“46685dabe29d4d3421221ede2ca8f9f286ca76d9”上不存在“PaddleNLP/README_en.md”
engine.h 35.1 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <NvInfer.h>
18

19
#include <cstdint>
20
#include <map>
Y
Yan Chunwei 已提交
21
#include <memory>
22
#include <mutex>  // NOLINT
23
#include <string>
Y
Yan Chunwei 已提交
24
#include <unordered_map>
25
#include <unordered_set>
26
#include <utility>
27
#include <vector>
28 29
#include "NvInferRuntimeCommon.h"
#include "paddle/fluid/framework/lod_tensor.h"
30
#include "paddle/fluid/framework/scope.h"
N
nhzlx 已提交
31
#include "paddle/fluid/framework/tensor.h"
32
#include "paddle/fluid/framework/tensor_util.h"
Y
Yan Chunwei 已提交
33
#include "paddle/fluid/inference/tensorrt/helper.h"
34
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"
N
nhzlx 已提交
35
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
36
#include "paddle/fluid/inference/utils/singleton.h"
37
#include "paddle/fluid/platform/enforce.h"
38
#include "paddle/phi/common/data_type.h"
39
#include "paddle/phi/common/place.h"
40
#include "paddle/phi/core/flags.h"
41
#include "paddle/phi/core/stream.h"
42
#include "paddle/utils/any.h"
Y
Yan Chunwei 已提交
43

44
PHI_DECLARE_bool(trt_ibuilder_cache);
45

Y
Yan Chunwei 已提交
46 47 48 49
namespace paddle {
namespace inference {
namespace tensorrt {

W
Wilber 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
// The code is mainly from TensorRT, thanks to the project.
class TrtCudaGraph {
 public:
  TrtCudaGraph() = default;
  ~TrtCudaGraph() {
    if (cuda_graph_exec_) {
      cudaGraphExecDestroy(cuda_graph_exec_);
    }
  }

  void BeginCapture(cudaStream_t stream) {
    PADDLE_ENFORCE_GPU_SUCCESS(
        cudaStreamBeginCapture(stream, cudaStreamCaptureModeThreadLocal));
  }

  bool Launch(cudaStream_t stream) {
    return cudaGraphLaunch(cuda_graph_exec_, stream);
  }

  void EndCapture(cudaStream_t stream) {
    PADDLE_ENFORCE_GPU_SUCCESS(cudaStreamEndCapture(stream, &cuda_graph_));
    PADDLE_ENFORCE_GPU_SUCCESS(cudaGraphInstantiate(
        &cuda_graph_exec_, cuda_graph_, nullptr, nullptr, 0));
    PADDLE_ENFORCE_GPU_SUCCESS(cudaGraphDestroy(cuda_graph_));
  }

  void EndCaptureOnError(cudaStream_t stream) {
    // There are two possibilities why stream capture would fail:
    // (1) stream is in cudaErrorStreamCaptureInvalidated state.
    // (2) TRT reports a failure.
    // In case (1), the returning cuda_graph_ should be nullptr.
    // In case (2), the returning cuda_graph_ is not nullptr, but it should not
    // be used.
    const auto ret = cudaStreamEndCapture(stream, &cuda_graph_);
    if (ret == cudaErrorStreamCaptureInvalidated) {
      PADDLE_ENFORCE_EQ(cuda_graph_ == nullptr,
                        true,
                        platform::errors::PreconditionNotMet(
                            "CudaGraph capture stream failed."));
    } else {
      PADDLE_ENFORCE_GPU_SUCCESS(ret);
      PADDLE_ENFORCE_NOT_NULL(
          cuda_graph_,
          phi::errors::PreconditionNotMet("CudaGraph capture stream failed."));
      PADDLE_ENFORCE_GPU_SUCCESS(cudaGraphDestroy(cuda_graph_));
      cuda_graph_ = nullptr;
    }
    // Clean up any cuda error.
    cudaGetLastError();
    LOG(WARNING) << "The TRT CUDA graph capture on the stream has failed.";
  }

 private:
  DISABLE_COPY_AND_ASSIGN(TrtCudaGraph);
  cudaGraph_t cuda_graph_{};
  cudaGraphExec_t cuda_graph_exec_{};
};

W
wanghuancoder 已提交
108 109 110 111
namespace plugin {
class PluginTensorRT;
}  // namespace plugin

112 113 114 115 116 117 118 119 120 121
using FluidDT = framework::proto::VarType_Type;
using TRT_DT = nvinfer1::DataType;

namespace {  // NOLINT

TRT_DT FluidDataType2TRT(FluidDT type) {
  switch (type) {
    case FluidDT::VarType_Type_FP32:
      return TRT_DT::kFLOAT;
    case FluidDT::VarType_Type_INT32:
122
    case FluidDT::VarType_Type_INT64:
123
      return TRT_DT::kINT32;
W
wenbin 已提交
124 125
    case FluidDT::VarType_Type_FP16:
      return TRT_DT::kHALF;
126 127 128
#if IS_TRT_VERSION_GE(8400)
    case FluidDT::VarType_Type_BOOL:
      return TRT_DT::kBOOL;
G
gaoziyuan 已提交
129

130
#endif
131
    default:
132
      PADDLE_THROW(platform::errors::InvalidArgument(
G
gaoziyuan 已提交
133 134 135 136
          "unsupported datatype in TRT op converter, type: %s. "
          "Boolean type is supported as TRT input/output "
          "using TensorRT v8.4+.",
          VarType_Type_Name(type)));
137 138 139 140 141 142
  }
  return TRT_DT::kINT32;
}

// The T can be int32 or int64 type.
template <typename T>
143 144
nvinfer1::Dims Vec2TRT_Dims(const std::vector<T>& shape,
                            std::string input,
145
                            bool with_dynamic_shape = false) {
146
  PADDLE_ENFORCE_GE(shape.size(),
147
                    0UL,
148
                    platform::errors::InvalidArgument(
149
                        "TensorRT's tensor input requires at least 0 "
150
                        "dimensions, but input %s has %d dims.",
151 152
                        input,
                        shape.size()));
W
wenbin 已提交
153

154 155 156 157 158 159 160 161 162 163 164 165 166
  auto ShapeStr = [](const std::vector<T>& shape) {
    std::ostringstream os;
    os << "[";
    for (size_t i = 0; i < shape.size(); ++i) {
      if (i == shape.size() - 1) {
        os << shape[i];
      } else {
        os << shape[i] << ",";
      }
    }
    os << "]";
    return os.str();
  };
167 168
  if (!with_dynamic_shape) {
    if (shape.size() == 4UL) {
169 170 171 172
      if (shape[2] == -1 || shape[3] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
173 174
            input,
            ShapeStr(shape)));
175
      }
176
      return nvinfer1::Dims3(shape[1], shape[2], shape[3]);
W
wenbin 已提交
177 178 179 180 181
    } else if (shape.size() == 5UL) {
      if (shape[2] == -1 || shape[3] == -1 || shape[4] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
182 183
            input,
            ShapeStr(shape)));
W
wenbin 已提交
184 185
      }
      return nvinfer1::Dims4(shape[1], shape[2], shape[3], shape[4]);
186
    } else if (shape.size() == 3UL) {
187 188 189 190
      if (shape[1] == -1 || shape[2] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
191 192
            input,
            ShapeStr(shape)));
193
      }
194
      return nvinfer1::Dims2(shape[1], shape[2]);
195 196 197 198 199
    } else if (shape.size() == 2UL) {
      if (shape[1] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
200 201
            input,
            ShapeStr(shape)));
202 203 204 205 206
      }
      nvinfer1::Dims dims;
      dims.nbDims = 1;
      dims.d[0] = shape[1];
      return dims;
207
    }
208
    // static shape doesn't support 1D op so far.
209 210
    PADDLE_ENFORCE_NE(shape.size(),
                      1UL,
211 212 213
                      platform::errors::InvalidArgument(
                          "The input [%s] shape of trt subgraph is %s."
                          "it's not supported by trt so far",
214 215
                          input,
                          ShapeStr(shape)));
216 217 218 219 220 221 222

    nvinfer1::Dims dims;
    dims.nbDims = shape.size() - 1;
    for (size_t i = 1; i < shape.size(); i++) {
      dims.d[i - 1] = shape[i];
    }
    return dims;
223 224
  } else {
    if (shape.size() == 4UL) {
225
      return nvinfer1::Dims4(shape[0], shape[1], shape[2], shape[3]);
226 227 228
    } else if (shape.size() == 3UL) {
      return nvinfer1::Dims3(shape[0], shape[1], shape[2]);
    }
229 230 231 232 233 234
    nvinfer1::Dims dims;
    dims.nbDims = shape.size();
    for (size_t i = 0; i < shape.size(); i++) {
      dims.d[i] = shape[i];
    }
    return dims;
235 236
  }
}
237
}  // namespace
238

N
nhzlx 已提交
239
class TRTInt8Calibrator;
W
wanghuancoder 已提交
240

Y
Yan Chunwei 已提交
241 242 243
/*
 * TensorRT Engine.
 *
244
 * There are two alternative ways to use it, one is to build from a paddle
245
 * protobuf model, another way is to manually construct the network.
Y
Yan Chunwei 已提交
246
 */
247 248
class TensorRTEngine {
  using DescType = ::paddle::framework::proto::BlockDesc;
249
  using ShapeMapType = std::map<std::string, std::vector<int>>;
250
  using PredictorID = int;
251

Y
Yan Chunwei 已提交
252 253 254 255
 public:
  // Weight is model parameter.
  class Weight {
   public:
256
    Weight() = default;
257
    Weight(nvinfer1::DataType dtype, void* value, size_t num_elem) {
Y
Yan Chunwei 已提交
258 259 260 261
      w_.type = dtype;
      w_.values = value;
      w_.count = num_elem;
    }
262
    const nvinfer1::Weights& get() { return w_; }
Y
Yan Chunwei 已提交
263

264 265 266 267 268 269 270 271
    void SetDataType(nvinfer1::DataType type) { w_.type = type; }

    void SetDataType(phi::DataType type);

    void SetValues(const void* values) { w_.values = values; }

    void SetCount(int64_t num) { w_.count = num; }

272 273
    std::vector<int64_t> dims;

Y
Yan Chunwei 已提交
274 275 276 277
   private:
    nvinfer1::Weights w_;
  };

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
  TensorRTEngine(int max_batch,
                 int64_t max_workspace,
                 phi::DataType precision = phi::DataType::FLOAT32,
                 TRTInt8Calibrator* calibrator = nullptr,
                 int device_id = 0,
                 bool with_dynamic_shape = false,
                 const ShapeMapType& min_input_shape = {},
                 const ShapeMapType& max_input_shape = {},
                 const ShapeMapType& optim_input_shape = {},
                 const ShapeMapType& min_shape_tensor = {},
                 const ShapeMapType& max_shape_tensor = {},
                 const ShapeMapType& optim_shape_tensor = {},
                 bool disable_trt_plugin_fp16 = false,
                 phi::DataType model_precision = phi::DataType::FLOAT32,
                 nvinfer1::ILogger& logger = NaiveLogger::Global())
Y
Yan Chunwei 已提交
293 294
      : max_batch_(max_batch),
        max_workspace_(max_workspace),
Z
Zhaolong Xing 已提交
295
        precision_(precision),
N
nhzlx 已提交
296
        calibrator_(calibrator),
N
nhzlx 已提交
297
        device_id_(device_id),
298
        with_dynamic_shape_(with_dynamic_shape),
299 300 301
        min_input_shape_(min_input_shape),
        max_input_shape_(max_input_shape),
        optim_input_shape_(optim_input_shape),
302 303 304
        min_shape_tensor_(min_shape_tensor),
        max_shape_tensor_(max_shape_tensor),
        optim_shape_tensor_(optim_shape_tensor),
305
        disable_trt_plugin_fp16_(disable_trt_plugin_fp16),
306
        model_precision_(model_precision),
307
        logger_(logger) {
308
    dy::initLibNvInferPlugins(&logger, "");
309
  }
Y
Yan Chunwei 已提交
310

311 312 313 314 315 316 317 318 319
  ~TensorRTEngine() {
    for (auto& attr : attrs_) {
      if (attr_dels_.find(attr.first) != attr_dels_.end()) {
        attr_dels_[attr.first]();
      }
    }
    attrs_.clear();
    attr_dels_.clear();
  }
Y
Yan Chunwei 已提交
320

321
  // Add an input and set its name, data type and dimension.
Y
Yan Chunwei 已提交
322 323 324 325 326
  nvinfer1::ITensor* DeclareInput(const std::string& name,
                                  nvinfer1::DataType dtype,
                                  const nvinfer1::Dims& dim);
  // Set the offset-th output from a layer as the network's output, and set its
  // name.
327 328
  void DeclareOutput(const nvinfer1::ILayer* layer,
                     int offset,
Y
Yan Chunwei 已提交
329
                     const std::string& name);
L
Luo Tao 已提交
330 331
  // Set the itensor_map_[name] as the network's output, and set its name.
  void DeclareOutput(const std::string& name);
332 333 334
  // Set the itensor_map_[name] as the network's output, and set its name and
  // data type.
  void DeclareOutput(const std::string& name, nvinfer1::DataType dtype);
335
  void ClearTensorMap() { itensor_map_.clear(); }
Y
Yan Chunwei 已提交
336

337
  void DeleteITensor(const std::string& name, nvinfer1::ITensor* tensor);
L
Luo Tao 已提交
338 339
  void SetITensor(const std::string& name, nvinfer1::ITensor* tensor);
  // Get an ITensor called name.
340 341 342
  nvinfer1::ITensor* GetITensor(const std::string& name, bool scalar = false);
  nvinfer1::ITensor* ConvertWeight2ITensor(const std::string& name,
                                           bool scalar = false);
343
  std::unordered_map<std::string, nvinfer1::ITensor*>* GetITensorMap();
Y
Yan Chunwei 已提交
344 345

  nvinfer1::ICudaEngine* engine() { return infer_engine_.get(); }
346
  nvinfer1::IExecutionContext* context();
W
wenbin 已提交
347 348 349 350

  int GetProfileIndex() {
    if (max_profile_num_ > 1) {
      std::unique_lock<std::mutex> lock(mutex_);
351
      return profile_index_[predictor_id_per_thread];
W
wenbin 已提交
352 353 354 355 356 357 358 359 360 361 362
    } else {
      return 0;
    }
  }

  int GetBindingsOffset() {
    return (binding_num_ / max_profile_num_) * GetProfileIndex();
  }

  int GetNbBindings() { return binding_num_; }

363 364 365 366 367
  void ResetContext() {
    PADDLE_ENFORCE_NOT_NULL(
        infer_engine_,
        platform::errors::InvalidArgument(
            "You should build engine first and then set the context."));
368 369 370
    std::unique_lock<std::mutex> lock(mutex_);
    infer_context_[predictor_id_per_thread].reset(nullptr);
    infer_context_.erase(predictor_id_per_thread);
371
    cur_profile_num_ = 0;
372
  }
N
nhzlx 已提交
373 374

  nvinfer1::IHostMemory* Serialize() {
375 376 377 378
    PADDLE_ENFORCE_NOT_NULL(
        infer_engine_,
        platform::errors::InvalidArgument(
            "The TensorRT engine must be built first before serialization"));
Z
zlsh80826 已提交
379
#if IS_TRT_VERSION_LT(8000)
N
nhzlx 已提交
380
    ihost_memory_.reset(infer_engine_->serialize());
Z
zlsh80826 已提交
381 382 383 384 385 386
#else
    PADDLE_ENFORCE_NOT_NULL(
        ihost_memory_,
        platform::errors::InvalidArgument(
            "TensorRT >= 8.0 requires that buildSerializedNetwork is called"));
#endif
N
nhzlx 已提交
387 388 389
    return ihost_memory_.get();
  }

390
  void Deserialize(const std::string& engine_serialized_data);
N
nhzlx 已提交
391

392 393
  void SetRuntimeBatch(size_t batch_size);
  int GetRuntimeBatch();
394 395

  bool WithFp16() {
396
    bool enable_fp16 = (precision_ == phi::DataType::FLOAT16);
397
    bool support_fp16 = infer_builder_->platformHasFastFp16();
398 399 400
    // below is consistent with setFlag in engine.cc
    bool fall_back_fp16 = WithInt8() && !use_dla_;
    return (enable_fp16 || fall_back_fp16) && support_fp16;
401 402
  }

403
  bool WithInt8() {
404
    bool enable_int8 = (precision_ == phi::DataType::INT8);
405 406 407 408
    bool support_int8 = infer_builder_->platformHasFastInt8();
    return enable_int8 && support_int8;
  }

N
nhzlx 已提交
409
  int GetDeviceId() { return device_id_; }
410

411
  nvinfer1::IPluginV2Layer* AddPlugin(nvinfer1::ITensor* const* inputs,
412 413
                                      int num_inputs,
                                      plugin::PluginTensorRT*);
414 415 416 417 418

  nvinfer1::IPluginV2Layer* AddPluginV2Ext(nvinfer1::ITensor* const* inputs,
                                           int num_inputs,
                                           plugin::PluginTensorRTV2Ext* plugin);

419 420 421 422
  nvinfer1::IPluginV2Layer* AddPluginV2IOExt(nvinfer1::ITensor* const* inputs,
                                             int num_inputs,
                                             nvinfer1::IPluginV2IOExt* plugin);

423 424 425
  void SetTensorDynamicRange(nvinfer1::ITensor* tensor, float range) {
    quant_dynamic_range_[tensor] = range;
  }
426

427 428
  // Get fp16 trt weight. If src weight is not fp16, we will cast.
  Weight GetFp16TrtWeight(const std::string& name,
429
                          const phi::DenseTensor& weight_tensor);
430

431 432
  // Get fp32 trt weight. If src weight is not fp32, we will cast.
  Weight GetFp32TrtWeight(const std::string& name,
433
                          const phi::DenseTensor& weight_tensor);
434 435 436

  // if the src weight type is fp16, then return fp16 trt weight, etc.
  Weight GetTrtWeight(const std::string& name,
437
                      const phi::DenseTensor& weight_tensor);
438

439 440 441 442 443 444 445 446
  float GetTensorDynamicRange(nvinfer1::ITensor* tensor) {
    return quant_dynamic_range_[tensor];
  }

  bool DynamicRangeIsSet(nvinfer1::ITensor* tensor) {
    return quant_dynamic_range_.count(tensor);
  }

N
nhzlx 已提交
447 448 449 450 451
  // A pointer to CPU memory is needed of the TRT weight.
  // Before TRT runs, fluid loads weight into GPU storage.
  // so we need to copy the weights from GPU to CPU in our op converter.
  // We use a map to store these weights for the weight memory is not released
  // in advance, which affecting the construction of TRT Op.
452
  std::unordered_map<std::string /*name*/, std::unique_ptr<phi::DenseTensor>>
N
nhzlx 已提交
453
      weight_map;
Y
Yan Chunwei 已提交
454

455 456 457
  // When setting weight_map, a self-increasing suffix is needed for the names
  // so as to avoid repeatedly setting weights with the same name.
  void SetWeights(std::string w_name,
458
                  std::unique_ptr<phi::DenseTensor> w_tensor) {
459 460
    static int suffix_counter = 0;
    std::string suffix = std::to_string(suffix_counter);
P
Pei Yang 已提交
461
    std::string splitter = "__";
462 463 464 465 466 467 468 469
    std::string name_with_suffix = w_name + splitter + suffix;
    PADDLE_ENFORCE_EQ(weight_map.count(name_with_suffix),
                      0,
                      platform::errors::AlreadyExists(
                          "The weight named %s is set into the weight map "
                          "twice in TRT OP converter.",
                          name_with_suffix));
    weight_map[name_with_suffix] = std::move(w_tensor);
470 471 472
    suffix_counter += 1;
  }

473
  void SetUseOSS(bool use_varseqlen) { use_varseqlen_ = use_varseqlen; }
474 475
  void SetUseDLA(bool use_dla) { use_dla_ = use_dla; }
  void SetDLACore(int dla_core) { dla_core_ = dla_core; }
476
  void SetWithErnie(bool with_ernie) { with_ernie_ = with_ernie; }
477 478 479
  void SetWithInterleaved(bool with_interleaved) {
    with_interleaved_ = with_interleaved;
  }
480 481 482 483 484 485
  void SetTransformerPosid(std::string tensorrt_transformer_posid) {
    tensorrt_transformer_posid_ = tensorrt_transformer_posid;
  }
  void SetTransformerMaskid(std::string tensorrt_transformer_maskid) {
    tensorrt_transformer_maskid_ = tensorrt_transformer_maskid;
  }
486 487 488 489 490 491
  void ClearWeights() {
    for (auto& weight_pair : weight_map) {
      weight_pair.second.reset(nullptr);
    }
  }

492 493 494 495 496 497 498
  // NOTE: The func bellow was modified to adapt the dynamic shape.
  // Initialize the inference network, so that TensorRT layers can add to this
  // network.
  void InitNetwork();
  // After finishing adding ops, freeze this network and creates the execution
  // environment.
  void FreezeNetwork();
499 500
  void Execute(int batch_size,
               std::vector<void*>* buffers,
501 502
               cudaStream_t stream = nullptr);

W
Wilber 已提交
503 504 505 506 507
  bool Enqueue(nvinfer1::IExecutionContext* context,
               std::vector<void*>* buffers,
               int batch,
               cudaStream_t stream);

508
  nvinfer1::INetworkDefinition* network() { return infer_network_.get(); }
509

510 511 512 513 514 515
  ShapeMapType& min_input_shape() { return min_input_shape_; }
  ShapeMapType& max_input_shape() { return max_input_shape_; }
  ShapeMapType& optim_input_shape() { return optim_input_shape_; }
  ShapeMapType& min_shape_tensor() { return min_shape_tensor_; }
  ShapeMapType& max_shape_tensor() { return max_shape_tensor_; }
  ShapeMapType& optim_shape_tensor() { return optim_shape_tensor_; }
516 517

  bool AdjustDynamicShapeRange(const ShapeMapType& runtime_input_shape,
518 519 520
                               const ShapeMapType& runtime_shape_tensor,
                               std::vector<std::string>* changed,
                               std::vector<std::string>* tensor_changed) {
521 522
    bool ret = false;
    changed->clear();
523
    tensor_changed->clear();
524 525 526 527 528
    for (const auto& it : runtime_input_shape) {
      auto name = it.first;
      auto input_shape = it.second;
      bool min_change = false;
      bool max_change = false;
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
      std::vector<int> bak_min_shape;
      std::vector<int> bak_max_shape;
      if (!min_input_shape_.count(name)) {
        min_input_shape_[name] = input_shape;
        max_input_shape_[name] = input_shape;
        optim_input_shape_[name] = input_shape;
        min_change = true;
        max_change = true;
        ret = true;
      } else {
        PADDLE_ENFORCE_EQ(min_input_shape_[name].size(),
                          input_shape.size(),
                          platform::errors::InvalidArgument(
                              "TRT dynamic_shape min_input_shape %s size not "
                              "equal, the min_input_shape[%s].size()=%d"
                              ", but the runtime_input_shape[%s].size()=%d.",
                              name,
                              name,
                              min_input_shape_[name].size(),
                              name,
                              input_shape.size()));

        bak_min_shape = min_input_shape_[name];
        bak_max_shape = max_input_shape_[name];
        for (size_t d = 0; d < input_shape.size(); ++d) {
          if (input_shape[d] < min_input_shape_[name][d]) {
            ret = true;
            min_change = true;
            min_input_shape_[name][d] = input_shape[d];
          }
          if (input_shape[d] > max_input_shape_[name][d]) {
            ret = true;
            max_change = true;
            max_input_shape_[name][d] = input_shape[d];
          }
564 565 566
        }
      }
      if (min_change)
567 568
        LOG(INFO) << "refactor tensor shape range: " << name
                  << ", min_shape from " << Vec2Str(bak_min_shape) << " to "
569 570
                  << Vec2Str(min_input_shape_[name]);
      if (max_change)
571 572
        LOG(INFO) << "refactor tensor shape range: " << name
                  << ", max_shape from " << Vec2Str(bak_max_shape) << " to "
573 574 575
                  << Vec2Str(max_input_shape_[name]);
      if (min_change || max_change) changed->push_back(name);
    }
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
    for (const auto& it : runtime_shape_tensor) {
      auto name = it.first;
      auto shape_tensor = it.second;
      bool min_change = false;
      bool max_change = false;
      std::vector<int> bak_min_shape;
      std::vector<int> bak_max_shape;
      if (!min_shape_tensor_.count(name)) {
        min_shape_tensor_[name] = shape_tensor;
        max_shape_tensor_[name] = shape_tensor;
        optim_shape_tensor_[name] = shape_tensor;
        min_change = true;
        max_change = true;
        ret = true;
      } else {
        PADDLE_ENFORCE_EQ(min_shape_tensor_[name].size(),
                          shape_tensor.size(),
                          platform::errors::InvalidArgument(
                              "TRT dynamic_shape min_shape_tensor %s size not "
                              "equal, the min_shape_tensor[%s].size()=%d"
                              ", but the runtime_shape_tensor[%s].size()=%d.",
                              name,
                              name,
                              min_shape_tensor_[name].size(),
                              name,
                              shape_tensor.size()));

        bak_min_shape = min_shape_tensor_[name];
        bak_max_shape = max_shape_tensor_[name];
        for (size_t d = 0; d < shape_tensor.size(); ++d) {
          if (shape_tensor[d] < min_shape_tensor_[name][d]) {
            ret = true;
            min_change = true;
            min_shape_tensor_[name][d] = shape_tensor[d];
          }
          if (shape_tensor[d] > max_shape_tensor_[name][d]) {
            ret = true;
            max_change = true;
            max_shape_tensor_[name][d] = shape_tensor[d];
          }
        }
      }
      if (min_change)
        LOG(INFO) << "refactor shape tensor range: " << name
                  << ", min_shape from " << Vec2Str(bak_min_shape) << " to "
                  << Vec2Str(min_shape_tensor_[name]);
      if (max_change)
        LOG(INFO) << "refactor shape tensor range: " << name
                  << ", max_shape from " << Vec2Str(bak_max_shape) << " to "
                  << Vec2Str(max_shape_tensor_[name]);
      if (min_change || max_change) tensor_changed->push_back(name);
    }
628 629 630
    return ret;
  }

631
  bool use_varseqlen() { return use_varseqlen_; }
632
  bool with_ernie() { return with_ernie_; }
633
  bool with_interleaved() { return with_interleaved_; }
634 635 636 637 638 639
  std::string tensorrt_transformer_posid() {
    return tensorrt_transformer_posid_;
  }
  std::string tensorrt_transformer_maskid() {
    return tensorrt_transformer_maskid_;
  }
640
  bool disable_trt_plugin_fp16() { return disable_trt_plugin_fp16_; }
641
  bool with_dynamic_shape() { return with_dynamic_shape_; }
642
  phi::DataType precision() { return precision_; }
643

644
#if IS_TRT_VERSION_GE(6000)
645
  nvinfer1::IPluginV2Layer* AddDynamicPlugin(
646 647
      nvinfer1::ITensor* const* inputs,
      int num_inputs,
648
      plugin::DynamicPluginTensorRT* plugin) {
649 650 651 652 653
    owned_pluginv2_.emplace_back(plugin);
    return network()->addPluginV2(inputs, num_inputs, *plugin);
  }
#endif

654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
  bool Has(const std::string& attr_name) const {
    return attrs_.count(attr_name) > 0;
  }

  void Erase(const std::string& attr_name) {
    if (!Has(attr_name)) {
      return;
    }
    if (attr_dels_.find(attr_name) != attr_dels_.end()) {
      attr_dels_[attr_name]();
      attr_dels_.erase(attr_name);
    }
    attrs_.erase(attr_name);
  }

  // Set a pointer to the attribute. Engine takes ownership of the attribute.
  template <typename AttrType>
  void Set(const std::string& attr_name, AttrType* attr) {
    if (attrs_.count(attr_name) == 0) {
      PADDLE_ENFORCE_EQ(
674 675
          attrs_.count(attr_name),
          0,
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
          platform::errors::AlreadyExists(
              "Attribute %s already set in trt engine.", attr_name));
    } else {
      VLOG(3) << "Setting the attribute " << attr_name << " for trt engine "
              << this;
    }
    attrs_[attr_name] = attr;
    attr_dels_[attr_name] = [attr, attr_name]() {
      VLOG(3) << "deleting " << attr_name;
      delete attr;
    };
  }

  // Set a pointer to the attribute. Engine doesn't take ownership. Caller
  // should delete the attribute.
  template <typename AttrType>
  void SetNotOwned(const std::string& attr_name, AttrType* attr) {
    PADDLE_ENFORCE_EQ(
694 695
        attrs_.count(attr_name),
        0,
696 697 698 699 700 701 702 703
        platform::errors::AlreadyExists(
            "Attribute %s already set in trt engine.", attr_name));
    attrs_[attr_name] = attr;
  }

  // Get a reference to the attributed previously set.
  template <typename AttrType>
  AttrType& Get(const std::string& attr_name) const {
704 705
    PADDLE_ENFORCE_NE(attrs_.find(attr_name),
                      attrs_.end(),
706 707 708
                      platform::errors::InvalidArgument(
                          "Attribute %s not found in trt engine.", attr_name));
    try {
709 710
      return *paddle::any_cast<AttrType*>(attrs_.at(attr_name));
    } catch (paddle::bad_any_cast&) {
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
      auto TypeToString = [](const std::type_info& info) -> std::string {
        if (std::type_index(info) == std::type_index(typeid(bool*))) {
          return "bool";
        } else if (std::type_index(info) == std::type_index(typeid(int*))) {
          return "int";
        } else if (std::type_index(info) ==
                   std::type_index(typeid(const int*))) {
          return "const int";
        } else if (std::type_index(info) ==
                   std::type_index(typeid(std::string*))) {
          return "std::string";
        }
        return info.name();
      };

      PADDLE_THROW(platform::errors::InvalidArgument(
727 728
          "Invalid type for attritube %s, expected: %s, actual: %s.",
          attr_name,
729 730 731 732 733
          TypeToString(typeid(AttrType*)),
          TypeToString(attrs_.at(attr_name).type())));
    }
  }

W
wenbin 已提交
734
  void SetProfileNum(int num) { max_profile_num_ = num; }
735 736 737 738

  void GetEngineInfo();

  void SetUseInspector(bool use_inspector) { use_inspector_ = use_inspector; }
739
  void SetScope(const framework::Scope& scope) { scope_ = &scope; }
740

741 742 743 744
  void SetContextMemorySharing(bool context_memory_sharing) {
    context_memory_sharing_ = context_memory_sharing;
  }

745 746 747 748 749 750
  void SetLowPrecisionIO(bool low_precision_io) {
    low_precision_io_ = low_precision_io;
  }

  bool EnableLowPrecisionIO() const { return low_precision_io_; }

W
Wilber 已提交
751 752 753 754 755
  void SetAllNodesLowerToTrt(bool all_nodes_offload_to_trt) {
    // all nodes are in trt, so we can use cudaGraph to optimize runtime.
    startup_with_cudagraph_ = all_nodes_offload_to_trt;
  }

Y
Yan Chunwei 已提交
756
 private:
N
nhzlx 已提交
757 758 759 760
  // Each ICudaEngine object is bound to a specific GPU when it is instantiated,
  // ensure that the thread is associated with the correct device by calling
  // freshDeviceId().
  void freshDeviceId();
761 762
  // Used for convert weight into Itensor
  const framework::Scope* scope_;
N
nhzlx 已提交
763

Y
Yan Chunwei 已提交
764 765
  // the max batch size
  int max_batch_;
766 767
  // the runtime batch size
  static int runtime_batch_;
Y
Yan Chunwei 已提交
768
  // the max memory size the engine uses
769
  int64_t max_workspace_;
770

771
  phi::DataType precision_;
N
nhzlx 已提交
772 773 774
  TRTInt8Calibrator* calibrator_;
  // batch size of the current data, will be updated each Executation.
  int batch_size_{-1};
N
nhzlx 已提交
775

776 777 778
  // use for engine context memory sharing
  bool context_memory_sharing_{false};

779 780
  bool low_precision_io_{false};

N
nhzlx 已提交
781
  int device_id_;
W
wenbin 已提交
782 783
  int max_profile_num_{1};
  int cur_profile_num_{0};
784
  std::unordered_map<PredictorID, int> profile_index_;
785
  bool with_dynamic_shape_{false};
786 787 788
  ShapeMapType min_input_shape_;
  ShapeMapType max_input_shape_;
  ShapeMapType optim_input_shape_;
789 790 791
  ShapeMapType min_shape_tensor_;
  ShapeMapType max_shape_tensor_;
  ShapeMapType optim_shape_tensor_;
792
  bool disable_trt_plugin_fp16_{false};
793
  phi::DataType model_precision_{phi::DataType::FLOAT32};
794
  bool use_varseqlen_{false};
795 796
  bool use_dla_{false};
  int dla_core_{0};
797
  bool with_ernie_{false};
798
  bool with_interleaved_{false};
799 800
  std::string tensorrt_transformer_posid_;
  std::string tensorrt_transformer_maskid_;
Y
Yan Chunwei 已提交
801 802 803
  nvinfer1::ILogger& logger_;

  // max data size for the buffers.
L
Luo Tao 已提交
804 805
  std::unordered_map<std::string /*name*/, nvinfer1::ITensor* /*ITensor*/>
      itensor_map_;
806

807
  std::vector<std::unique_ptr<plugin::PluginTensorRT>> owned_plugin_;
808
  std::vector<std::unique_ptr<plugin::PluginTensorRTV2Ext>> owned_plugin_v2ext_;
809
  std::vector<std::unique_ptr<nvinfer1::IPluginV2IOExt>> owned_plugin_v2ioext_;
Y
Yan Chunwei 已提交
810 811 812 813

  // TensorRT related internal members
  infer_ptr<nvinfer1::IBuilder> infer_builder_;
  infer_ptr<nvinfer1::INetworkDefinition> infer_network_;
814
  infer_ptr<nvinfer1::IRuntime> infer_runtime_;
Y
Yan Chunwei 已提交
815
  infer_ptr<nvinfer1::ICudaEngine> infer_engine_;
816
  std::unordered_map<PredictorID, infer_ptr<nvinfer1::IExecutionContext>>
817
      infer_context_;
N
nhzlx 已提交
818
  infer_ptr<nvinfer1::IHostMemory> ihost_memory_;
819
  std::unordered_map<nvinfer1::ITensor*, float> quant_dynamic_range_;
820

W
Wilber 已提交
821 822 823 824 825
  // cudagraph related
  TrtCudaGraph cuda_graph_;
  bool cudagraph_inited_{false};
  bool startup_with_cudagraph_{false};

826
  std::unordered_map<std::string, paddle::any> attrs_;
827
  std::unordered_map<std::string, std::function<void(void)>> attr_dels_;
828
#if IS_TRT_VERSION_GE(6000)
W
wenbin 已提交
829
  int binding_num_;
830
  infer_ptr<nvinfer1::IBuilderConfig> infer_builder_config_;
W
wenbin 已提交
831
  std::vector<nvinfer1::IOptimizationProfile*> optim_profiles_;
832
  std::vector<std::unique_ptr<plugin::DynamicPluginTensorRT>> owned_pluginv2_;
833
#endif
834
  std::mutex mutex_;
835
  bool use_inspector_;
836 837 838

 public:
  thread_local static int predictor_id_per_thread;
Y
Yan Chunwei 已提交
839 840
};  // class TensorRTEngine

841
// Add a layer__ into engine__ with args ARGS.
Y
Yan Chunwei 已提交
842 843 844 845 846 847 848 849 850
// For example:
//
// Reference
// https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#charRNN_define_network
//
// will add a fully connected layer into the engine.
// TensorRT has too many layers, so that is not wise to add member functions for
// them, and an macro like this is more extensible when underlying TensorRT
// library add new layer supports.
851
#define TRT_ENGINE_ADD_LAYER(engine__, layer__, ...) \
Z
zhoutianzi666 已提交
852
  engine__->network()->add##layer__(__VA_ARGS__)
Y
Yan Chunwei 已提交
853

854
class TRTEngineManager {
855 856 857
  using PredictorID = int;
  using AllocationPtr = phi::Allocator::AllocationPtr;

858
 public:
859 860 861 862 863 864 865 866 867
  TRTEngineManager() {
    // createInferBuilder loads trt kernels and take a few second
    // But as long as one IBuilder lives, trt kernel will not be unloaded
    // Hence, a persistent IBuilder to avoid TensorRT unload/reload kernels
    if (FLAGS_trt_ibuilder_cache) {
      holder_.reset(createInferBuilder(&NaiveLogger::Global()));
    }
  }

868 869 870 871 872
  bool Empty() const {
    std::lock_guard<std::mutex> lock(mutex_);
    return engines_.size() == 0;
  }

873
  bool Has(const std::string& name) const {
874
    std::lock_guard<std::mutex> lock(mutex_);
875 876 877 878 879
    if (engines_.count(name) == 0) return false;
    return engines_.at(name).get() != nullptr;
  }

  TensorRTEngine* Get(const std::string& name) const {
880
    std::lock_guard<std::mutex> lock(mutex_);
881 882 883
    return engines_.at(name).get();
  }

Z
Zhaolong Xing 已提交
884
  TensorRTEngine* Create(
885 886
      std::string name,
      int max_batch,
887
      int64_t max_workspace,
888
      phi::DataType precision = phi::DataType::FLOAT32,
889 890
      TRTInt8Calibrator* calibrator = nullptr,
      int device_id = 0,
891
      bool with_dynamic_shape = false,
892 893 894
      const std::map<std::string, std::vector<int>> min_input_shape = {},
      const std::map<std::string, std::vector<int>> max_input_shape = {},
      const std::map<std::string, std::vector<int>> optim_input_shape = {},
895 896 897
      const std::map<std::string, std::vector<int>> min_shape_tensor = {},
      const std::map<std::string, std::vector<int>> max_shape_tensor = {},
      const std::map<std::string, std::vector<int>> optim_shape_tensor = {},
898
      bool disable_trt_plugin_fp16 = false,
899
      phi::DataType model_precision = phi::DataType::FLOAT32,
Z
Zhaolong Xing 已提交
900
      nvinfer1::ILogger& logger = NaiveLogger::Global()) {
901 902 903 904 905
    auto* p = new TensorRTEngine(max_batch,
                                 max_workspace,
                                 precision,
                                 calibrator,
                                 device_id,
906
                                 with_dynamic_shape,
907 908 909
                                 min_input_shape,
                                 max_input_shape,
                                 optim_input_shape,
910 911 912
                                 min_shape_tensor,
                                 max_shape_tensor,
                                 optim_shape_tensor,
913
                                 disable_trt_plugin_fp16,
914
                                 model_precision,
915
                                 logger);
916
    std::lock_guard<std::mutex> lock(mutex_);
917 918 919 920 921
    engines_[name].reset(p);
    return p;
  }

  void DeleteAll() {
922
    std::lock_guard<std::mutex> lock(mutex_);
923 924 925
    for (auto& item : engines_) {
      item.second.reset(nullptr);
    }
926
    engines_.clear();
927 928
  }

W
Wilber 已提交
929
  void DeleteKey(const std::string& key) {
930
    std::lock_guard<std::mutex> lock(mutex_);
W
Wilber 已提交
931 932 933 934 935 936 937
    auto iter = engines_.find(key);
    if (iter != engines_.end()) {
      iter->second.reset(nullptr);
      engines_.erase(iter);
    }
  }

938
  void updateContextMemorySize(size_t mem_size, PredictorID predictor_id) {
Y
Yuanle Liu 已提交
939 940 941
    VLOG(3) << "TensorRT engine context memory size is "
            << mem_size / 1024.0 / 1024.0 << "MiB in predictor id "
            << predictor_id;
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
    bool size_updated{false};

    {
      std::lock_guard<std::mutex> lock(mutex_);
      if (max_ctx_mem_size_ < mem_size) {
        max_ctx_mem_size_ = mem_size;
        size_updated = true;
      }
    }

    if (size_updated) {
      releaseContextMemory(predictor_id);
    }
  }

  void* getContextMemory(PredictorID predictor_id,
                         const phi::GPUPlace& place,
                         const phi::Stream& stream) {
    std::lock_guard<std::mutex> lock(mutex_);
    static auto alignment = getAlignmentSize(place);
    if (context_memorys_.count(predictor_id) == 0) {
      auto context_memory =
          memory::Alloc(place, max_ctx_mem_size_ + alignment, stream);
      context_memorys_[predictor_id] = std::move(context_memory);
    }
    return getAlignedMemory(context_memorys_[predictor_id]->ptr(), alignment);
  }

  void releaseContextMemory(PredictorID predictor_id) {
    std::lock_guard<std::mutex> lock(mutex_);
    if (context_memorys_.count(predictor_id)) {
      context_memorys_[predictor_id].reset(nullptr);
      context_memorys_.erase(predictor_id);
    }
  }

978
 private:
979 980 981 982 983 984 985 986 987 988 989 990
  size_t getAlignmentSize(const phi::GPUPlace& place) {
    const auto& prop = platform::GetDeviceProperties(place.GetDeviceId());
    return prop.textureAlignment;
  }

  void* getAlignedMemory(void* addr, size_t alignment) {
    return reinterpret_cast<void*>(uintptr_t(addr) & (~(alignment - 1)));
  }

  mutable std::mutex mutex_;
  size_t max_ctx_mem_size_{0};
  std::unordered_map<PredictorID, AllocationPtr> context_memorys_;
991
  std::unordered_map<std::string, std::unique_ptr<TensorRTEngine>> engines_;
992
  infer_ptr<nvinfer1::IBuilder> holder_;
993 994
};

Y
Yan Chunwei 已提交
995 996 997
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle