engine.h 35.3 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <NvInfer.h>
18

19
#include <cstdint>
20
#include <map>
Y
Yan Chunwei 已提交
21
#include <memory>
22
#include <mutex>  // NOLINT
23
#include <string>
Y
Yan Chunwei 已提交
24
#include <unordered_map>
25
#include <unordered_set>
26
#include <utility>
27
#include <vector>
28 29
#include "NvInferRuntimeCommon.h"
#include "paddle/fluid/framework/lod_tensor.h"
30
#include "paddle/fluid/framework/scope.h"
N
nhzlx 已提交
31
#include "paddle/fluid/framework/tensor.h"
32
#include "paddle/fluid/framework/tensor_util.h"
Y
Yan Chunwei 已提交
33
#include "paddle/fluid/inference/tensorrt/helper.h"
34
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"
N
nhzlx 已提交
35
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
36
#include "paddle/fluid/inference/utils/singleton.h"
37
#include "paddle/fluid/platform/enforce.h"
38
#include "paddle/phi/common/data_type.h"
39
#include "paddle/phi/common/place.h"
40
#include "paddle/phi/core/flags.h"
41
#include "paddle/phi/core/stream.h"
42
#include "paddle/utils/any.h"
Y
Yan Chunwei 已提交
43

44
PHI_DECLARE_bool(trt_ibuilder_cache);
45

Y
Yan Chunwei 已提交
46 47 48 49
namespace paddle {
namespace inference {
namespace tensorrt {

W
Wilber 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
// The code is mainly from TensorRT, thanks to the project.
class TrtCudaGraph {
 public:
  TrtCudaGraph() = default;
  ~TrtCudaGraph() {
    if (cuda_graph_exec_) {
      cudaGraphExecDestroy(cuda_graph_exec_);
    }
  }

  void BeginCapture(cudaStream_t stream) {
    PADDLE_ENFORCE_GPU_SUCCESS(
        cudaStreamBeginCapture(stream, cudaStreamCaptureModeThreadLocal));
  }

  bool Launch(cudaStream_t stream) {
    return cudaGraphLaunch(cuda_graph_exec_, stream);
  }

  void EndCapture(cudaStream_t stream) {
    PADDLE_ENFORCE_GPU_SUCCESS(cudaStreamEndCapture(stream, &cuda_graph_));
    PADDLE_ENFORCE_GPU_SUCCESS(cudaGraphInstantiate(
        &cuda_graph_exec_, cuda_graph_, nullptr, nullptr, 0));
    PADDLE_ENFORCE_GPU_SUCCESS(cudaGraphDestroy(cuda_graph_));
  }

  void EndCaptureOnError(cudaStream_t stream) {
    // There are two possibilities why stream capture would fail:
    // (1) stream is in cudaErrorStreamCaptureInvalidated state.
    // (2) TRT reports a failure.
    // In case (1), the returning cuda_graph_ should be nullptr.
    // In case (2), the returning cuda_graph_ is not nullptr, but it should not
    // be used.
    const auto ret = cudaStreamEndCapture(stream, &cuda_graph_);
    if (ret == cudaErrorStreamCaptureInvalidated) {
      PADDLE_ENFORCE_EQ(cuda_graph_ == nullptr,
                        true,
                        platform::errors::PreconditionNotMet(
                            "CudaGraph capture stream failed."));
    } else {
      PADDLE_ENFORCE_GPU_SUCCESS(ret);
      PADDLE_ENFORCE_NOT_NULL(
          cuda_graph_,
          phi::errors::PreconditionNotMet("CudaGraph capture stream failed."));
      PADDLE_ENFORCE_GPU_SUCCESS(cudaGraphDestroy(cuda_graph_));
      cuda_graph_ = nullptr;
    }
    // Clean up any cuda error.
    cudaGetLastError();
    LOG(WARNING) << "The TRT CUDA graph capture on the stream has failed.";
  }

 private:
  DISABLE_COPY_AND_ASSIGN(TrtCudaGraph);
  cudaGraph_t cuda_graph_{};
  cudaGraphExec_t cuda_graph_exec_{};
};

W
wanghuancoder 已提交
108 109 110 111
namespace plugin {
class PluginTensorRT;
}  // namespace plugin

112 113 114 115 116 117 118 119
using FluidDT = framework::proto::VarType_Type;
using TRT_DT = nvinfer1::DataType;

namespace {  // NOLINT

TRT_DT FluidDataType2TRT(FluidDT type) {
  switch (type) {
    case FluidDT::VarType_Type_FP32:
M
ming1753 已提交
120
    case FluidDT::VarType_Type_FP64:
121 122
      return TRT_DT::kFLOAT;
    case FluidDT::VarType_Type_INT32:
123
    case FluidDT::VarType_Type_INT64:
124
      return TRT_DT::kINT32;
W
wenbin 已提交
125 126
    case FluidDT::VarType_Type_FP16:
      return TRT_DT::kHALF;
127 128 129
#if IS_TRT_VERSION_GE(8400)
    case FluidDT::VarType_Type_BOOL:
      return TRT_DT::kBOOL;
G
gaoziyuan 已提交
130

131
#endif
132
    default:
133
      PADDLE_THROW(platform::errors::InvalidArgument(
G
gaoziyuan 已提交
134 135 136 137
          "unsupported datatype in TRT op converter, type: %s. "
          "Boolean type is supported as TRT input/output "
          "using TensorRT v8.4+.",
          VarType_Type_Name(type)));
138 139 140 141 142 143
  }
  return TRT_DT::kINT32;
}

// The T can be int32 or int64 type.
template <typename T>
144 145
nvinfer1::Dims Vec2TRT_Dims(const std::vector<T>& shape,
                            std::string input,
146
                            bool with_dynamic_shape = false) {
147
  PADDLE_ENFORCE_GE(shape.size(),
148
                    0UL,
149
                    platform::errors::InvalidArgument(
150
                        "TensorRT's tensor input requires at least 0 "
151
                        "dimensions, but input %s has %d dims.",
152 153
                        input,
                        shape.size()));
W
wenbin 已提交
154

155 156 157 158 159 160 161 162 163 164 165 166 167
  auto ShapeStr = [](const std::vector<T>& shape) {
    std::ostringstream os;
    os << "[";
    for (size_t i = 0; i < shape.size(); ++i) {
      if (i == shape.size() - 1) {
        os << shape[i];
      } else {
        os << shape[i] << ",";
      }
    }
    os << "]";
    return os.str();
  };
168 169
  if (!with_dynamic_shape) {
    if (shape.size() == 4UL) {
170 171 172 173
      if (shape[2] == -1 || shape[3] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
174 175
            input,
            ShapeStr(shape)));
176
      }
177
      return nvinfer1::Dims3(shape[1], shape[2], shape[3]);
W
wenbin 已提交
178 179 180 181 182
    } else if (shape.size() == 5UL) {
      if (shape[2] == -1 || shape[3] == -1 || shape[4] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
183 184
            input,
            ShapeStr(shape)));
W
wenbin 已提交
185 186
      }
      return nvinfer1::Dims4(shape[1], shape[2], shape[3], shape[4]);
187
    } else if (shape.size() == 3UL) {
188 189 190 191
      if (shape[1] == -1 || shape[2] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
192 193
            input,
            ShapeStr(shape)));
194
      }
195
      return nvinfer1::Dims2(shape[1], shape[2]);
196 197 198 199 200
    } else if (shape.size() == 2UL) {
      if (shape[1] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
201 202
            input,
            ShapeStr(shape)));
203 204 205 206 207
      }
      nvinfer1::Dims dims;
      dims.nbDims = 1;
      dims.d[0] = shape[1];
      return dims;
208
    }
209
    // static shape doesn't support 1D op so far.
210 211
    PADDLE_ENFORCE_NE(shape.size(),
                      1UL,
212 213 214
                      platform::errors::InvalidArgument(
                          "The input [%s] shape of trt subgraph is %s."
                          "it's not supported by trt so far",
215 216
                          input,
                          ShapeStr(shape)));
217 218 219 220 221 222 223

    nvinfer1::Dims dims;
    dims.nbDims = shape.size() - 1;
    for (size_t i = 1; i < shape.size(); i++) {
      dims.d[i - 1] = shape[i];
    }
    return dims;
224 225
  } else {
    if (shape.size() == 4UL) {
226
      return nvinfer1::Dims4(shape[0], shape[1], shape[2], shape[3]);
227 228 229
    } else if (shape.size() == 3UL) {
      return nvinfer1::Dims3(shape[0], shape[1], shape[2]);
    }
230 231 232 233 234 235
    nvinfer1::Dims dims;
    dims.nbDims = shape.size();
    for (size_t i = 0; i < shape.size(); i++) {
      dims.d[i] = shape[i];
    }
    return dims;
236 237
  }
}
238
}  // namespace
239

N
nhzlx 已提交
240
class TRTInt8Calibrator;
W
wanghuancoder 已提交
241

Y
Yan Chunwei 已提交
242 243 244
/*
 * TensorRT Engine.
 *
245
 * There are two alternative ways to use it, one is to build from a paddle
246
 * protobuf model, another way is to manually construct the network.
Y
Yan Chunwei 已提交
247
 */
248 249
class TensorRTEngine {
  using DescType = ::paddle::framework::proto::BlockDesc;
250
  using ShapeMapType = std::map<std::string, std::vector<int>>;
251
  using PredictorID = int;
252

Y
Yan Chunwei 已提交
253 254 255 256
 public:
  // Weight is model parameter.
  class Weight {
   public:
257
    Weight() = default;
258
    Weight(nvinfer1::DataType dtype, void* value, size_t num_elem) {
Y
Yan Chunwei 已提交
259 260 261 262
      w_.type = dtype;
      w_.values = value;
      w_.count = num_elem;
    }
263
    const nvinfer1::Weights& get() { return w_; }
Y
Yan Chunwei 已提交
264

265 266 267 268 269 270 271 272
    void SetDataType(nvinfer1::DataType type) { w_.type = type; }

    void SetDataType(phi::DataType type);

    void SetValues(const void* values) { w_.values = values; }

    void SetCount(int64_t num) { w_.count = num; }

273 274
    std::vector<int64_t> dims;

Y
Yan Chunwei 已提交
275 276 277 278
   private:
    nvinfer1::Weights w_;
  };

279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
  TensorRTEngine(int max_batch,
                 int64_t max_workspace,
                 phi::DataType precision = phi::DataType::FLOAT32,
                 TRTInt8Calibrator* calibrator = nullptr,
                 int device_id = 0,
                 bool with_dynamic_shape = false,
                 const ShapeMapType& min_input_shape = {},
                 const ShapeMapType& max_input_shape = {},
                 const ShapeMapType& optim_input_shape = {},
                 const ShapeMapType& min_shape_tensor = {},
                 const ShapeMapType& max_shape_tensor = {},
                 const ShapeMapType& optim_shape_tensor = {},
                 bool disable_trt_plugin_fp16 = false,
                 phi::DataType model_precision = phi::DataType::FLOAT32,
                 nvinfer1::ILogger& logger = NaiveLogger::Global())
Y
Yan Chunwei 已提交
294 295
      : max_batch_(max_batch),
        max_workspace_(max_workspace),
Z
Zhaolong Xing 已提交
296
        precision_(precision),
N
nhzlx 已提交
297
        calibrator_(calibrator),
N
nhzlx 已提交
298
        device_id_(device_id),
299
        with_dynamic_shape_(with_dynamic_shape),
300 301 302
        min_input_shape_(min_input_shape),
        max_input_shape_(max_input_shape),
        optim_input_shape_(optim_input_shape),
303 304 305
        min_shape_tensor_(min_shape_tensor),
        max_shape_tensor_(max_shape_tensor),
        optim_shape_tensor_(optim_shape_tensor),
306
        disable_trt_plugin_fp16_(disable_trt_plugin_fp16),
307
        model_precision_(model_precision),
308
        logger_(logger) {
309
    dy::initLibNvInferPlugins(&logger, "");
310
  }
Y
Yan Chunwei 已提交
311

312 313 314 315 316 317 318 319 320
  ~TensorRTEngine() {
    for (auto& attr : attrs_) {
      if (attr_dels_.find(attr.first) != attr_dels_.end()) {
        attr_dels_[attr.first]();
      }
    }
    attrs_.clear();
    attr_dels_.clear();
  }
Y
Yan Chunwei 已提交
321

322
  // Add an input and set its name, data type and dimension.
Y
Yan Chunwei 已提交
323 324 325 326 327
  nvinfer1::ITensor* DeclareInput(const std::string& name,
                                  nvinfer1::DataType dtype,
                                  const nvinfer1::Dims& dim);
  // Set the offset-th output from a layer as the network's output, and set its
  // name.
328 329
  void DeclareOutput(const nvinfer1::ILayer* layer,
                     int offset,
Y
Yan Chunwei 已提交
330
                     const std::string& name);
L
Luo Tao 已提交
331 332
  // Set the itensor_map_[name] as the network's output, and set its name.
  void DeclareOutput(const std::string& name);
333 334 335
  // Set the itensor_map_[name] as the network's output, and set its name and
  // data type.
  void DeclareOutput(const std::string& name, nvinfer1::DataType dtype);
336
  void ClearTensorMap() { itensor_map_.clear(); }
Y
Yan Chunwei 已提交
337

338
  void DeleteITensor(const std::string& name, nvinfer1::ITensor* tensor);
L
Luo Tao 已提交
339 340
  void SetITensor(const std::string& name, nvinfer1::ITensor* tensor);
  // Get an ITensor called name.
341 342 343
  nvinfer1::ITensor* GetITensor(const std::string& name, bool scalar = false);
  nvinfer1::ITensor* ConvertWeight2ITensor(const std::string& name,
                                           bool scalar = false);
344
  std::unordered_map<std::string, nvinfer1::ITensor*>* GetITensorMap();
Y
Yan Chunwei 已提交
345 346

  nvinfer1::ICudaEngine* engine() { return infer_engine_.get(); }
347
  nvinfer1::IExecutionContext* context();
W
wenbin 已提交
348 349 350 351

  int GetProfileIndex() {
    if (max_profile_num_ > 1) {
      std::unique_lock<std::mutex> lock(mutex_);
352
      return profile_index_[predictor_id_per_thread];
W
wenbin 已提交
353 354 355 356 357 358 359 360 361 362 363
    } else {
      return 0;
    }
  }

  int GetBindingsOffset() {
    return (binding_num_ / max_profile_num_) * GetProfileIndex();
  }

  int GetNbBindings() { return binding_num_; }

364 365 366 367 368
  void ResetContext() {
    PADDLE_ENFORCE_NOT_NULL(
        infer_engine_,
        platform::errors::InvalidArgument(
            "You should build engine first and then set the context."));
369 370 371
    std::unique_lock<std::mutex> lock(mutex_);
    infer_context_[predictor_id_per_thread].reset(nullptr);
    infer_context_.erase(predictor_id_per_thread);
372
    cur_profile_num_ = 0;
373
  }
N
nhzlx 已提交
374 375

  nvinfer1::IHostMemory* Serialize() {
376 377 378 379
    PADDLE_ENFORCE_NOT_NULL(
        infer_engine_,
        platform::errors::InvalidArgument(
            "The TensorRT engine must be built first before serialization"));
Z
zlsh80826 已提交
380
#if IS_TRT_VERSION_LT(8000)
N
nhzlx 已提交
381
    ihost_memory_.reset(infer_engine_->serialize());
Z
zlsh80826 已提交
382 383 384 385 386 387
#else
    PADDLE_ENFORCE_NOT_NULL(
        ihost_memory_,
        platform::errors::InvalidArgument(
            "TensorRT >= 8.0 requires that buildSerializedNetwork is called"));
#endif
N
nhzlx 已提交
388 389 390
    return ihost_memory_.get();
  }

391
  void Deserialize(const std::string& engine_serialized_data);
N
nhzlx 已提交
392

393 394
  void SetRuntimeBatch(size_t batch_size);
  int GetRuntimeBatch();
395 396

  bool WithFp16() {
397
    bool enable_fp16 = (precision_ == phi::DataType::FLOAT16);
398
    bool support_fp16 = infer_builder_->platformHasFastFp16();
399 400 401
    // below is consistent with setFlag in engine.cc
    bool fall_back_fp16 = WithInt8() && !use_dla_;
    return (enable_fp16 || fall_back_fp16) && support_fp16;
402 403
  }

404
  bool WithInt8() {
405
    bool enable_int8 = (precision_ == phi::DataType::INT8);
406 407 408 409
    bool support_int8 = infer_builder_->platformHasFastInt8();
    return enable_int8 && support_int8;
  }

N
nhzlx 已提交
410
  int GetDeviceId() { return device_id_; }
411

412
  nvinfer1::IPluginV2Layer* AddPlugin(nvinfer1::ITensor* const* inputs,
413 414
                                      int num_inputs,
                                      plugin::PluginTensorRT*);
415 416 417 418 419

  nvinfer1::IPluginV2Layer* AddPluginV2Ext(nvinfer1::ITensor* const* inputs,
                                           int num_inputs,
                                           plugin::PluginTensorRTV2Ext* plugin);

420 421 422 423
  nvinfer1::IPluginV2Layer* AddPluginV2IOExt(nvinfer1::ITensor* const* inputs,
                                             int num_inputs,
                                             nvinfer1::IPluginV2IOExt* plugin);

424 425 426
  void SetTensorDynamicRange(nvinfer1::ITensor* tensor, float range) {
    quant_dynamic_range_[tensor] = range;
  }
427

428 429
  // Get fp16 trt weight. If src weight is not fp16, we will cast.
  Weight GetFp16TrtWeight(const std::string& name,
430
                          const phi::DenseTensor& weight_tensor);
431

432 433
  // Get fp32 trt weight. If src weight is not fp32, we will cast.
  Weight GetFp32TrtWeight(const std::string& name,
434
                          const phi::DenseTensor& weight_tensor);
435 436 437

  // if the src weight type is fp16, then return fp16 trt weight, etc.
  Weight GetTrtWeight(const std::string& name,
438
                      const phi::DenseTensor& weight_tensor);
439

440 441 442 443 444 445 446 447
  float GetTensorDynamicRange(nvinfer1::ITensor* tensor) {
    return quant_dynamic_range_[tensor];
  }

  bool DynamicRangeIsSet(nvinfer1::ITensor* tensor) {
    return quant_dynamic_range_.count(tensor);
  }

N
nhzlx 已提交
448 449 450 451 452
  // A pointer to CPU memory is needed of the TRT weight.
  // Before TRT runs, fluid loads weight into GPU storage.
  // so we need to copy the weights from GPU to CPU in our op converter.
  // We use a map to store these weights for the weight memory is not released
  // in advance, which affecting the construction of TRT Op.
453
  std::unordered_map<std::string /*name*/, std::unique_ptr<phi::DenseTensor>>
N
nhzlx 已提交
454
      weight_map;
Y
Yan Chunwei 已提交
455

456 457 458
  // When setting weight_map, a self-increasing suffix is needed for the names
  // so as to avoid repeatedly setting weights with the same name.
  void SetWeights(std::string w_name,
459
                  std::unique_ptr<phi::DenseTensor> w_tensor) {
460 461
    static int suffix_counter = 0;
    std::string suffix = std::to_string(suffix_counter);
P
Pei Yang 已提交
462
    std::string splitter = "__";
463 464 465 466 467 468 469 470
    std::string name_with_suffix = w_name + splitter + suffix;
    PADDLE_ENFORCE_EQ(weight_map.count(name_with_suffix),
                      0,
                      platform::errors::AlreadyExists(
                          "The weight named %s is set into the weight map "
                          "twice in TRT OP converter.",
                          name_with_suffix));
    weight_map[name_with_suffix] = std::move(w_tensor);
471 472 473
    suffix_counter += 1;
  }

474
  void SetUseOSS(bool use_varseqlen) { use_varseqlen_ = use_varseqlen; }
475 476
  void SetUseDLA(bool use_dla) { use_dla_ = use_dla; }
  void SetDLACore(int dla_core) { dla_core_ = dla_core; }
477
  void SetWithErnie(bool with_ernie) { with_ernie_ = with_ernie; }
478 479 480
  void SetWithInterleaved(bool with_interleaved) {
    with_interleaved_ = with_interleaved;
  }
481 482 483 484 485 486
  void SetTransformerPosid(std::string tensorrt_transformer_posid) {
    tensorrt_transformer_posid_ = tensorrt_transformer_posid;
  }
  void SetTransformerMaskid(std::string tensorrt_transformer_maskid) {
    tensorrt_transformer_maskid_ = tensorrt_transformer_maskid;
  }
487 488 489 490 491 492
  void ClearWeights() {
    for (auto& weight_pair : weight_map) {
      weight_pair.second.reset(nullptr);
    }
  }

493 494 495 496 497 498 499
  // NOTE: The func bellow was modified to adapt the dynamic shape.
  // Initialize the inference network, so that TensorRT layers can add to this
  // network.
  void InitNetwork();
  // After finishing adding ops, freeze this network and creates the execution
  // environment.
  void FreezeNetwork();
500 501
  void Execute(int batch_size,
               std::vector<void*>* buffers,
502 503
               cudaStream_t stream = nullptr);

W
Wilber 已提交
504 505 506 507 508
  bool Enqueue(nvinfer1::IExecutionContext* context,
               std::vector<void*>* buffers,
               int batch,
               cudaStream_t stream);

509
  nvinfer1::INetworkDefinition* network() { return infer_network_.get(); }
510

511 512 513 514 515 516
  ShapeMapType& min_input_shape() { return min_input_shape_; }
  ShapeMapType& max_input_shape() { return max_input_shape_; }
  ShapeMapType& optim_input_shape() { return optim_input_shape_; }
  ShapeMapType& min_shape_tensor() { return min_shape_tensor_; }
  ShapeMapType& max_shape_tensor() { return max_shape_tensor_; }
  ShapeMapType& optim_shape_tensor() { return optim_shape_tensor_; }
517 518

  bool AdjustDynamicShapeRange(const ShapeMapType& runtime_input_shape,
519 520 521
                               const ShapeMapType& runtime_shape_tensor,
                               std::vector<std::string>* changed,
                               std::vector<std::string>* tensor_changed) {
522 523
    bool ret = false;
    changed->clear();
524
    tensor_changed->clear();
525 526 527
    for (const auto& it : runtime_input_shape) {
      auto name = it.first;
      auto input_shape = it.second;
528 529 530 531
      // Make 0-D tensor to 1-D tensor.
      if (input_shape.size() == 0) {
        input_shape.push_back(1);
      }
532 533
      bool min_change = false;
      bool max_change = false;
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
      std::vector<int> bak_min_shape;
      std::vector<int> bak_max_shape;
      if (!min_input_shape_.count(name)) {
        min_input_shape_[name] = input_shape;
        max_input_shape_[name] = input_shape;
        optim_input_shape_[name] = input_shape;
        min_change = true;
        max_change = true;
        ret = true;
      } else {
        PADDLE_ENFORCE_EQ(min_input_shape_[name].size(),
                          input_shape.size(),
                          platform::errors::InvalidArgument(
                              "TRT dynamic_shape min_input_shape %s size not "
                              "equal, the min_input_shape[%s].size()=%d"
                              ", but the runtime_input_shape[%s].size()=%d.",
                              name,
                              name,
                              min_input_shape_[name].size(),
                              name,
                              input_shape.size()));

        bak_min_shape = min_input_shape_[name];
        bak_max_shape = max_input_shape_[name];
        for (size_t d = 0; d < input_shape.size(); ++d) {
          if (input_shape[d] < min_input_shape_[name][d]) {
            ret = true;
            min_change = true;
            min_input_shape_[name][d] = input_shape[d];
          }
          if (input_shape[d] > max_input_shape_[name][d]) {
            ret = true;
            max_change = true;
            max_input_shape_[name][d] = input_shape[d];
          }
569 570 571
        }
      }
      if (min_change)
572 573
        LOG(INFO) << "refactor tensor shape range: " << name
                  << ", min_shape from " << Vec2Str(bak_min_shape) << " to "
574 575
                  << Vec2Str(min_input_shape_[name]);
      if (max_change)
576 577
        LOG(INFO) << "refactor tensor shape range: " << name
                  << ", max_shape from " << Vec2Str(bak_max_shape) << " to "
578 579 580
                  << Vec2Str(max_input_shape_[name]);
      if (min_change || max_change) changed->push_back(name);
    }
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
    for (const auto& it : runtime_shape_tensor) {
      auto name = it.first;
      auto shape_tensor = it.second;
      bool min_change = false;
      bool max_change = false;
      std::vector<int> bak_min_shape;
      std::vector<int> bak_max_shape;
      if (!min_shape_tensor_.count(name)) {
        min_shape_tensor_[name] = shape_tensor;
        max_shape_tensor_[name] = shape_tensor;
        optim_shape_tensor_[name] = shape_tensor;
        min_change = true;
        max_change = true;
        ret = true;
      } else {
        PADDLE_ENFORCE_EQ(min_shape_tensor_[name].size(),
                          shape_tensor.size(),
                          platform::errors::InvalidArgument(
                              "TRT dynamic_shape min_shape_tensor %s size not "
                              "equal, the min_shape_tensor[%s].size()=%d"
                              ", but the runtime_shape_tensor[%s].size()=%d.",
                              name,
                              name,
                              min_shape_tensor_[name].size(),
                              name,
                              shape_tensor.size()));

        bak_min_shape = min_shape_tensor_[name];
        bak_max_shape = max_shape_tensor_[name];
        for (size_t d = 0; d < shape_tensor.size(); ++d) {
          if (shape_tensor[d] < min_shape_tensor_[name][d]) {
            ret = true;
            min_change = true;
            min_shape_tensor_[name][d] = shape_tensor[d];
          }
          if (shape_tensor[d] > max_shape_tensor_[name][d]) {
            ret = true;
            max_change = true;
            max_shape_tensor_[name][d] = shape_tensor[d];
          }
        }
      }
      if (min_change)
        LOG(INFO) << "refactor shape tensor range: " << name
                  << ", min_shape from " << Vec2Str(bak_min_shape) << " to "
                  << Vec2Str(min_shape_tensor_[name]);
      if (max_change)
        LOG(INFO) << "refactor shape tensor range: " << name
                  << ", max_shape from " << Vec2Str(bak_max_shape) << " to "
                  << Vec2Str(max_shape_tensor_[name]);
      if (min_change || max_change) tensor_changed->push_back(name);
    }
633 634 635
    return ret;
  }

636
  bool use_varseqlen() { return use_varseqlen_; }
637
  bool with_ernie() { return with_ernie_; }
638
  bool with_interleaved() { return with_interleaved_; }
639 640 641 642 643 644
  std::string tensorrt_transformer_posid() {
    return tensorrt_transformer_posid_;
  }
  std::string tensorrt_transformer_maskid() {
    return tensorrt_transformer_maskid_;
  }
645
  bool disable_trt_plugin_fp16() { return disable_trt_plugin_fp16_; }
646
  bool with_dynamic_shape() { return with_dynamic_shape_; }
647
  phi::DataType precision() { return precision_; }
648

649
#if IS_TRT_VERSION_GE(6000)
650
  nvinfer1::IPluginV2Layer* AddDynamicPlugin(
651 652
      nvinfer1::ITensor* const* inputs,
      int num_inputs,
653
      plugin::DynamicPluginTensorRT* plugin) {
654 655 656 657 658
    owned_pluginv2_.emplace_back(plugin);
    return network()->addPluginV2(inputs, num_inputs, *plugin);
  }
#endif

659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
  bool Has(const std::string& attr_name) const {
    return attrs_.count(attr_name) > 0;
  }

  void Erase(const std::string& attr_name) {
    if (!Has(attr_name)) {
      return;
    }
    if (attr_dels_.find(attr_name) != attr_dels_.end()) {
      attr_dels_[attr_name]();
      attr_dels_.erase(attr_name);
    }
    attrs_.erase(attr_name);
  }

  // Set a pointer to the attribute. Engine takes ownership of the attribute.
  template <typename AttrType>
  void Set(const std::string& attr_name, AttrType* attr) {
    if (attrs_.count(attr_name) == 0) {
      PADDLE_ENFORCE_EQ(
679 680
          attrs_.count(attr_name),
          0,
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
          platform::errors::AlreadyExists(
              "Attribute %s already set in trt engine.", attr_name));
    } else {
      VLOG(3) << "Setting the attribute " << attr_name << " for trt engine "
              << this;
    }
    attrs_[attr_name] = attr;
    attr_dels_[attr_name] = [attr, attr_name]() {
      VLOG(3) << "deleting " << attr_name;
      delete attr;
    };
  }

  // Set a pointer to the attribute. Engine doesn't take ownership. Caller
  // should delete the attribute.
  template <typename AttrType>
  void SetNotOwned(const std::string& attr_name, AttrType* attr) {
    PADDLE_ENFORCE_EQ(
699 700
        attrs_.count(attr_name),
        0,
701 702 703 704 705 706 707 708
        platform::errors::AlreadyExists(
            "Attribute %s already set in trt engine.", attr_name));
    attrs_[attr_name] = attr;
  }

  // Get a reference to the attributed previously set.
  template <typename AttrType>
  AttrType& Get(const std::string& attr_name) const {
709 710
    PADDLE_ENFORCE_NE(attrs_.find(attr_name),
                      attrs_.end(),
711 712 713
                      platform::errors::InvalidArgument(
                          "Attribute %s not found in trt engine.", attr_name));
    try {
714 715
      return *paddle::any_cast<AttrType*>(attrs_.at(attr_name));
    } catch (paddle::bad_any_cast&) {
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
      auto TypeToString = [](const std::type_info& info) -> std::string {
        if (std::type_index(info) == std::type_index(typeid(bool*))) {
          return "bool";
        } else if (std::type_index(info) == std::type_index(typeid(int*))) {
          return "int";
        } else if (std::type_index(info) ==
                   std::type_index(typeid(const int*))) {
          return "const int";
        } else if (std::type_index(info) ==
                   std::type_index(typeid(std::string*))) {
          return "std::string";
        }
        return info.name();
      };

      PADDLE_THROW(platform::errors::InvalidArgument(
732 733
          "Invalid type for attritube %s, expected: %s, actual: %s.",
          attr_name,
734 735 736 737 738
          TypeToString(typeid(AttrType*)),
          TypeToString(attrs_.at(attr_name).type())));
    }
  }

W
wenbin 已提交
739
  void SetProfileNum(int num) { max_profile_num_ = num; }
740 741 742 743

  void GetEngineInfo();

  void SetUseInspector(bool use_inspector) { use_inspector_ = use_inspector; }
744
  void SetScope(const framework::Scope& scope) { scope_ = &scope; }
745

746 747 748 749
  void SetContextMemorySharing(bool context_memory_sharing) {
    context_memory_sharing_ = context_memory_sharing;
  }

750 751 752 753 754 755
  void SetLowPrecisionIO(bool low_precision_io) {
    low_precision_io_ = low_precision_io;
  }

  bool EnableLowPrecisionIO() const { return low_precision_io_; }

W
Wilber 已提交
756 757 758 759 760
  void SetAllNodesLowerToTrt(bool all_nodes_offload_to_trt) {
    // all nodes are in trt, so we can use cudaGraph to optimize runtime.
    startup_with_cudagraph_ = all_nodes_offload_to_trt;
  }

Y
Yan Chunwei 已提交
761
 private:
N
nhzlx 已提交
762 763 764 765
  // Each ICudaEngine object is bound to a specific GPU when it is instantiated,
  // ensure that the thread is associated with the correct device by calling
  // freshDeviceId().
  void freshDeviceId();
766 767
  // Used for convert weight into Itensor
  const framework::Scope* scope_;
N
nhzlx 已提交
768

Y
Yan Chunwei 已提交
769 770
  // the max batch size
  int max_batch_;
771 772
  // the runtime batch size
  static int runtime_batch_;
Y
Yan Chunwei 已提交
773
  // the max memory size the engine uses
774
  int64_t max_workspace_;
775

776
  phi::DataType precision_;
N
nhzlx 已提交
777 778 779
  TRTInt8Calibrator* calibrator_;
  // batch size of the current data, will be updated each Executation.
  int batch_size_{-1};
N
nhzlx 已提交
780

781 782 783
  // use for engine context memory sharing
  bool context_memory_sharing_{false};

784 785
  bool low_precision_io_{false};

N
nhzlx 已提交
786
  int device_id_;
W
wenbin 已提交
787 788
  int max_profile_num_{1};
  int cur_profile_num_{0};
789
  std::unordered_map<PredictorID, int> profile_index_;
790
  bool with_dynamic_shape_{false};
791 792 793
  ShapeMapType min_input_shape_;
  ShapeMapType max_input_shape_;
  ShapeMapType optim_input_shape_;
794 795 796
  ShapeMapType min_shape_tensor_;
  ShapeMapType max_shape_tensor_;
  ShapeMapType optim_shape_tensor_;
797
  bool disable_trt_plugin_fp16_{false};
798
  phi::DataType model_precision_{phi::DataType::FLOAT32};
799
  bool use_varseqlen_{false};
800 801
  bool use_dla_{false};
  int dla_core_{0};
802
  bool with_ernie_{false};
803
  bool with_interleaved_{false};
804 805
  std::string tensorrt_transformer_posid_;
  std::string tensorrt_transformer_maskid_;
Y
Yan Chunwei 已提交
806 807 808
  nvinfer1::ILogger& logger_;

  // max data size for the buffers.
L
Luo Tao 已提交
809 810
  std::unordered_map<std::string /*name*/, nvinfer1::ITensor* /*ITensor*/>
      itensor_map_;
811

812
  std::vector<std::unique_ptr<plugin::PluginTensorRT>> owned_plugin_;
813
  std::vector<std::unique_ptr<plugin::PluginTensorRTV2Ext>> owned_plugin_v2ext_;
814
  std::vector<std::unique_ptr<nvinfer1::IPluginV2IOExt>> owned_plugin_v2ioext_;
Y
Yan Chunwei 已提交
815 816 817 818

  // TensorRT related internal members
  infer_ptr<nvinfer1::IBuilder> infer_builder_;
  infer_ptr<nvinfer1::INetworkDefinition> infer_network_;
819
  infer_ptr<nvinfer1::IRuntime> infer_runtime_;
Y
Yan Chunwei 已提交
820
  infer_ptr<nvinfer1::ICudaEngine> infer_engine_;
821
  std::unordered_map<PredictorID, infer_ptr<nvinfer1::IExecutionContext>>
822
      infer_context_;
N
nhzlx 已提交
823
  infer_ptr<nvinfer1::IHostMemory> ihost_memory_;
824
  std::unordered_map<nvinfer1::ITensor*, float> quant_dynamic_range_;
825

W
Wilber 已提交
826 827 828 829 830
  // cudagraph related
  TrtCudaGraph cuda_graph_;
  bool cudagraph_inited_{false};
  bool startup_with_cudagraph_{false};

831
  std::unordered_map<std::string, paddle::any> attrs_;
832
  std::unordered_map<std::string, std::function<void(void)>> attr_dels_;
833
#if IS_TRT_VERSION_GE(6000)
W
wenbin 已提交
834
  int binding_num_;
835
  infer_ptr<nvinfer1::IBuilderConfig> infer_builder_config_;
W
wenbin 已提交
836
  std::vector<nvinfer1::IOptimizationProfile*> optim_profiles_;
837
  std::vector<std::unique_ptr<plugin::DynamicPluginTensorRT>> owned_pluginv2_;
838
#endif
839
  std::mutex mutex_;
840
  bool use_inspector_;
841 842 843

 public:
  thread_local static int predictor_id_per_thread;
Y
Yan Chunwei 已提交
844 845
};  // class TensorRTEngine

846
// Add a layer__ into engine__ with args ARGS.
Y
Yan Chunwei 已提交
847 848 849 850 851 852 853 854 855
// For example:
//
// Reference
// https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#charRNN_define_network
//
// will add a fully connected layer into the engine.
// TensorRT has too many layers, so that is not wise to add member functions for
// them, and an macro like this is more extensible when underlying TensorRT
// library add new layer supports.
856
#define TRT_ENGINE_ADD_LAYER(engine__, layer__, ...) \
Z
zhoutianzi666 已提交
857
  engine__->network()->add##layer__(__VA_ARGS__)
Y
Yan Chunwei 已提交
858

859
class TRTEngineManager {
860 861 862
  using PredictorID = int;
  using AllocationPtr = phi::Allocator::AllocationPtr;

863
 public:
864 865 866 867 868 869 870 871 872
  TRTEngineManager() {
    // createInferBuilder loads trt kernels and take a few second
    // But as long as one IBuilder lives, trt kernel will not be unloaded
    // Hence, a persistent IBuilder to avoid TensorRT unload/reload kernels
    if (FLAGS_trt_ibuilder_cache) {
      holder_.reset(createInferBuilder(&NaiveLogger::Global()));
    }
  }

873 874 875 876 877
  bool Empty() const {
    std::lock_guard<std::mutex> lock(mutex_);
    return engines_.size() == 0;
  }

878
  bool Has(const std::string& name) const {
879
    std::lock_guard<std::mutex> lock(mutex_);
880 881 882 883 884
    if (engines_.count(name) == 0) return false;
    return engines_.at(name).get() != nullptr;
  }

  TensorRTEngine* Get(const std::string& name) const {
885
    std::lock_guard<std::mutex> lock(mutex_);
886 887 888
    return engines_.at(name).get();
  }

Z
Zhaolong Xing 已提交
889
  TensorRTEngine* Create(
890 891
      std::string name,
      int max_batch,
892
      int64_t max_workspace,
893
      phi::DataType precision = phi::DataType::FLOAT32,
894 895
      TRTInt8Calibrator* calibrator = nullptr,
      int device_id = 0,
896
      bool with_dynamic_shape = false,
897 898 899
      const std::map<std::string, std::vector<int>> min_input_shape = {},
      const std::map<std::string, std::vector<int>> max_input_shape = {},
      const std::map<std::string, std::vector<int>> optim_input_shape = {},
900 901 902
      const std::map<std::string, std::vector<int>> min_shape_tensor = {},
      const std::map<std::string, std::vector<int>> max_shape_tensor = {},
      const std::map<std::string, std::vector<int>> optim_shape_tensor = {},
903
      bool disable_trt_plugin_fp16 = false,
904
      phi::DataType model_precision = phi::DataType::FLOAT32,
Z
Zhaolong Xing 已提交
905
      nvinfer1::ILogger& logger = NaiveLogger::Global()) {
906 907 908 909 910
    auto* p = new TensorRTEngine(max_batch,
                                 max_workspace,
                                 precision,
                                 calibrator,
                                 device_id,
911
                                 with_dynamic_shape,
912 913 914
                                 min_input_shape,
                                 max_input_shape,
                                 optim_input_shape,
915 916 917
                                 min_shape_tensor,
                                 max_shape_tensor,
                                 optim_shape_tensor,
918
                                 disable_trt_plugin_fp16,
919
                                 model_precision,
920
                                 logger);
921
    std::lock_guard<std::mutex> lock(mutex_);
922 923 924 925 926
    engines_[name].reset(p);
    return p;
  }

  void DeleteAll() {
927
    std::lock_guard<std::mutex> lock(mutex_);
928 929 930
    for (auto& item : engines_) {
      item.second.reset(nullptr);
    }
931
    engines_.clear();
932 933
  }

W
Wilber 已提交
934
  void DeleteKey(const std::string& key) {
935
    std::lock_guard<std::mutex> lock(mutex_);
W
Wilber 已提交
936 937 938 939 940 941 942
    auto iter = engines_.find(key);
    if (iter != engines_.end()) {
      iter->second.reset(nullptr);
      engines_.erase(iter);
    }
  }

943
  void updateContextMemorySize(size_t mem_size, PredictorID predictor_id) {
Y
Yuanle Liu 已提交
944 945 946
    VLOG(3) << "TensorRT engine context memory size is "
            << mem_size / 1024.0 / 1024.0 << "MiB in predictor id "
            << predictor_id;
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
    bool size_updated{false};

    {
      std::lock_guard<std::mutex> lock(mutex_);
      if (max_ctx_mem_size_ < mem_size) {
        max_ctx_mem_size_ = mem_size;
        size_updated = true;
      }
    }

    if (size_updated) {
      releaseContextMemory(predictor_id);
    }
  }

  void* getContextMemory(PredictorID predictor_id,
                         const phi::GPUPlace& place,
                         const phi::Stream& stream) {
    std::lock_guard<std::mutex> lock(mutex_);
    static auto alignment = getAlignmentSize(place);
    if (context_memorys_.count(predictor_id) == 0) {
      auto context_memory =
          memory::Alloc(place, max_ctx_mem_size_ + alignment, stream);
      context_memorys_[predictor_id] = std::move(context_memory);
    }
    return getAlignedMemory(context_memorys_[predictor_id]->ptr(), alignment);
  }

  void releaseContextMemory(PredictorID predictor_id) {
    std::lock_guard<std::mutex> lock(mutex_);
    if (context_memorys_.count(predictor_id)) {
      context_memorys_[predictor_id].reset(nullptr);
      context_memorys_.erase(predictor_id);
    }
  }

983
 private:
984 985 986 987 988 989 990 991 992 993 994 995
  size_t getAlignmentSize(const phi::GPUPlace& place) {
    const auto& prop = platform::GetDeviceProperties(place.GetDeviceId());
    return prop.textureAlignment;
  }

  void* getAlignedMemory(void* addr, size_t alignment) {
    return reinterpret_cast<void*>(uintptr_t(addr) & (~(alignment - 1)));
  }

  mutable std::mutex mutex_;
  size_t max_ctx_mem_size_{0};
  std::unordered_map<PredictorID, AllocationPtr> context_memorys_;
996
  std::unordered_map<std::string, std::unique_ptr<TensorRTEngine>> engines_;
997
  infer_ptr<nvinfer1::IBuilder> holder_;
998 999
};

Y
Yan Chunwei 已提交
1000 1001 1002
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle