out_w <= 0)) {
            if (out_h <= 0) {
              VLOG(3) << "The op_type " << op_type
                      << "'s out_h must be greater than 0 if scale is not set.";
              return false;
            }
            if (out_w <= 0) {
              VLOG(3) << "The op_type " << op_type
                      << "'s out_w must be greater than 0 if scale is not set.";
              return false;
            }
          }
        } else {
          for (size_t i = 0; i < scale.size(); i++) {
            if (scale[i] <= 0 && with_dynamic_shape) {
              VLOG(3) << "dynamic shape not support Attr(scale[" << i << "]) "
                      << scale[i]
                      << " less than 1 and Input(Scale) vector not set.";
              return false;
            }
          }
        }
      }
    }

964 965 966 967 968 969 970 971 972 973 974 975 976 977
    if (op_type == "hard_swish") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "HardSwish op has only 1 input, but got "
                << desc.Input("X").size();
        return false;
      }

      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "HardSwish op has only 1 output, but got "
                << desc.Output("Out").size();
        return false;
      }
    }

978
    if (op_type == "squeeze2") {
979 980 981 982 983 984 985
      // If Attribute is Variable(s), HasAttr() will return False
      if (!desc.HasAttr("axes", /*with_attr_var=*/false)) {
        VLOG(3) << "Skip to convert into TRT while found Attribute('axes') is "
                   "Variable type in squeeze2.";
        return false;
      }

986 987
      std::vector<int> axes;
      if (desc.HasAttr("axes")) {
R
Ruibiao Chen 已提交
988
        axes = PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("axes"));
989 990
      }
      if (axes.size() == 0) {
W
wenbin 已提交
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
        auto* block = desc.Block();
        if (block) {
          auto input_var_name = desc.Input("X")[0];
          auto* input_var_desc = block->FindVar(input_var_name);
          const auto input_shape = input_var_desc->GetShape();
          for (int s : input_shape) {
            if (s == -1) {
              VLOG(3) << "The necessary attributes of the squeeze2 operator "
                         "axes is "
                         "missing. ss ==== -1";
              return false;
            } else if (s == 1) {
              axes.push_back(s);
            }
          }
        }
        if (axes.size() == 0) {
          VLOG(3)
              << "The necessary attributes of the squeeze2 operator axes is "
                 "missing.";
          return false;
        }
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
      }
      if (!with_dynamic_shape) {
        if (std::find(axes.begin(), axes.end(), 0) != axes.end()) {
          VLOG(3) << "Invalid squeeze axes. Axes having batch axis is not "
                     "supported in static shape";
          return false;
        }
      }
    }

    if (op_type == "unsqueeze2") {
      std::vector<int> axes;
      if (desc.HasAttr("axes")) {
R
Ruibiao Chen 已提交
1026
        axes = PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("axes"));
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
      }
      if (axes.size() == 0) {
        VLOG(3) << "The necessary attributes of the squeeze2 operator axes is "
                   "missing.";
        return false;
      }
      if (!with_dynamic_shape) {
        if (std::find(axes.begin(), axes.end(), 0) != axes.end()) {
          VLOG(3) << "Invalid squeeze axes. Axes having batch axis is not "
                     "supported in static shape";
          return false;
        }
      }
    }

1042
    if (op_type == "batch_norm") {
C
ccrrong 已提交
1043 1044
      const std::vector<std::string> bn_inputs = {
          "X", "Bias", "Mean", "Scale", "Variance"};
1045 1046 1047 1048 1049 1050 1051 1052 1053
      for (unsigned int i = 0; i < bn_inputs.size(); i++) {
        if (desc.Input(bn_inputs[i]).size() != 1) {
          VLOG(3) << "Invalid " << bn_inputs[i]
                  << "'s size of batch_norm TRT "
                     "converter. Expected 1, received "
                  << desc.Input(bn_inputs[i]).size() << ".";
          return false;
        }
      }
1054 1055 1056 1057 1058 1059
      auto batch_norm_inputs = desc.Inputs();
      if (batch_norm_inputs.find("MomentumTensor") != batch_norm_inputs.end()) {
        if (desc.Input("MomentumTensor").size() >= 1) {
          return false;
        }
      }
1060 1061 1062 1063 1064 1065
      if (desc.Output("Y").size() != 1) {
        VLOG(3) << "Invalid output Y's size of batch_norm TRT "
                   "converter. Expected 1, received "
                << desc.Output("Y").size() << ".";
        return false;
      }
W
Wilber 已提交
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
1076 1077 1078 1079 1080 1081 1082 1083 1084
    }

    if (op_type == "split") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "Invalid input X's size of split TRT converter. "
                   "Expected 1, received "
                << desc.Input("X").size() << ".";
        return false;
      }
1085 1086 1087 1088 1089 1090 1091 1092
      auto split_inputs = desc.Inputs();
      if (split_inputs.find("AxisTensor") != split_inputs.end()) {
        if (desc.Input("AxisTensor").size() >= 1) {
          return false;
        }
      }
      if (split_inputs.find("SectionsTensorList") != split_inputs.end()) {
        if (desc.Input("SectionsTensorList").size() >= 1) {
1093 1094 1095
          if (!with_dynamic_shape) {
            return false;
          }
1096 1097
        }
      }
1098 1099
      if (!desc.HasAttr("axis")) {
        return false;
1100
      }
R
Ruibiao Chen 已提交
1101
      int axis = PADDLE_GET_CONST(int, desc.GetAttr("axis"));
1102

1103
      if (!with_dynamic_shape && axis == 0) {
1104
        VLOG(3) << "Invalid split axis. Split on batch is not supported in "
1105
                   "TensorRT with static shape";
1106 1107 1108
        return false;
      }
      auto* block = desc.Block();
1109 1110 1111 1112 1113 1114
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1115 1116 1117 1118 1119 1120 1121
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      size_t output_num = desc.Output("Out").size();
      std::vector<int> output_lengths;
      int num = 0;
      if (desc.HasAttr("num")) {
R
Ruibiao Chen 已提交
1122
        num = PADDLE_GET_CONST(int, desc.GetAttr("num"));
1123 1124 1125
      }
      if (desc.HasAttr("sections")) {
        output_lengths =
R
Ruibiao Chen 已提交
1126
            PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("sections"));
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
      }
      if (output_lengths.size() == 0 && num == 0) {
        VLOG(3) << "sections and num cannot be equal to 0 at the same time";
        return false;
      }
      if (with_dynamic_shape) {
#if IS_TRT_VERSION_GE(6000)
#else
        VLOG(3) << "You are running the TRT Dynamic Shape mode, need to "
                   "confirm that "
                   "your TRT version is no less than 6.0";
        return false;
#endif
      }
      axis += (axis < 0) ? x_shape.size() : 0;
      if (x_shape[axis] == -1) {
        VLOG(3) << "The (" << axis << ") dim of input should not be -1";
        return false;
      }
      if (output_lengths.size() == 0) {
        if (num > 0) {
          int64_t in_axis_dim = x_shape[axis];
          if (in_axis_dim % num != 0) {
            VLOG(3) << "Invalid number to split. Tensor split does not result"
                       " in an equal division of dimensions. Axis dim = "
                    << in_axis_dim << " num = " << num << "!= 0";
            return false;
          }
          size_t out_axis_dim = in_axis_dim / num;
          for (int i = 0; i < num; ++i) {
            output_lengths.push_back(out_axis_dim);
          }
1159 1160
        }
      }
1161 1162 1163 1164
      if (output_lengths.size() != output_num) {
        VLOG(3) << "The output_length should be equal to the output size.";
        return false;
      }
1165
    }
1166

1167 1168 1169 1170 1171 1172 1173 1174
    if (op_type == "scale") {
      auto scale_inputs = desc.Inputs();
      if (scale_inputs.find("ScaleTensor") != scale_inputs.end()) {
        if (desc.Input("ScaleTensor").size() >= 1) {
          return false;
        }
      }
      auto* block = desc.Block();
1175 1176 1177 1178 1179 1180
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1181 1182 1183
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
1184
      auto dtype = x_var_desc->GetDataType();
W
wenbin 已提交
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
      if (!with_dynamic_shape) {
        // At present, only support float32 or float16 into trt.
        if (!(dtype == framework::proto::VarType::FP32 ||
              dtype == framework::proto::VarType::FP16)) {
          return false;
        }
        if (x_shape.size() == 1) {
          VLOG(3)
              << "Scale op does not support 1-dimensional input in tensorrt";
          return false;
        }
      } else {
        // At present, only support float32 or float16 or int32 into trt.
        if (!(dtype == framework::proto::VarType::FP32 ||
              dtype == framework::proto::VarType::FP16 ||
              dtype == framework::proto::VarType::INT32)) {
          return false;
        }
1203
      }
1204
    }
1205

F
feng_shuai 已提交
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
    if (op_type == "roll") {
#if !IS_TRT_VERSION_GE(7000)
      VLOG(3) << "roll converter does not support trt versions below 7.0";
      return false;
#endif
      if (!with_dynamic_shape) {
        return false;
      }
    }

    if (op_type == "strided_slice") {
1217 1218 1219 1220 1221
#if !IS_TRT_VERSION_GE(7000)
      VLOG(3)
          << "strided_slice converter does not support trt versions below 7.0";
      return false;
#endif
F
feng_shuai 已提交
1222 1223 1224 1225 1226 1227 1228 1229
      if (!desc.HasAttr("axes") || !desc.HasAttr("starts") ||
          !desc.HasAttr("ends") || !desc.HasAttr("strides")) {
        VLOG(3)
            << "The necessary attributes of the strided_slice operator miss ";
        return false;
      }
    }

Z
zhoutianzi666 已提交
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
    if (op_type == "rnn") {
      if (!with_dynamic_shape) {
        return false;
      }
      if (desc.HasAttr("mode")) {
        std::string mode = PADDLE_GET_CONST(std::string, desc.GetAttr("mode"));
        if (mode != "LSTM") return false;
      }
      if (desc.HasAttr("dropout_prob")) {
        float dropout_prob =
            PADDLE_GET_CONST(float, desc.GetAttr("dropout_prob"));
        if (dropout_prob > 1e-5) return false;
      }
      // not support following four inputs for rnn in paddle-trt
      auto rnn_inputs = desc.Inputs();
      if (rnn_inputs.find("SequenceLength") != rnn_inputs.end()) {
        if (desc.Input("SequenceLength").size()) {
          return false;
        }
      }
    }

    if (op_type == "fill_constant_batch_size_like") {
      if (!with_dynamic_shape) {
        return false;
      }
      if (!desc.HasAttr("input_dim_idx")) {
        return false;
      }
      if (!desc.HasAttr("output_dim_idx")) {
        return false;
      }
      if (!desc.HasAttr("shape")) {
        return false;
      }
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("Input")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      auto dtype = x_var_desc->GetDataType();
      // At present, only support float32 into trt.
      if (dtype != 5) {
        return false;
      }
    }

1281 1282 1283 1284 1285
    if (op_type == "fill_any_like") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the fill_any_like does not support static shape yet";
        return false;
      }
1286 1287 1288
      int dtype = desc.HasAttr("dtype")
                      ? PADDLE_GET_CONST(int, desc.GetAttr("dtype"))
                      : -1;
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
      auto* block = desc.Block();
      auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
      auto input_type = x_var_desc->GetDataType();
#if IS_TRT_VERSION_GE(8400)
      if (dtype == 0 ||
          (dtype == -1 && input_type == framework::proto::VarType::BOOL)) {
        VLOG(3) << "the fill_any_like supports input of BOOL by trt8.4 above";
        return true;
      }
#endif
1299
      if (dtype != -1 && dtype != 2 && dtype != 5) {
1300 1301
        VLOG(3) << "the fill_any_like only supports int32 and float32 by "
                   "trt8.4 below";
1302 1303 1304 1305 1306
        return false;
      }
      if (dtype == -1) {
        if (input_type != framework::proto::VarType::INT32 &&
            input_type != framework::proto::VarType::FP32) {
1307 1308
          VLOG(3) << "the fill_any_like only supports int32 and float32 by "
                     "trt8.4 below";
1309 1310 1311 1312 1313
          return false;
        }
      }
    }

1314
    if (op_type == "slice") {
1315 1316
      if (desc.HasAttr("decrease_axis")) {
        std::vector<int> decrease_axis =
R
Ruibiao Chen 已提交
1317
            PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("decrease_axis"));
1318 1319 1320
        if (!with_dynamic_shape) {
          if (decrease_axis.end() !=
              std::find(decrease_axis.begin(), decrease_axis.end(), 0)) {
1321 1322
            return false;
          }
1323 1324
        }
      }
1325 1326
      std::vector<int> axes;
      if (!desc.HasAttr("axes")) {
1327
        VLOG(3) << "The necessary attributes of the slice operator axes "
1328
                   " are missing.";
1329 1330
        return false;
      } else {
1331
        axes = PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("axes"));
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
        if (!with_dynamic_shape) {
          for (size_t i = 0; i < axes.size(); i++) {
            if (axes[i] == 0) {
              VLOG(3) << "Invalid slice axis. Slice on batch axis is not "
                         "supported in TensorRT";
              return false;
            }
          }
        }
      }
1342 1343
      // not support following four inputs for slice in paddle-trt
      auto slice_inputs = desc.Inputs();  // its size == 5
1344 1345 1346 1347 1348 1349 1350 1351
      if (slice_inputs.find("StartsTensor") != slice_inputs.end() &&
          desc.Input("StartsTensor").size()) {
        VLOG(3) << "The Slice has StartsTensor input.";
      } else {
        if (!desc.HasAttr("starts")) {
          VLOG(3) << "The necessary attributes of the slice operator starts or "
                     "StartsTensor"
                     " are missing.";
1352
          return false;
1353 1354 1355 1356 1357 1358 1359 1360
        } else {
          std::vector<int> starts =
              PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("starts"));
          if (axes.size() != starts.size()) {
            VLOG(3) << "The shape of attributes of the slice operator axes "
                       "and starts are not equal.";
            return false;
          }
1361 1362
        }
      }
1363 1364 1365 1366 1367 1368 1369 1370
      if (slice_inputs.find("EndsTensor") != slice_inputs.end() &&
          desc.Input("EndsTensor").size()) {
        VLOG(3) << "The Slice has EndsTensor input.";
      } else {
        if (!desc.HasAttr("ends")) {
          VLOG(3) << "The necessary attributes of the slice operator ends or "
                     "EndsTensor"
                     " are missing.";
1371
          return false;
1372 1373 1374 1375 1376 1377 1378 1379
        } else {
          std::vector<int> ends =
              PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("ends"));
          if (axes.size() != ends.size()) {
            VLOG(3) << "The shape of attributes of the slice operator axes "
                       "and ends are not equal.";
            return false;
          }
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
        }
      }
      if (slice_inputs.find("StartsTensorList") != slice_inputs.end()) {
        if (desc.Input("StartsTensorList").size()) {
          return false;
        }
      }
      if (slice_inputs.find("EndsTensorList") != slice_inputs.end()) {
        if (desc.Input("EndsTensorList").size()) {
          return false;
        }
      }
1392 1393
    }

1394 1395
    if (op_type == "less_than" || op_type == "greater_than" ||
        op_type == "logical_or" || op_type == "logical_xor" ||
1396 1397
        op_type == "logical_and" || op_type == "less_equal" ||
        op_type == "greater_equal") {
1398
#if IS_TRT_VERSION_GE(8400)
1399
      // TRT does not support kEQUAL/kGREATER/kLESS work with implicit batch
1400
      if (!with_dynamic_shape) {
1401
        VLOG(3) << "Ops(" << op_type << ") do not support static shape yet.";
1402 1403
        return false;
      }
1404 1405 1406 1407 1408
      auto* block = desc.Block();
      auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
      auto* y_var_desc = block->FindVar(desc.Input("Y")[0]);
      auto x_dtype = x_var_desc->GetDataType();
      auto y_dtype = y_var_desc->GetDataType();
1409 1410 1411 1412
      if (op_type == "logical_or" || op_type == "logical_xor" ||
          op_type == "logical_and") {
        if (x_dtype != framework::proto::VarType::BOOL ||
            y_dtype != framework::proto::VarType::BOOL) {
1413 1414 1415 1416 1417
          VLOG(3) << "the op (" << op_type << ") only support input of BOOL.";
          return false;
        }
      }
      if (op_type == "less_than" || op_type == "greater_than" ||
1418
          op_type == "less_equal" || op_type == "greater_equal") {
1419 1420 1421 1422 1423
        if (x_dtype == framework::proto::VarType::BOOL ||
            y_dtype == framework::proto::VarType::BOOL) {
          VLOG(3)
              << "ElementWiseOperation::kLESS/ElementWiseOperation::kGREATER "
                 "do not support boolean datatype.";
1424 1425 1426 1427 1428 1429 1430 1431
          return false;
        }
      }
#else
      VLOG(3) << "these are not supported when TensorRT < 8.4";
      return false;
#endif
    }
1432
    if (op_type == "elementwise_add" || op_type == "elementwise_mul" ||
S
shentanyue 已提交
1433
        op_type == "elementwise_sub" || op_type == "elementwise_div" ||
1434
        op_type == "elementwise_pow" || op_type == "elementwise_min" ||
1435 1436
        op_type == "elementwise_max" || op_type == "elementwise_floordiv" ||
        op_type == "elementwise_mod") {
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "The input op's Input(\"X\").size() "
                   "should equal to 1, but received Input(\"X\").size() = "
                << desc.Input("X").size() << ".";
        return false;
      }
      if (desc.Input("Y").size() != 1) {
        VLOG(3) << "The input op's Input(\"Y\").size() "
                   "should equal to 1, but received Input(\"Y\").size() = "
                << desc.Input("Y").size() << ".";
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "The input op's Output(\"Out\").size() "
                   "should equal to 1, but reveceid Output(\"Out\").size() = "
                << desc.Output("Out").size() << ".";
        return false;
      }
1455
      auto* block = desc.Block();
1456 1457 1458 1459 1460 1461
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1462 1463 1464 1465
      auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
      auto* y_var_desc = block->FindVar(desc.Input("Y")[0]);
      const auto x_shape = x_var_desc->GetShape();
      const auto y_shape = y_var_desc->GetShape();
1466

1467 1468 1469 1470
      // These operations do not support boolean datatype.
      if (op_type == "elementwise_add" || op_type == "elementwise_mul" ||
          op_type == "elementwise_sub" || op_type == "elementwise_div" ||
          op_type == "elementwise_pow" || op_type == "elementwise_min" ||
1471 1472
          op_type == "elementwise_max" || op_type == "elementwise_floordiv" ||
          op_type == "elementwise_mod") {
1473 1474
        if (x_var_desc->GetDataType() ==
            paddle::framework::proto::VarType_Type::VarType_Type_BOOL) {
1475 1476 1477 1478
          VLOG(3)
              << "These operations "
                 "(elementwise_add/mul/sub/div/pow/min/max/floordiv/mod) do "
                 "not support boolean datatype.";
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
          return false;
        }
      }
      // These operations input do not support int32 datatype.
      if (op_type == "elementwise_pow") {
        if (x_var_desc->GetDataType() ==
            paddle::framework::proto::VarType_Type::VarType_Type_INT32) {
          VLOG(3) << "These operations (elementwise_pow) do not support int32 "
                     "datatype.";
          return false;
        }
      }

1492 1493 1494 1495 1496 1497
      // The case when x_shape.size() == 1 is dealt with in common case
      if (!with_dynamic_shape && (!y_var_desc->Persistable()) &&
          y_shape.size() == 1) {
        VLOG(3) << "Static shape in trt not support y is  a 1D intermediate "
                   "tensor in "
                   "elementwise op.";
1498 1499
        return false;
      }
1500 1501 1502 1503
      if (x_var_desc->Persistable() && !with_dynamic_shape) {
        VLOG(3)
            << "Input X is a parameter which is not supported for "
               "elementwise in tensorrt's static shape, swap x and y will work";
S
shentanyue 已提交
1504
        return false;
1505
      }
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
    }

    if (op_type == "stack") {
      if (!with_dynamic_shape) {
        VLOG(3)
            << "static shape mode is not supported for TRT stack.\n"
               "You can use the config.SetTRTDynamicShapeInfo(...) interface"
               " to set the shape information to run the dynamic shape "
               "mode.";
        return false;
      }
    }
1518 1519 1520 1521 1522 1523 1524 1525
    // remember that 1D input in static shape mode is filtered at the beginning
    if (op_type == "sum") {
      return true;
    }

    if (op_type == "shape" && !with_dynamic_shape) {
      return false;
    }
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536

    if (op_type == "fused_embedding_eltwise_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "fused_embedding_eltwise_layernorm should run on dynamic "
                   "shape mode.";
        return false;
      }
      if (desc.Input("Ids").size() != desc.Input("Embs").size()) {
        return false;
      }
    }
W
Wang Bojun 已提交
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
    if (op_type == "fused_bias_dropout_residual_layer_norm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "fused_bias_dropout_residual_layer_norm should run on "
                   "dynamic shape mode.";
        return false;
      }
      float dropout_rate =
          PADDLE_GET_CONST(float, desc.GetAttr("dropout_rate"));
      if (dropout_rate != 0.0f) {
        VLOG(4) << "preln_residual_bias trt layer can not work with "
                   "fused_bias_dropout_residual_layer_norm op in which the "
                   "dropout_rate != 0, stop convert";
        return false;
      }
    }
1552 1553
    if (op_type == "fused_preln_embedding_eltwise_layernorm") {
      if (!with_dynamic_shape) {
1554 1555 1556
        VLOG(3) << "fused_preln_embedding_eltwise_layernorm should run on "
                   "dynamic "
                   "shape mode.";
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
        return false;
      }
      if (desc.Input("Ids").size() != desc.Input("Embs").size()) {
        VLOG(3) << "The id and emb size of fused PrelnEmbEltwiseLayerNormOp "
                   "should be same ";
        return false;
      }
      if (!desc.HasAttr("enable_int8")) {
        VLOG(3) << "PrelnEmbEltwiseLayerNormOp must use int8 mode.";
        return false;
      }
    }

1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
    if (op_type == "gelu") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "gelu op has only 1 input, but got "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "gelu op has only 1 output, but got "
                << desc.Output("Out").size();
        return false;
      }
1581

1582
#if IS_TRT_VERSION_LT(7000)
1583
      if (desc.HasAttr("approximate")) {
1584
        VLOG(3) << "approximate gelu op needs TensorRT 7.0 and after";
R
Ruibiao Chen 已提交
1585
        if (PADDLE_GET_CONST(bool, desc.GetAttr("approximate"))) return false;
1586
      }
1587
#endif
1588 1589

      auto* block = desc.Block();
1590 1591 1592 1593 1594 1595
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1596

1597 1598 1599 1600 1601 1602 1603
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 1) {
        VLOG(3) << "gelu op does not support input's dim is 1 in tensorrt.";
        return false;
      }
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
    }

    if (op_type == "layer_norm") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "input of layer_norm op converter should be 1, got "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Input("Bias").size() != 1) {
        VLOG(3) << "Bias of layer_norm op converter should be 1, got "
                << desc.Input("Bias").size();
        return false;
      }
      if (desc.Input("Scale").size() != 1) {
        VLOG(3) << "Scale of layer_norm op converter should be 1, got "
                << desc.Input("Scale").size();
        return false;
      }
      if (desc.Output("Y").size() != 1) {
        VLOG(3) << "output of layer_norm op converter should be 1, got "
                << desc.Output("Y").size();
        return false;
      }
    }

1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
    if (op_type == "fill_constant") {
      auto fill_constant_inputs = desc.Inputs();
      if (fill_constant_inputs.find("ValueTensor") !=
          fill_constant_inputs.end()) {
        if (desc.Input("ValueTensor").size()) return false;
      }
      if (fill_constant_inputs.find("ShapeTensor") !=
          fill_constant_inputs.end()) {
        if (desc.Input("ShapeTensor").size()) return false;
      }
      if (fill_constant_inputs.find("ShapeTensorList") !=
          fill_constant_inputs.end()) {
        if (desc.Input("ShapeTensorList").size()) return false;
      }
1643 1644 1645
      int dtype = desc.HasAttr("dtype")
                      ? PADDLE_GET_CONST(int, desc.GetAttr("dtype"))
                      : 5;
1646 1647 1648 1649 1650 1651
      // only support int32, int64, float32
      if (!(dtype == 2 || dtype == 3 || dtype == 5)) {
        return false;
      }
    }

已提交
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
    if (op_type == "instance_norm") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "input of instance_norm op converter should be 1, got "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Input("Bias").size() != 1) {
        VLOG(3) << "Bias of instance_norm op converter should be 1, got "
                << desc.Input("Bias").size();
        return false;
      }
      if (desc.Input("Scale").size() != 1) {
        VLOG(3) << "Scale of instance_norm op converter should be 1, got "
                << desc.Input("Scale").size();
        return false;
      }
      if (desc.Output("Y").size() != 1) {
        VLOG(3) << "output of layer_norm op converter should be 1, got "
                << desc.Output("Y").size();
        return false;
      }
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() != 4) {
        VLOG(3) << "The instance_norm op only support 4-dimensional input in "
                   "tensorrt.";
        return false;
      }
已提交
1689 1690
    }

1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
    if (op_type == "leaky_relu") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "Invalid number of TRT leaky_relu op converter "
                   "inputs. Expected 1, but received "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "output of leaky_relu op converter should be 1, got "
                << desc.Output("Out").size();
        return false;
      }
    }

    if (op_type == "pad") {
1706
      if (!desc.HasAttr("pad_value") || !desc.HasAttr("paddings")) return false;
R
Ruibiao Chen 已提交
1707 1708
      const float pad_value =
          PADDLE_GET_CONST(float, desc.GetAttr("pad_value"));
1709 1710 1711 1712
      if (pad_value != 0.0f) {
        VLOG(3) << "The pad layer of TRT only support zero.";
        return false;
      }
已提交
1713 1714
      std::vector<int64_t> shape;
      auto* block = desc.Block();
1715 1716 1717 1718 1719 1720
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
已提交
1721 1722 1723 1724 1725 1726 1727 1728
      for (auto& param_name : desc.Inputs()) {
        for (auto& var_name : param_name.second) {
          auto* var_desc = block->FindVar(var_name);
          shape = var_desc->GetShape();
        }
      }
      int nbDims = shape.size();
      std::vector<int> paddings =
R
Ruibiao Chen 已提交
1729
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("paddings"));
已提交
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
      int pad_size = paddings.size();
      if (nbDims < 2) {
        return false;
      }
      if (nbDims * 2 != pad_size) {
        return false;
      }
      for (int i = 0; i < pad_size - 4; i++) {
        if (paddings[i] != 0) {
          return false;
        }
      }
1742 1743
    }

1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
    if (op_type == "pad3d") {
#if !IS_TRT_VERSION_GE(8200)
      VLOG(3) << "pad3d is not supported when TensorRT < 8.2";
      return false;
#endif
      if (!with_dynamic_shape) {
        VLOG(3) << "pad3d is not supported static shape";
        return false;
      }
      if (!desc.HasAttr("paddings") && !desc.HasInput("Paddings")) {
        return false;
      }
      if (desc.HasAttr("mode")) {
        std::string mode = PADDLE_GET_CONST(std::string, desc.GetAttr("mode"));
        if (mode != "constant" && mode != "reflect" && mode != "replicate") {
          VLOG(3) << "The pad3d layer of TRT only support "
                     "constant/reflect/replicate mode.";
          return false;
        }
      }
      if (desc.HasAttr("data_format")) {
        std::string data_format =
            PADDLE_GET_CONST(std::string, desc.GetAttr("data_format"));
        if (data_format != "NCDHW") {
          VLOG(3) << "The pad3d layer of TRT only support NCDHW data format.";
          return false;
        }
      }
    }
1773 1774
    if (op_type == "swish") {
      auto* block = desc.Block();
1775 1776 1777 1778 1779 1780
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1781 1782 1783 1784 1785 1786 1787 1788
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 1) {
        VLOG(3) << "swish op does not support input's dim is 1 in tensorrt.";
        return false;
      }
    }
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
    if (op_type == "prelu") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "Invalid input X's size of prelu TRT converter. "
                   "Expected 1, received "
                << desc.Input("X").size() << ".";
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "Invalid output Out's size of prelu TRT converter. "
                   "Expected 1, received "
                << desc.Output("Out").size() << ".";
        return false;
      }
1802 1803

      auto* block = desc.Block();
1804 1805 1806 1807 1808 1809
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1810 1811 1812 1813 1814 1815 1816 1817 1818
      auto* var_desc = block->FindVar(desc.Input("Alpha")[0]);
      if (!var_desc) {
        VLOG(3) << "Variable Alpha of prelu TRT converter not found.";
        return false;
      }

      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
1819 1820 1821
      if (!with_dynamic_shape && x_shape.size() == 1) {
        VLOG(3) << "prelu op does not support input's dim is 1 in tensorrt "
                   "with static shape.";
1822 1823 1824
        return false;
      }

W
Wilber 已提交
1825 1826 1827 1828 1829 1830 1831
#if IS_TRT_VERSION_LT(7000)
      if (!with_dynamic_shape) {
        // TODO(inference): fix trt6 static plugin error.
        VLOG(3) << "prelu static plugin in trt6 has bug.";
        return false;
      }
#endif
1832 1833
    }

W
wangxinxin08 已提交
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
    if (op_type == "mish") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "Invalid input X's size of mish TRT converter. "
                   "Expected 1, received "
                << desc.Input("X").size() << ".";
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "Invalid output Out's size of mish TRT converter. "
                   "Expected 1, received "
                << desc.Output("Out").size() << ".";
        return false;
      }

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }

      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 1) {
        VLOG(3) << "mish op does not support input's dim is 1 in tensorrt.";
        return false;
      }
    }

1865 1866 1867 1868 1869 1870 1871
    if (op_type == "roi_align") {
      if (!with_dynamic_shape) {
        VLOG(3) << "TRT roi align plugin only accept the dynamic shape, "
                   "because that "
                   "the roi_align will change the batch size.";
        return false;
      }
C
ccrrong 已提交
1872 1873 1874 1875
      std::vector<std::string> attrs{"pooled_height",
                                     "pooled_width",
                                     "spatial_scale",
                                     "sampling_ratio",
F
fengkuangxiaxia 已提交
1876
                                     "aligned"};
1877
      for (auto const& attr : attrs) {
1878 1879 1880 1881
        if (!desc.HasAttr(attr)) return false;
      }

      const auto pooled_height =
R
Ruibiao Chen 已提交
1882
          PADDLE_GET_CONST(int, desc.GetAttr("pooled_height"));
1883 1884 1885
      if (pooled_height <= 0) return false;

      const auto pooled_width =
R
Ruibiao Chen 已提交
1886
          PADDLE_GET_CONST(int, desc.GetAttr("pooled_width"));
1887 1888 1889
      if (pooled_width <= 0) return false;

      const auto spatial_scale =
R
Ruibiao Chen 已提交
1890
          PADDLE_GET_CONST(float, desc.GetAttr("spatial_scale"));
1891 1892 1893 1894 1895 1896 1897 1898
      if (spatial_scale <= 0.f) return false;

      auto roi_align_inputs = desc.Inputs();
      if (roi_align_inputs.find("RoisNum") != roi_align_inputs.end()) {
        if (desc.Input("RoisNum").size() >= 1) {
          return false;
        }
      }
1899 1900 1901
    }

    if (op_type == "shuffle_channel") {
1902
#if !IS_TRT_VERSION_GE(8000)
1903 1904
      if (with_dynamic_shape) {
        VLOG(3) << "You are running the TRT Dynamic Shape mode, "
1905 1906
                   "the shuffle_channel op does not support dynamic shape "
                   "trt versions below 8.0 yet";
1907 1908
        return false;
      }
1909
#endif
1910 1911
    }

1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
    if (op_type == "where") {
#if !IS_TRT_VERSION_GE(8400)
      VLOG(3) << "where is not supported when TensorRT < 8.4";
      return false;
#endif
      if (!with_dynamic_shape) {
        VLOG(3) << "the where op does not support static shape yet";
        return false;
      }
    }

1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
    if (op_type == "bitwise_not") {
#if !IS_TRT_VERSION_GE(8400)
      auto* block = desc.Block();
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      auto dtype = x_var_desc->GetDataType();
      if (dtype == framework::proto::VarType::BOOL ||
          dtype == framework::proto::VarType::INT8 ||
          dtype == framework::proto::VarType::UINT8) {
        VLOG(3) << "BOOL / INT8 / UINT8 type support requires TensorRT 8.4";
        return false;
      }
#endif
    }

1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
    if (op_type == "one_hot" || op_type == "one_hot_v2") {
#if IS_TRT_VERSION_LT(8510)
      VLOG(3) << "one_hot/one_hot_v2 is not supported when TensorRT < 8.5.1";
      return false;
#endif
      if (!with_dynamic_shape) {
        VLOG(3)
            << "the one_hot/one_hot_v2 op does not support static shape yet";
        return false;
      }
      if (desc.HasAttr("allow_out_of_range")) {
        VLOG(3)
            << "allow_out_of_range one_hot/one_hot_v2 op is not supported now.";
        if (PADDLE_GET_CONST(bool, desc.GetAttr("allow_out_of_range")))
          return false;
      }
      if (desc.HasAttr("dtype")) {
        const int dtype = PADDLE_GET_CONST(int, desc.GetAttr("dtype"));
        if (dtype != 2 && dtype != 3 && dtype != 5) {
          VLOG(3) << "one_hot/one_hot_v2 op only support int32, int64, float.";
          return false;
        }
      }
      auto one_hot_inputs = desc.Inputs();
      if (one_hot_inputs.find("depth_tensor") != one_hot_inputs.end()) {
        if (desc.Input("depth_tensor").size() != 0) {
          return true;
        }
      }

      if (desc.HasAttr("depth")) {
        const int depth = PADDLE_GET_CONST(int, desc.GetAttr("depth"));
        if (depth <= 0) {
          VLOG(3) << "depth only support positive in one_hot/one_hot_v2 op.";
          return false;
        }
      }
    }

1977 1978 1979 1980 1981 1982 1983
    if (op_type == "skip_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the skip_layernorm does not support static shape yet";
        return false;
      }
    }

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
    if (op_type == "preln_skip_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the preln_skip_layernorm does not support static shape yet";
        return false;
      }
      if (!desc.HasAttr("enable_int8")) {
        VLOG(3) << "PrelnEmbEltwiseLayerNormOp must use int8 mode.";
        return false;
      }
    }

1995 1996 1997 1998 1999
    if (op_type == "multihead_matmul") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the multihead_matmul does not support static shape yet";
        return false;
      }
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

      if (desc.HasAttr("enable_int8") && !desc.HasAttr("Input_scale")) {
        VLOG(3) << "Multihead layers must have input scale in int8 mode.";
        return false;
      }

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto* input_desc = block->FindVar(desc.Input("Input").front());
      const auto input_shape = input_desc->GetShape();
      const auto head_number =
R
Ruibiao Chen 已提交
2016
          PADDLE_GET_CONST(int, desc.GetAttr("head_number"));
F
feng_shuai 已提交
2017 2018 2019 2020 2021 2022 2023 2024 2025
      auto inputs = desc.Inputs();
      bool has_bias_qk = (inputs.find("BiasQK") == inputs.end()) ? false : true;
      if (has_bias_qk) {
        auto* biasqk_desc = block->FindVar(desc.Input("BiasQK").front());
        const auto biasqk_shape = biasqk_desc->GetShape();
        // The BiasQK's shape requires to be
        // [batch, 1, 1, length] or [batch, head, length, length].
        bool has_same_shape = head_number == biasqk_shape[1] &&
                              input_shape[1] == biasqk_shape[2] &&
2026
                              input_shape[1] == biasqk_shape[3];
F
feng_shuai 已提交
2027 2028
        bool is_broadcastable = biasqk_shape[1] == 1 && biasqk_shape[2] == 1 &&
                                input_shape[1] == biasqk_shape[3];
2029 2030 2031 2032
        is_broadcastable =
            is_broadcastable || (biasqk_shape[0] == 1 && biasqk_shape[1] == 1 &&
                                 input_shape[1] == biasqk_shape[2] &&
                                 input_shape[1] == biasqk_shape[3]);
F
feng_shuai 已提交
2033 2034
        if (!(has_same_shape || is_broadcastable)) {
          VLOG(3) << "The BiasQK's shape is invalid, expect [" << input_shape[0]
2035 2036 2037 2038 2039 2040 2041
                  << ", 1, 1, " << input_shape[1] << "] "
                  << "or [" << input_shape[0] << ", " << head_number << ", "
                  << input_shape[1] << ", " << input_shape[1] << "] "
                  << "or [" << input_shape[0] << "/1, " << 1 << ", "
                  << input_shape[1] << ", " << input_shape[1] << "] "
                  << "but got [" << biasqk_shape[0] << ", " << biasqk_shape[1]
                  << ", " << biasqk_shape[2] << ", " << biasqk_shape[3] << "].";
F
feng_shuai 已提交
2042 2043 2044
          return false;
        }
      } else {
2045 2046 2047
#if (IS_TRT_VERSION_GE(8000) && IS_TRT_VERSION_LT(8100)) || \
    (IS_TRT_VERSION_LT(7200))
        VLOG(3) << "There are some bugs with trt 8.0";
2048
        return false;
F
feng_shuai 已提交
2049
#endif
2050
      }
2051 2052
    }

2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
    if (op_type == "multihead_matmul_roformer") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the multihead_matmul_roformer does not support static "
                   "shape yet";
        return false;
      }

      if (desc.HasAttr("enable_int8") && !desc.HasAttr("Input_scale")) {
        VLOG(3) << "Multihead layers must have input scale in int8 mode.";
        return false;
      }

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto* input_desc = block->FindVar(desc.Input("Input").front());
      const auto input_shape = input_desc->GetShape();
      const auto head_number =
          PADDLE_GET_CONST(int, desc.GetAttr("head_number"));
      auto inputs = desc.Inputs();
      bool has_bias_qk = (inputs.find("BiasQK") == inputs.end()) ? false : true;
      if (has_bias_qk) {
        auto* biasqk_desc = block->FindVar(desc.Input("BiasQK").front());
        const auto biasqk_shape = biasqk_desc->GetShape();
        // The BiasQK's shape requires to be
        // [batch, 1, 1, length] or [batch, head, length, length].
        bool has_same_shape = head_number == biasqk_shape[1] &&
                              input_shape[1] == biasqk_shape[2] &&
                              input_shape[1] == biasqk_shape[3];
        bool is_broadcastable = biasqk_shape[1] == 1 && biasqk_shape[2] == 1 &&
                                input_shape[1] == biasqk_shape[3];
        if (!(has_same_shape || is_broadcastable)) {
          VLOG(3) << "The BiasQK's shape is invalid, expect [" << input_shape[0]
                  << ", 1, 1, " << input_shape[1] << "] or [" << input_shape[0]
                  << ", " << head_number << ", " << input_shape[1] << ", "
                  << input_shape[1] << "] but [" << biasqk_shape[0] << ", "
                  << biasqk_shape[1] << ", " << biasqk_shape[2] << ", "
                  << biasqk_shape[3] << "].";
          return false;
        }
      } else {
#if !IS_TRT_VERSION_GE(8000)
        VLOG(3) << "The version of TRT must be greater than 8000";
        return false;
#endif
      }
    }

W
Wangzheee 已提交
2105 2106 2107
    if (op_type == "reshape" || op_type == "reshape2") {
      if (!desc.HasAttr("shape")) {
        return false;
W
Wilber 已提交
2108
      }
2109 2110 2111 2112
      if (with_dynamic_shape) {
        return true;
      }
      // Static shape does not support the input tensors: Shape and ShapeTensor
2113
      auto reshape_inputs = desc.Inputs();
2114 2115 2116 2117 2118 2119 2120 2121 2122
      if (reshape_inputs.find("Shape") != reshape_inputs.end()) {
        if (desc.Input("Shape").size() >= 1) {
          return false;
        }
      }
      if (reshape_inputs.find("ShapeTensor") != reshape_inputs.end()) {
        if (desc.Input("ShapeTensor").size() >= 1) {
          return false;
        }
W
Wangzheee 已提交
2123
      }
W
Wilber 已提交
2124
      std::vector<int> shape =
R
Ruibiao Chen 已提交
2125
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("shape"));
W
Wilber 已提交
2126
      if (shape.size() >= nvinfer1::Dims::MAX_DIMS) return false;
X
xiaoxiaohehe001 已提交
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
      if (!with_dynamic_shape) {
        if (shape.size() == 1) {
          return false;
        }
        if (shape[0] == 0) {
          return true;
        } else {
          auto* block = desc.Block();
          auto x_var_name = desc.Input("X")[0];
          auto* x_var_desc = block->FindVar(x_var_name);
          const auto x_shape = x_var_desc->GetShape();
C
ccrrong 已提交
2138 2139 2140 2141
          int input_num = std::accumulate(
              x_shape.begin() + 1, x_shape.end(), 1, std::multiplies<int>());
          int shape_num = std::accumulate(
              shape.begin() + 1, shape.end(), 1, std::multiplies<int>());
X
xiaoxiaohehe001 已提交
2142 2143 2144 2145
          if (input_num == shape_num) {
            return true;
          }
        }
2146
        return false;
X
xiaoxiaohehe001 已提交
2147
      }
W
Wangzheee 已提交
2148
    }
2149

2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
    if (op_type == "clip") {
      // Paddle-TRT does not support the input tensors: Min and Max
      auto clip_inputs = desc.Inputs();
      if (clip_inputs.find("Min") != clip_inputs.end()) {
        if (desc.Input("Min").size() >= 1) {
          return false;
        }
      }
      if (clip_inputs.find("Max") != clip_inputs.end()) {
        if (desc.Input("Max").size() >= 1) {
          return false;
        }
      }

      auto* block = desc.Block();
2165 2166 2167 2168 2169 2170
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
2171 2172 2173 2174 2175
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
    }

2176
    if (op_type == "reduce_sum" || op_type == "reduce_mean" ||
2177 2178
        op_type == "reduce_max" || op_type == "reduce_min" ||
        op_type == "reduce_prod") {
2179 2180 2181 2182 2183 2184 2185
      if (!desc.HasAttr("dim", /*with_attr_var=*/false)) {
        VLOG(3) << "Skip to convert into TRT while found Attribute('dim') is "
                   "Variable type in "
                << desc.Type();
        return false;
      }

2186 2187
      if (!(desc.HasAttr("keep_dim") && desc.HasAttr("dim") &&
            desc.HasAttr("reduce_all"))) {
W
wenbin 已提交
2188 2189
        VLOG(3) << "the " << op_type
                << " does not have attr (keep_dim or dim or "
2190
                   "reduce_all)";
2191 2192 2193 2194 2195 2196 2197 2198
        return false;
      }

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
2199 2200
        return false;
      }
W
wenbin 已提交
2201 2202

      // The batch size dimension cannot be reduced if it's not dynamic shape.
2203
      auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
W
wenbin 已提交
2204
      if (!with_dynamic_shape) {
R
Ruibiao Chen 已提交
2205
        if (PADDLE_GET_CONST(bool, desc.GetAttr("reduce_all"))) return false;
W
wenbin 已提交
2206
        std::vector<int32_t> dim =
R
Ruibiao Chen 已提交
2207
            PADDLE_GET_CONST(std::vector<int32_t>, desc.GetAttr("dim"));
2208
        const auto input_shape = x_var_desc->GetShape();
W
wenbin 已提交
2209
        for (auto x : dim) {
2210
          if (x == 0 || (x + input_shape.size() == 0)) return false;
W
wenbin 已提交
2211
        }
2212

2213
      } else {
R
Ruibiao Chen 已提交
2214 2215
        if (PADDLE_GET_CONST(bool, desc.GetAttr("reduce_all")) &&
            !PADDLE_GET_CONST(bool, desc.GetAttr("keep_dim")))
2216 2217
          return false;
      }
2218

2219
#if IS_TRT_VERSION_LT(7000)
2220 2221
      auto dtype = x_var_desc->GetDataType();
      if (dtype != framework::proto::VarType::FP32) {
2222 2223
        VLOG(3) << "reduce op input data type must be float32 using TensorRT "
                   "< 7.0";
2224 2225 2226
        return false;
      }
#endif
2227
    }
W
wenbin 已提交
2228 2229 2230
#if IS_TRT_VERSION_GE(7000)
    if (op_type == "tile") {
      // Paddle-TRT does not support the input tensors.
2231
      auto tile_inputs = desc.Inputs();
2232 2233 2234 2235 2236
      if (!with_dynamic_shape) {
        if (tile_inputs.find("repeat_times_tensor") != tile_inputs.end()) {
          if (desc.Input("repeat_times_tensor").size() >= 1) {
            return false;
          }
2237
        }
2238 2239 2240 2241
        if (tile_inputs.find("RepeatTimes") != tile_inputs.end()) {
          if (desc.Input("RepeatTimes").size() >= 1) {
            return false;
          }
2242
        }
2243
        if (!desc.HasAttr("repeat_times")) return false;
W
wenbin 已提交
2244 2245 2246
      }
    }
#endif
2247

2248 2249 2250 2251 2252
    // conv3d_transpose
    if (op_type == "conv3d_transpose") {
      // trt doen't support output_padding when < 8406
      // output_padding is usually set when stride > 1
#if !IS_TRT_VERSION_GE(8400)
2253 2254
      if (desc.HasAttr("output_padding")) {
        const std::vector<int> output_padding =
R
Ruibiao Chen 已提交
2255
            PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("output_padding"));
2256 2257 2258 2259 2260 2261
        if (output_padding.size() > 0) {
          int max_padding =
              *std::max_element(output_padding.begin(), output_padding.end());
          if (max_padding > 0) return false;
        }
      }
2262
#endif
2263 2264
    }

W
wenbin 已提交
2265 2266 2267
    if (op_type == "conv3d" || op_type == "conv3d_transpose") {
      if (desc.HasAttr("padding_algorithm")) {
        std::string padding_algorithm =
R
Ruibiao Chen 已提交
2268
            PADDLE_GET_CONST(std::string, desc.GetAttr("padding_algorithm"));
W
wenbin 已提交
2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282

        // trt error is arised if conv3d_transpose and SAME
        if (op_type == "conv3d_transpose" && padding_algorithm == "SAME" &&
            !with_dynamic_shape) {
          return false;
        }
      }

#if !IS_TRT_VERSION_GE(7000)
      // looks like some issues with trt6.0
      if (with_dynamic_shape) {
        return false;
      }
#endif
2283

W
wenbin 已提交
2284
      std::vector<int> paddings =
R
Ruibiao Chen 已提交
2285
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("paddings"));
W
wenbin 已提交
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306

      // conv3d and conv3d_transpose need padding check
      if (paddings.size() > 3) return false;

      if (desc.Input("Input").size() != 1) {
        VLOG(3) << "TRT Conv3d expect 1 input, but got "
                << desc.Input("Input").size() << " input.";
        return false;
      }

      if (desc.Input("Filter").size() != 1) {
        VLOG(3) << "TRT Conv3d expect 1 filter, but got "
                << desc.Input("Filter").size() << " filter.";
        return false;
      }

      if (op_type == "conv3d_transpose") {
        if (!desc.HasAttr("dilations")) {
          return false;
        } else {
          const std::vector<int> dilations =
R
Ruibiao Chen 已提交
2307
              PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("dilations"));
W
wenbin 已提交
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
          if (dilations[0] != 1 || dilations[1] != 1 || dilations[2] != 1) {
            VLOG(3) << "In conv3d_transpose, Dilations must be (1, 1, 1) for "
                       "tensorRT, but given ("
                    << dilations[0] << ", " << dilations[1] << ", "
                    << dilations[2] << ")";
            return false;
          }
        }
      }

      if (desc.Output("Output").size() != 1) {
        VLOG(3) << "TRT Conv3d expect 1 output, but got "
                << desc.Output("Output").size() << " output.";
        return false;
      }
    }

2325 2326 2327 2328
    if (op_type == "hard_sigmoid") {
      if (!with_dynamic_shape) {
        auto* block = desc.Block();
        if (block == nullptr) {
2329 2330 2331
          VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                     "Developers need to check whether block_desc is passed in "
                     "the pass.";
2332 2333 2334 2335 2336
          return false;
        }
        auto x_var_name = desc.Input("X")[0];
        auto* x_var_desc = block->FindVar(x_var_name);
        const auto x_shape = x_var_desc->GetShape();
2337 2338 2339
        if (x_shape.size() == 1) {
          VLOG(3) << "Hard sigmoid does not support 1-dimensional input in "
                     "tensorrt";
2340 2341 2342 2343 2344
          return false;
        }
      }
    }

C
ccrrong 已提交
2345
    if (op_type == "cast") {
Z
zhoutianzi666 已提交
2346 2347 2348 2349
// trt 6015 result in Windows ppyolo_mbv3 TRT fp32 diff
#if !IS_TRT_VERSION_GE(7000)
      return false;
#endif
C
ccrrong 已提交
2350 2351 2352 2353 2354 2355
      if (!(desc.HasAttr("in_dtype") && desc.HasAttr("out_dtype"))) {
        VLOG(3) << "the " << op_type
                << " does not have attr (in_dtype or "
                   "out_dtype)";
        return false;
      }
R
Ruibiao Chen 已提交
2356 2357
      int in_dtype = PADDLE_GET_CONST(int, desc.GetAttr("in_dtype"));
      int out_dtype = PADDLE_GET_CONST(int, desc.GetAttr("out_dtype"));
2358

2359
      if (in_dtype == 0 || out_dtype == 0) {
2360
#if IS_TRT_VERSION_GE(8400)
2361 2362 2363 2364 2365 2366
        if (with_dynamic_shape) {
          VLOG(3) << "the cast op supports inputs and outputs of BOOL by "
                     "trt8.4 above ";
          return true;
        }
#endif
C
ccrrong 已提交
2367 2368 2369 2370
        return false;
      }
    }

X
xjmxyt 已提交
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
    if (op_type == "set_value") {
#if !IS_TRT_VERSION_GE(8200)
      return false;
#endif
      if (!(desc.HasAttr("axes") && desc.HasAttr("starts") &&
            desc.HasAttr("steps"))) {
        VLOG(3) << "the " << op_type
                << " does not have attr (axes or "
                   "starts or steps)";
        return false;
      }
      auto* block = desc.Block();
      auto input_name = desc.Input("Input")[0];
      auto* input_desc = block->FindVar(input_name);
      const auto input_shape = input_desc->GetShape();
      auto update_name = desc.Input("ValueTensor")[0];
      auto* update_desc = block->FindVar(update_name);
      const auto update_shape = update_desc->GetShape();
      if (update_shape.size() != input_shape.size()) return false;
    }

2392 2393 2394
    if (op_type == "top_k_v2" || op_type == "top_k") {
      auto* block = desc.Block();
      auto x_var_name = desc.Input("X")[0];
2395 2396 2397 2398 2399 2400 2401

      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
2402
      auto* x_var_desc = block->FindVar(x_var_name);
2403 2404 2405 2406 2407 2408 2409
      auto x_dtype = x_var_desc->GetDataType();

      if (!(x_dtype == framework::proto::VarType::FP32 ||
            x_dtype == framework::proto::VarType::FP16)) {
        return false;
      }

2410 2411 2412 2413 2414 2415 2416
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 1) {
        VLOG(3) << "top_k/top_k_v2 does not support 1-dimensional input in "
                   "tensorrt";
        return false;
      }
      if (desc.HasAttr("axis")) {
R
Ruibiao Chen 已提交
2417
        int axis = PADDLE_GET_CONST(int, desc.GetAttr("axis"));
2418 2419 2420 2421 2422 2423 2424
        if (axis == 0) {
          VLOG(3) << "top_k_v2 does not support axis == 0 in "
                     "tensorrt";
          return false;
        }
      }
      if (desc.HasAttr("sorted")) {
R
Ruibiao Chen 已提交
2425
        bool sorted = PADDLE_GET_CONST(bool, desc.GetAttr("sorted"));
2426 2427 2428 2429 2430 2431 2432 2433
        if (!sorted) {
          VLOG(3) << "top_k_v2 does not support results not sorted in "
                     "tensorrt";
          return false;
        }
      }
    }

2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
#if IS_TRT_VERSION_GE(8000)
    if (op_type == "sparse_fc" || op_type == "sparse_multihead_matmul") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the sparse_fc and sparse_multihead_matmul does not support "
                   "static shape yet";
        return false;
      }
    }
#endif

S
Sanbu 已提交
2444
    if (op_type == "equal" || op_type == "not_equal") {
C
ccrrong 已提交
2445
#if !IS_TRT_VERSION_GE(8000)
2446
      VLOG(3) << "equal is not supported when TensorRT < 8.0";
C
ccrrong 已提交
2447 2448
      return false;
#else
2449 2450 2451 2452 2453 2454
      // TRT does not support kEQUAL/kGREATER/kLESS work with implicit batch
      if (!with_dynamic_shape) {
        VLOG(3) << "the equal does not support "
                   "static shape yet";
        return false;
      }
2455 2456 2457
      if (!desc.HasAttr("axis")) {
        return false;
      }
R
Ruibiao Chen 已提交
2458
      int axis = PADDLE_GET_CONST(int, desc.GetAttr("axis"));
C
ccrrong 已提交
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
      if (axis == 0) {
        return false;
      }
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
#endif
    }

W
wenbin 已提交
2472 2473 2474 2475 2476 2477 2478
    if (op_type == "layernorm_shift_partition") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the layernorm_shift_partition does not support "
                   "static shape yet";
        return false;
      }
    }
W
wenbin 已提交
2479 2480 2481 2482 2483 2484 2485 2486 2487

    if (op_type == "preln_layernorm_shift_partition") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the layernorm_shift_partition does not support "
                   "static shape yet";
        return false;
      }
    }

W
Wang Bojun 已提交
2488 2489 2490 2491 2492 2493 2494
    if (op_type == "merge_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "The merge_layernorm op does not support "
                   "static shape yet";
        return false;
      }
    }
W
wenbin 已提交
2495

W
Wang Bojun 已提交
2496 2497 2498 2499 2500 2501 2502
    if (op_type == "reverse_roll") {
      if (!with_dynamic_shape) {
        VLOG(3) << "The reverse roll fused op does not support static shape "
                   "mode yet.";
        return false;
      }
    }
W
wenbin 已提交
2503 2504 2505 2506 2507 2508 2509 2510
    if (op_type == "skip_merge_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "The merge_layernorm op does not support "
                   "static shape yet";
        return false;
      }
    }

W
wenbin 已提交
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525
    if (op_type == "skip_groupnorm_act") {
      if (!with_dynamic_shape) {
        VLOG(3) << "The skip_groupnorm_act op does not support "
                   "static shape yet";
        return false;
      }
    }

    if (op_type == "preln_groupnorm_act") {
      if (!with_dynamic_shape) {
        VLOG(3) << "The preln_groupnorm_act op does not support "
                   "static shape yet";
        return false;
      }
    }
2526 2527 2528 2529 2530 2531 2532
    if (op_type == "trans_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "The trans_layernorm op does not support "
                   "static shape yet";
        return false;
      }
    }
2533 2534 2535 2536 2537 2538 2539
    if (op_type == "fuse_eleadd_transpose") {
      if (!with_dynamic_shape) {
        VLOG(3) << "The fuse_eleadd_transpose op does not support "
                   "static shape yet";
        return false;
      }
    }
2540 2541 2542 2543 2544 2545 2546 2547
    if (op_type == "lookup_table") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the lookup_table does not support "
                   "static shape yet";
        return false;
      }
    }

2548
    if (op_type == "expand_as_v2" || op_type == "expand_v2") {
2549
      if (!with_dynamic_shape) {
2550 2551 2552
        VLOG(3) << "the " << op_type
                << "does not support "
                   "static shape yet";
2553 2554
        return false;
      }
2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576

      auto inputs = desc.Inputs();
      if (op_type == "expand_as_v2") {
        if (!desc.HasAttr("target_shape") && inputs.find("Y") == inputs.end()) {
          VLOG(3)
              << "expand_as_v2 op need have input(Y) or attr(target_shape). ";
          return false;
        }
      } else if (op_type == "expand_v2") {
        if (!desc.HasAttr("shape") && inputs.find("Shape") == inputs.end() &&
            inputs.find("expand_shapes_tensor") == inputs.end()) {
          VLOG(3) << "expand_v2 op need have input(Shape) or "
                     "input(expand_shapes_tensor) or attr(shape) . ";
          return false;
        }
      }

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
2577 2578 2579 2580
        return false;
      }
    }

2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
    if (op_type == "grid_sampler") {
#if !IS_TRT_VERSION_GE(8510)
      VLOG(3) << "grid_sampler is not supported when TensorRT < 8.5.1";
      return false;
#else
      if (!with_dynamic_shape) {
        VLOG(3) << "the grid_sampler does not support "
                   "static shape yet";
        return false;
      }

      if (!desc.HasAttr("mode") || !desc.HasAttr("padding_mode") ||
          !desc.HasAttr("align_corners")) {
        VLOG(3) << "grid_sampler need attributes : mode, padding_mode, "
                   "align_corners";
        return false;
      }

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto input_name = desc.Input("X")[0];
      auto* input_desc = block->FindVar(input_name);
      const auto input_shape = input_desc->GetShape();

      auto grid_name = desc.Input("Grid")[0];
      auto* grid_desc = block->FindVar(grid_name);
      const auto grid_shape = grid_desc->GetShape();

      if (input_shape.size() != 4 || grid_shape.size() != 4) {
        VLOG(3) << "The input and grid tensors must be shape tensors of rank 4 "
                   "using TRT GridSample layer.";
        return false;
      }

#endif
    }

2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641
    if (op_type == "cumsum") {
#if !IS_TRT_VERSION_GE(7220)
      VLOG(3) << "cumsum is not supported when TensorRT < 7.2.2";
      return false;
#endif
      if (!with_dynamic_shape) {
        VLOG(3) << "the cumsum does not support "
                   "static shape yet";
        return false;
      }
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
    }

2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
    if (op_type == "temporal_shift") {
#if !IS_TRT_VERSION_GE(8200)
      VLOG(3) << "temporal_shift is not supported when TensorRT < 8.2";
      return false;
#endif

      if (!with_dynamic_shape) {
        VLOG(3) << "the temporal shift does not support "
                   "static shape yet";
        return false;
      }

      if (!desc.HasAttr("shift_ratio") || !desc.HasAttr("seg_num")) {
        VLOG(3) << "temporal shift need attributes : shift_ratio and seg_num";
        return false;
      }

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }

      auto input_name = desc.Input("X")[0];
      auto* input_desc = block->FindVar(input_name);
      const auto input_shape = input_desc->GetShape();

      if (input_shape.size() != 4) {
        VLOG(3) << "The input and grid tensors must be shape tensors of rank 4 "
                   "using TRT TemporalShift layer.";
        return false;
      }
    }

W
weishengying 已提交
2678 2679 2680 2681 2682
    if (use_no_calib_int8) {
      return int8_teller_set.count(op_type);
    } else {
      return teller_set.count(op_type);
    }
2683
  }
W
wenbin 已提交
2684

W
weishengying 已提交
2685 2686 2687
 private:
  // use this set for no calib int8.
  std::unordered_set<std::string> int8_teller_set{
2688
      "matrix_multiply",
2689
      "bmm",
2690
      "range",
W
weishengying 已提交
2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713
      "conv2d",
      "conv2d_fusion",
      "pool2d",
      "relu",
      "elu",
      "selu",
      "softsign",
      "softplus",
      "stanh",
      "thresholded_relu",
      "exp",
      "log",
      "sqrt",
      "abs",
      "sin",
      "cos",
      "tan",
      "sinh",
      "cosh",
      "asin",
      "acos",
      "atan",
      "asinh",
2714
      "acosh",
W
weishengying 已提交
2715 2716 2717
      "atanh",
      "ceil",
      "floor",
G
gem5 已提交
2718
      "rsqrt",
2719
      "sign",
G
gem5 已提交
2720
      "reciprocal",
2721
      "logical_not",
W
weishengying 已提交
2722
      "erf",
2723
      "square",
W
weishengying 已提交
2724 2725 2726 2727 2728 2729 2730
      "softmax",
      "sigmoid",
      "hard_swish",
      "depthwise_conv2d",
      "batch_norm",
      "concat",
      "tanh",
2731
      "pad3d",
W
weishengying 已提交
2732 2733 2734 2735 2736 2737
      "pad",
      "elementwise_add",
      "elementwise_sub",
      "elementwise_mul",
      "elementwise_div",
      "elementwise_pow",
2738 2739
      "elementwise_min",
      "elementwise_max",
W
wenbin 已提交
2740
      "elementwise_floordiv",
2741
      "elementwise_mod",
W
weishengying 已提交
2742
      "equal",
S
Sanbu 已提交
2743
      "not_equal",
2744 2745 2746 2747 2748 2749
      "less_than",
      "greater_than",
      "logical_or",
      "logical_xor",
      "logical_and",
      "less_equal",
2750
      "greater_equal",
W
weishengying 已提交
2751
      "dropout",
2752
      "fill_any_like",
W
weishengying 已提交
2753 2754 2755 2756 2757
      "prelu",
      "conv2d_transpose",
      "depthwise_conv2d_transpose",
      "leaky_relu",
      "shuffle_channel",
2758
      "where",
2759
      "bitwise_not",
2760 2761
      "one_hot",
      "one_hot_v2",
W
weishengying 已提交
2762 2763
      "swish",
      "silu",
2764
      "celu",
W
weishengying 已提交
2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
      "split",
      "instance_norm",
      "gelu",
      "layer_norm",
      "scale",
      "stack",
      "transpose2",
      "transpose",
      "top_k",
      "top_k_v2",
      "flatten2",
      "flatten",
      "gather",
      "gather_nd",
X
xiaoxiaohehe001 已提交
2779
      "group_norm",
W
weishengying 已提交
2780 2781 2782
      "yolo_box",
      "yolo_box_head",
      "arg_max",
2783
      "arg_min",
W
weishengying 已提交
2784 2785 2786 2787
      "roi_align",
      "affine_channel",
      "nearest_interp",
      "anchor_generator",
2788
      "reduce_max",
W
weishengying 已提交
2789
      "reduce_mean",
2790
      "reduce_sum",
W
weishengying 已提交
2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802
      "conv3d",
      "conv3d_transpose",
      "mish",
      "nearest_interp_v2",
      "bilinear_interp_v2",
      "pool3d",
      "deformable_conv",
      "relu6",
      "hard_sigmoid",
      "clip",
      "fused_embedding_eltwise_layernorm",
      "multihead_matmul",
2803
      "multihead_matmul_roformer",
W
weishengying 已提交
2804 2805 2806 2807
      "skip_layernorm",
      "slice",
      "strided_slice",
      "fused_preln_embedding_eltwise_layernorm",
W
Wang Bojun 已提交
2808
      "fused_bias_dropout_residual_layer_norm",
W
weishengying 已提交
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
      "c_allreduce_sum",
      "c_allreduce_min",
      "c_allreduce_max",
      "c_allreduce_prod",
      "roll",
      "cast",
      "preln_skip_layernorm",
      "transformer_input_convert",
      "recover_padding",
      "remove_padding",
      "fill_constant",
      "sum",
      "shape",
      "squeeze2",
      "unsqueeze2",
2824
      "layernorm_shift_partition",
W
Wang Bojun 已提交
2825
      "reverse_roll",
2826
      "take_along_axis",
2827 2828
      "tanh_shrink",
      "logsigmoid",
W
wenbin 已提交
2829
      "preln_layernorm_shift_partition",
2830
      "lookup_table",
2831
      "trans_layernorm",
W
wenbin 已提交
2832 2833
      "merge_layernorm",
      "skip_merge_layernorm",
2834
      "lookup_table_v2",
W
wenbin 已提交
2835
      "expand_v2",
2836
      "expand_as_v2",
2837
      "fuse_eleadd_transpose",
W
wenbin 已提交
2838
      "skip_groupnorm_act",
2839
      "preln_groupnorm_act",
2840
      "temporal_shift",
2841 2842
      "grid_sampler",
      "cumsum"};
W
wenbin 已提交
2843

W
weishengying 已提交
2844
  std::unordered_set<std::string> teller_set{
2845
      "matrix_multiply",
2846
      "bmm",
2847
      "range",
W
weishengying 已提交
2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870
      "conv2d",
      "conv2d_fusion",
      "pool2d",
      "relu",
      "elu",
      "selu",
      "softsign",
      "softplus",
      "stanh",
      "thresholded_relu",
      "exp",
      "log",
      "sqrt",
      "abs",
      "sin",
      "cos",
      "tan",
      "sinh",
      "cosh",
      "asin",
      "acos",
      "atan",
      "asinh",
2871
      "acosh",
W
weishengying 已提交
2872 2873 2874
      "atanh",
      "ceil",
      "floor",
G
gem5 已提交
2875
      "rsqrt",
2876
      "sign",
G
gem5 已提交
2877
      "reciprocal",
2878
      "logical_not",
W
weishengying 已提交
2879
      "erf",
2880
      "square",
W
weishengying 已提交
2881 2882 2883 2884 2885 2886 2887
      "softmax",
      "sigmoid",
      "hard_swish",
      "depthwise_conv2d",
      "batch_norm",
      "concat",
      "tanh",
2888
      "pad3d",
W
weishengying 已提交
2889 2890 2891 2892 2893 2894
      "pad",
      "elementwise_add",
      "elementwise_sub",
      "elementwise_mul",
      "elementwise_div",
      "elementwise_pow",
2895 2896
      "elementwise_min",
      "elementwise_max",
W
wenbin 已提交
2897
      "elementwise_floordiv",
2898
      "elementwise_mod",
W
weishengying 已提交
2899
      "equal",
S
Sanbu 已提交
2900
      "not_equal",
2901 2902 2903 2904 2905 2906
      "less_than",
      "greater_than",
      "logical_or",
      "logical_xor",
      "logical_and",
      "less_equal",
2907
      "greater_equal",
W
weishengying 已提交
2908
      "dropout",
2909
      "fill_any_like",
W
weishengying 已提交
2910 2911 2912 2913 2914
      "prelu",
      "conv2d_transpose",
      "depthwise_conv2d_transpose",
      "leaky_relu",
      "shuffle_channel",
2915
      "where",
2916
      "bitwise_not",
2917 2918
      "one_hot",
      "one_hot_v2",
W
weishengying 已提交
2919 2920
      "swish",
      "silu",
2921
      "celu",
W
weishengying 已提交
2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938
      "split",
      "instance_norm",
      "gelu",
      "layer_norm",
      "scale",
      "stack",
      "transpose2",
      "transpose",
      "top_k",
      "top_k_v2",
      "flatten2",
      "flatten",
      "gather",
      "gather_nd",
      "yolo_box",
      "yolo_box_head",
      "arg_max",
2939
      "arg_min",
W
weishengying 已提交
2940 2941 2942 2943
      "roi_align",
      "affine_channel",
      "nearest_interp",
      "anchor_generator",
2944
      "reduce_max",
W
weishengying 已提交
2945
      "reduce_mean",
2946
      "reduce_sum",
W
weishengying 已提交
2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958
      "conv3d",
      "conv3d_transpose",
      "mish",
      "bilinear_interp_v2",
      "nearest_interp_v2",
      "pool3d",
      "deformable_conv",
      "relu6",
      "hard_sigmoid",
      "clip",
      "fused_embedding_eltwise_layernorm",
      "multihead_matmul",
2959
      "multihead_matmul_roformer",
W
weishengying 已提交
2960 2961 2962 2963 2964
      "skip_layernorm",
      "slice",
      "strided_slice",
      "fused_preln_embedding_eltwise_layernorm",
      "preln_skip_layernorm",
W
Wang Bojun 已提交
2965
      "fused_bias_dropout_residual_layer_norm",
W
weishengying 已提交
2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980
      "c_allreduce_sum",
      "c_allreduce_min",
      "c_allreduce_max",
      "c_allreduce_prod",
      "roll",
      "cast",
      "transformer_input_convert",
      "recover_padding",
      "remove_padding",
      "fill_constant",
      "sum",
      "shape",
      "squeeze2",
      "unsqueeze2",
      "fused_token_prune",
2981
      "layernorm_shift_partition",
W
Wang Bojun 已提交
2982
      "reverse_roll",
2983
      "tanh_shrink",
2984
      "take_along_axis",
2985
      "logsigmoid",
W
wenbin 已提交
2986
      "preln_layernorm_shift_partition",
2987
      "trans_layernorm",
W
Wang Bojun 已提交
2988
      "merge_layernorm",
W
wenbin 已提交
2989
      "skip_merge_layernorm",
2990
      "lookup_table",
2991
      "lookup_table_v2",
W
wenbin 已提交
2992
      "expand_v2",
2993
      "expand_as_v2",
2994
      "fuse_eleadd_transpose",
W
wenbin 已提交
2995
      "skip_groupnorm_act",
2996
      "preln_groupnorm_act",
2997
      "temporal_shift",
2998 2999
      "grid_sampler",
      "cumsum"};
W
weishengying 已提交
3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
};

struct GenericPluginTeller : public Teller {
 public:
  GenericPluginTeller() {}
  bool operator()(const framework::OpDesc& desc,
                  bool use_no_calib_int8 = false,
                  bool with_dynamic_shape = false) override {
    const std::string op_type = desc.Type();
    // only consider dynamic_shape mode
    if (!with_dynamic_shape) {
      return false;
    }
3013 3014 3015 3016
    if (op_type == "yolo_box") {
      if (!desc.HasAttr("iou_aware") && !desc.HasAttr("iou_aware_factor"))
        return false;
    }
W
weishengying 已提交
3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074
    if (use_no_calib_int8) {
      return false;
    } else {
      framework::InitDefaultKernelSignatureMap();
      bool res = phi::OpUtilsMap::Instance().HasArgumentMappingFn(op_type) ||
                 phi::DefaultKernelSignatureMap::Instance().Has(op_type);
      if (!res) {
        VLOG(3) << op_type << " has no KernelSignature";
        return false;
      }
      res = phi::KernelFactory::Instance().HasCompatiblePhiKernel(op_type);
      if (!res) {
        VLOG(3) << op_type << " has no CompatiblePhiKernel in phi.";
        return false;
      }
      auto& dynamic_infermeta_factory =
          tensorrt::DynamicMetaFnFactory::Instance();
      res = dynamic_infermeta_factory.Contains(op_type);
      if (!res) {
        VLOG(3) << op_type << " has no DynamicMetaFn.";
        return false;
      }
      return true;
    }
  }
};

struct CustomPluginTeller : public Teller {
 public:
  CustomPluginTeller() {}
  bool operator()(const framework::OpDesc& desc,
                  bool use_no_calib_int8 = false,
                  bool with_dynamic_shape = false) override {
    const std::string op_type = desc.Type();
    std::string expect_plugin_name;

    if (with_dynamic_shape) {
      expect_plugin_name = op_type + "_paddle_trt_dynamic_plugin";
    } else {
      expect_plugin_name = op_type + "_paddle_trt_plugin";
    }

    int num = 0;
    auto creators = GetPluginRegistry()->getPluginCreatorList(&num);

    for (int i = 0; i < num; i++) {
      if (std::string(creators[i]->getPluginName()) == expect_plugin_name)
        return true;
    }
    return false;
  }
};

bool OpTeller::Tell(const framework::ir::Node* node,
                    bool use_no_calib_int8,
                    bool with_dynamic_shape) {
  const std::string op_type = node->Op()->Type();
  const framework::OpDesc desc = *node->Op();
W
Wangzheee 已提交
3075 3076 3077 3078 3079 3080
  // do not support the op which is labeled the `skip_quant`
  if ((desc.HasAttr("namescope") &&
       PADDLE_GET_CONST(std::string, desc.GetAttr("op_namescope")) ==
           "/skip_quant_2/") ||
      desc.HasAttr("skip_quant"))
    return false;
W
weishengying 已提交
3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
  auto& default_teller = GetDefaultTeller();
  if ((*default_teller)(desc, use_no_calib_int8, with_dynamic_shape)) {
    SetOpConverterType(op_type, OpConverterType::Default);
    return true;
  }
  auto& generic_plugin_teller = GetGenericPluginTeller();
  if ((*generic_plugin_teller)(desc, use_no_calib_int8, with_dynamic_shape)) {
    SetOpConverterType(op_type, OpConverterType::GenericPluginCreater);
    return true;
  }
  auto& custom_plugin_teller = GetCustomPluginTeller();
  if ((*custom_plugin_teller)(desc, use_no_calib_int8, with_dynamic_shape)) {
    SetOpConverterType(op_type, OpConverterType::CustomPluginCreater);
    return true;
  }
3096 3097
  return false;
}
3098

W
weishengying 已提交
3099 3100 3101 3102 3103
OpTeller::OpTeller() {
  tellers_.emplace_back(new tensorrt::SimpleOpTypeSetTeller);
  tellers_.emplace_back(new tensorrt::GenericPluginTeller);
  tellers_.emplace_back(new tensorrt::CustomPluginTeller);
}
3104 3105 3106
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle