Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
ea0abf93
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ea0abf93
编写于
5月 09, 2023
作者:
W
Wilber
提交者:
GitHub
5月 09, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Support trt cuda graph. (#53406)
上级
72cb09e3
变更
13
隐藏空白更改
内联
并排
Showing
13 changed file
with
245 addition
and
20 deletion
+245
-20
paddle/fluid/inference/analysis/argument.h
paddle/fluid/inference/analysis/argument.h
+1
-0
paddle/fluid/inference/analysis/ir_pass_manager.cc
paddle/fluid/inference/analysis/ir_pass_manager.cc
+2
-0
paddle/fluid/inference/analysis/ir_passes/tensorrt_subgraph_pass.cc
...id/inference/analysis/ir_passes/tensorrt_subgraph_pass.cc
+65
-10
paddle/fluid/inference/analysis/ir_passes/tensorrt_subgraph_pass.h
...uid/inference/analysis/ir_passes/tensorrt_subgraph_pass.h
+5
-4
paddle/fluid/inference/api/analysis_config.cc
paddle/fluid/inference/api/analysis_config.cc
+11
-1
paddle/fluid/inference/api/analysis_predictor.cc
paddle/fluid/inference/api/analysis_predictor.cc
+1
-0
paddle/fluid/inference/api/paddle_analysis_config.h
paddle/fluid/inference/api/paddle_analysis_config.h
+6
-1
paddle/fluid/inference/tensorrt/engine.cc
paddle/fluid/inference/tensorrt/engine.cc
+51
-2
paddle/fluid/inference/tensorrt/engine.h
paddle/fluid/inference/tensorrt/engine.h
+73
-0
paddle/fluid/inference/tensorrt/test_engine.cc
paddle/fluid/inference/tensorrt/test_engine.cc
+1
-0
paddle/fluid/pybind/inference_api.cc
paddle/fluid/pybind/inference_api.cc
+2
-1
test/cpp/inference/api/CMakeLists.txt
test/cpp/inference/api/CMakeLists.txt
+1
-1
test/cpp/inference/api/trt_mobilenet_test.cc
test/cpp/inference/api/trt_mobilenet_test.cc
+26
-0
未找到文件。
paddle/fluid/inference/analysis/argument.h
浏览文件 @
ea0abf93
...
...
@@ -231,6 +231,7 @@ struct Argument {
TensorRtUseStaticEngine
,
bool
);
DECL_ARGUMENT_FIELD
(
tensorrt_use_calib_mode
,
TensorRtUseCalibMode
,
bool
);
DECL_ARGUMENT_FIELD
(
tensorrt_use_cuda_graph
,
TensorRtUseCudaGraph
,
bool
);
DECL_ARGUMENT_FIELD
(
tensorrt_use_varseqlen
,
TensorRtUseOSS
,
bool
);
DECL_ARGUMENT_FIELD
(
tensorrt_with_interleaved
,
TensorRtWithInterleaved
,
bool
);
DECL_ARGUMENT_FIELD
(
tensorrt_transformer_posid
,
...
...
paddle/fluid/inference/analysis/ir_pass_manager.cc
浏览文件 @
ea0abf93
...
...
@@ -165,6 +165,8 @@ void IRPassManager::CreatePasses(Argument *argument,
new
AnalysisConfig
::
Precision
(
precision_mode
));
pass
->
Set
(
"context_memory_sharing"
,
new
bool
(
argument
->
trt_engine_memory_sharing
()));
pass
->
Set
(
"use_cuda_graph"
,
new
bool
(
argument
->
tensorrt_use_cuda_graph
()));
bool
use_static_engine
=
argument
->
tensorrt_use_static_engine
();
bool
model_from_memory
=
argument
->
model_from_memory
();
std
::
string
optim_cache_dir
=
argument
->
optim_cache_dir
();
...
...
paddle/fluid/inference/analysis/ir_passes/tensorrt_subgraph_pass.cc
浏览文件 @
ea0abf93
...
...
@@ -101,6 +101,22 @@ void OutputProcess(framework::ir::Graph *graph,
}
}
// Determine whether the whole graph offload to tensorrt. If so we can try to
// enable optimization such as cudaGraph.
bool
AllNodesLowerToTrtPostProcess
(
framework
::
ir
::
Graph
*
graph
)
{
std
::
unordered_set
<
std
::
string
>
trt_nodes_set
{
"feed"
,
"fetch"
,
"tensorrt_engine"
};
bool
all_nodes_offload_to_trt
=
true
;
for
(
auto
*
node
:
graph
->
Nodes
())
{
if
(
node
->
IsOp
())
{
if
(
!
trt_nodes_set
.
count
(
node
->
Op
()
->
Type
()))
{
all_nodes_offload_to_trt
=
false
;
break
;
}
}
}
return
all_nodes_offload_to_trt
;
}
}
// namespace
using
framework
::
ir
::
Node
;
...
...
@@ -124,6 +140,7 @@ void analysis::TensorRtSubgraphPass::ApplyImpl(
auto
enable_int8
=
Get
<
bool
>
(
"enable_int8"
);
auto
use_calib_mode
=
Get
<
bool
>
(
"use_calib_mode"
);
bool
use_cuda_graph
=
Get
<
bool
>
(
"use_cuda_graph"
);
bool
no_calib_int8
=
enable_int8
&&
!
(
use_calib_mode
);
auto
trt_disabled_ops
=
Get
<
std
::
vector
<
std
::
string
>>
(
"trt_disabled_ops"
);
auto
with_dynamic_shape
=
Get
<
bool
>
(
"with_dynamic_shape"
);
...
...
@@ -165,13 +182,11 @@ void analysis::TensorRtSubgraphPass::ApplyImpl(
// those parameter already exist in trt, and should not have another copy in
// fluid.
std
::
vector
<
std
::
string
>
repetitive_params
;
std
::
vector
<
std
::
string
>
engine_names
;
for
(
auto
*
node
:
graph
->
Nodes
())
{
if
(
node
->
IsOp
()
&&
!
framework
::
ir
::
Agent
(
node
).
subgraph
()
->
empty
())
{
CreateTensorRTOp
(
node
,
graph
,
graph_param_names
,
&
repetitive_params
);
std
::
unordered_set
<
const
Node
*>
nodes2remove
(
framework
::
ir
::
Agent
(
node
).
subgraph
()
->
begin
(),
framework
::
ir
::
Agent
(
node
).
subgraph
()
->
end
());
framework
::
ir
::
GraphSafeRemoveNodes
(
graph
,
nodes2remove
);
engine_names
.
push_back
(
CreateTensorRTOp
(
node
,
graph
,
graph_param_names
,
&
repetitive_params
,
use_cuda_graph
));
}
}
...
...
@@ -184,6 +199,32 @@ void analysis::TensorRtSubgraphPass::ApplyImpl(
framework
::
ir
::
GraphSafeRemoveNodes
(
graph
,
nodes2remove
);
graph
->
Set
(
framework
::
ir
::
kRepetitiveParamAttr
,
new
std
::
vector
<
std
::
string
>
(
repetitive_params
));
bool
all_nodes_offload_to_trt
=
AllNodesLowerToTrtPostProcess
(
graph
);
if
(
all_nodes_offload_to_trt
)
{
LOG
(
INFO
)
<<
"The entire graph is offloaded to TensorRT."
;
}
if
(
use_cuda_graph
&&
!
all_nodes_offload_to_trt
)
{
LOG_FIRST_N
(
WARNING
,
1
)
<<
"You have enabled CudaGraph, but not the entire graph offload to "
"trt, now return to normal mode."
;
use_cuda_graph
=
false
;
}
if
(
use_cuda_graph
&&
all_nodes_offload_to_trt
)
{
for
(
auto
&
name
:
engine_names
)
{
PADDLE_ENFORCE_EQ
(
paddle
::
inference
::
Singleton
<
inference
::
tensorrt
::
TRTEngineManager
>::
Global
()
.
Has
(
name
),
true
,
platform
::
errors
::
PreconditionNotMet
(
"TRTEnegineManager shoud has engine %s, but not found."
,
name
));
paddle
::
inference
::
Singleton
<
inference
::
tensorrt
::
TRTEngineManager
>::
Global
()
.
Get
(
name
)
->
SetAllNodesLowerToTrt
(
use_cuda_graph
);
}
}
}
std
::
string
GenerateEngineKey
(
const
std
::
set
<
std
::
string
>
&
engine_inputs
,
...
...
@@ -191,6 +232,7 @@ std::string GenerateEngineKey(const std::set<std::string> &engine_inputs,
const
std
::
string
&
predictor_id
,
const
std
::
string
&
max_batch_size
,
const
std
::
string
&
precision
,
bool
use_cuda_graph
,
const
bool
for_calibration
)
{
std
::
string
engine_hash_key
=
""
;
for
(
auto
name
:
engine_inputs
)
{
...
...
@@ -209,17 +251,21 @@ std::string GenerateEngineKey(const std::set<std::string> &engine_inputs,
engine_hash_key
+=
"#"
;
engine_hash_key
+=
precision
;
engine_hash_key
+=
"#"
;
engine_hash_key
+=
use_cuda_graph
;
auto
engine_key
=
std
::
to_string
(
std
::
hash
<
std
::
string
>
()(
engine_hash_key
));
VLOG
(
2
)
<<
"TRT engine hash key: "
<<
engine_hash_key
;
VLOG
(
2
)
<<
"TRT engine key: "
<<
engine_key
;
return
engine_key
;
}
void
TensorRtSubgraphPass
::
CreateTensorRTOp
(
std
::
string
TensorRtSubgraphPass
::
CreateTensorRTOp
(
framework
::
ir
::
Node
*
node
,
framework
::
ir
::
Graph
*
graph
,
const
std
::
vector
<
std
::
string
>
&
graph_params
,
std
::
vector
<
std
::
string
>
*
repetitive_params
)
const
{
std
::
vector
<
std
::
string
>
*
repetitive_params
,
bool
use_cuda_graph
)
const
{
auto
*
op_desc
=
node
->
Op
();
auto
&
subgraph
=
*
framework
::
ir
::
Agent
(
node
).
subgraph
();
PADDLE_ENFORCE_EQ
(
subgraph
.
empty
(),
...
...
@@ -506,6 +552,7 @@ void TensorRtSubgraphPass::CreateTensorRTOp(
std
::
to_string
(
0
),
std
::
to_string
(
max_batch_size
),
std
::
to_string
(
static_cast
<
int
>
(
precision_mode
)),
use_cuda_graph
,
false
);
auto
calibration_engine_key
=
GenerateEngineKey
(
input_names_with_id
,
...
...
@@ -513,6 +560,7 @@ void TensorRtSubgraphPass::CreateTensorRTOp(
std
::
to_string
(
0
),
std
::
to_string
(
max_batch_size
),
std
::
to_string
(
static_cast
<
int
>
(
precision_mode
)),
use_cuda_graph
,
true
);
auto
predictor_id
=
Get
<
int
>
(
"predictor_id"
);
...
...
@@ -547,7 +595,7 @@ void TensorRtSubgraphPass::CreateTensorRTOp(
(
enable_int8
&&
calibration_data
.
size
()
==
0
&&
use_calib_mode
);
if
(
calibration_mode
)
{
// calibraion mode means generate int8 calibration table data process.
return
;
return
calibration_engine_key
;
}
std
::
copy
(
params_not_shared
.
begin
(),
...
...
@@ -582,6 +630,11 @@ void TensorRtSubgraphPass::CreateTensorRTOp(
"recommend using the same TRT version at runtime."
;
}
std
::
unordered_set
<
const
Node
*>
nodes2remove
(
framework
::
ir
::
Agent
(
node
).
subgraph
()
->
begin
(),
framework
::
ir
::
Agent
(
node
).
subgraph
()
->
end
());
framework
::
ir
::
GraphSafeRemoveNodes
(
graph
,
nodes2remove
);
// Setting the disable_trt_plugin_fp16 to true means that TRT plugin will not
// run fp16.
// When running fp16, the output accuracy of the model will be affected,
...
...
@@ -628,7 +681,7 @@ void TensorRtSubgraphPass::CreateTensorRTOp(
LOG
(
INFO
)
<<
"Load TRT Optimized Info from "
<<
GetTrtEngineSerializedPath
(
Get
<
std
::
string
>
(
"model_opt_cache_dir"
),
engine_key
);
return
;
return
engine_key
+
std
::
to_string
(
predictor_id
)
;
}
catch
(
const
std
::
exception
&
exp
)
{
LOG
(
WARNING
)
<<
"Fail to load TRT Optimized Info from "
...
...
@@ -643,7 +696,7 @@ void TensorRtSubgraphPass::CreateTensorRTOp(
// If with_dynamic_shape is configured,but min_input_shape is empty,
// create trt engine in runtime instead of in pass.
if
(
with_dynamic_shape
&&
min_input_shape
.
empty
())
{
return
;
return
engine_key
+
std
::
to_string
(
predictor_id
)
;
}
// the following code will NOT run in following situation:
...
...
@@ -676,6 +729,8 @@ void TensorRtSubgraphPass::CreateTensorRTOp(
<<
GetTrtEngineSerializedPath
(
Get
<
std
::
string
>
(
"model_opt_cache_dir"
),
engine_key
);
}
return
engine_key
+
std
::
to_string
(
predictor_id
);
}
}
// namespace analysis
...
...
paddle/fluid/inference/analysis/ir_passes/tensorrt_subgraph_pass.h
浏览文件 @
ea0abf93
...
...
@@ -42,10 +42,11 @@ class TensorRtSubgraphPass : public framework::ir::FusePassBase {
void
ApplyImpl
(
framework
::
ir
::
Graph
*
graph
)
const
override
;
private:
void
CreateTensorRTOp
(
framework
::
ir
::
Node
*
x
,
framework
::
ir
::
Graph
*
graph
,
const
std
::
vector
<
std
::
string
>
&
graph_params
,
std
::
vector
<
std
::
string
>
*
repetitive_params
)
const
;
std
::
string
CreateTensorRTOp
(
framework
::
ir
::
Node
*
x
,
framework
::
ir
::
Graph
*
graph
,
const
std
::
vector
<
std
::
string
>
&
graph_params
,
std
::
vector
<
std
::
string
>
*
repetitive_params
,
bool
use_cuda_graph
)
const
;
void
CleanIntermediateOutputs
(
framework
::
ir
::
Node
*
node
);
};
...
...
paddle/fluid/inference/api/analysis_config.cc
浏览文件 @
ea0abf93
...
...
@@ -16,6 +16,7 @@
#include <string>
#include <tuple>
#include "glog/logging.h"
#include "paddle/fluid/inference/api/helper.h"
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
#include "paddle/fluid/inference/api/paddle_pass_builder.h"
...
...
@@ -442,6 +443,7 @@ AnalysisConfig::AnalysisConfig(const AnalysisConfig &other) {
CP_MEMBER
(
trt_dla_core_
);
CP_MEMBER
(
trt_use_static_engine_
);
CP_MEMBER
(
trt_use_calib_mode_
);
CP_MEMBER
(
trt_use_cuda_graph_
);
CP_MEMBER
(
trt_use_varseqlen_
);
CP_MEMBER
(
trt_with_interleaved_
);
CP_MEMBER
(
tensorrt_transformer_posid_
);
...
...
@@ -719,7 +721,8 @@ void AnalysisConfig::EnableTensorRtEngine(
int
min_subgraph_size
,
AnalysisConfig
::
Precision
precision_mode
,
bool
use_static
,
bool
use_calib_mode
)
{
bool
use_calib_mode
,
bool
use_cuda_graph
)
{
#ifdef PADDLE_WITH_TENSORRT
if
(
!
use_gpu
())
{
LOG
(
ERROR
)
<<
"To use TensorRT engine, please call EnableUseGpu() first"
;
...
...
@@ -733,6 +736,11 @@ void AnalysisConfig::EnableTensorRtEngine(
tensorrt_precision_mode_
=
precision_mode
;
trt_use_static_engine_
=
use_static
;
trt_use_calib_mode_
=
use_calib_mode
;
trt_use_cuda_graph_
=
use_cuda_graph
;
if
(
use_cuda_graph
)
{
LOG_FIRST_N
(
INFO
,
1
)
<<
"You have enabled Trt Cuda Graph, you must ensure "
"that the input Shape remains unchanged."
;
}
Update
();
#else
...
...
@@ -1313,6 +1321,8 @@ std::string AnalysisConfig::Summary() {
trt_use_static_engine_
?
"true"
:
"false"
});
os
.
InsertRow
(
{
"tensorrt_use_calib_mode"
,
trt_use_calib_mode_
?
"true"
:
"false"
});
os
.
InsertRow
(
{
"tensorrt_use_cuda_graph"
,
trt_use_cuda_graph_
?
"true"
:
"false"
});
// dynamic_shape
os
.
InsertRow
({
"tensorrt_enable_dynamic_shape"
,
...
...
paddle/fluid/inference/api/analysis_predictor.cc
浏览文件 @
ea0abf93
...
...
@@ -1352,6 +1352,7 @@ void AnalysisPredictor::PrepareArgument() {
argument_
->
SetTensorRtDLACore
(
config_
.
trt_dla_core_
);
argument_
->
SetTensorRtUseStaticEngine
(
config_
.
trt_use_static_engine_
);
argument_
->
SetTensorRtUseCalibMode
(
config_
.
trt_use_calib_mode_
);
argument_
->
SetTensorRtUseCudaGraph
(
config_
.
trt_use_cuda_graph_
);
argument_
->
SetCloseTrtPluginFp16
(
config_
.
disable_trt_plugin_fp16_
);
argument_
->
SetTensorRtShapeRangeInfoPath
(
config_
.
shape_range_info_path
());
argument_
->
SetTensorRtAllowBuildAtRuntime
(
...
...
paddle/fluid/inference/api/paddle_analysis_config.h
浏览文件 @
ea0abf93
...
...
@@ -586,6 +586,9 @@ struct PD_INFER_DECL AnalysisConfig {
/// \param use_static Serialize optimization information to disk for reusing.
/// \param use_calib_mode Use TRT int8 calibration(post training
/// quantization).
/// \param use_cuda_graph Use CudaGraph to reduce the time consumption of
/// enqueue. Note that this option can only be enabled when your input is
/// constant (including the batch dimension).
///
///
void
EnableTensorRtEngine
(
int64_t
workspace_size
=
1
<<
30
,
...
...
@@ -593,7 +596,8 @@ struct PD_INFER_DECL AnalysisConfig {
int
min_subgraph_size
=
3
,
Precision
precision
=
Precision
::
kFloat32
,
bool
use_static
=
false
,
bool
use_calib_mode
=
true
);
bool
use_calib_mode
=
true
,
bool
use_cuda_graph
=
false
);
///
/// \brief A boolean state telling whether the TensorRT engine is used.
///
...
...
@@ -1114,6 +1118,7 @@ struct PD_INFER_DECL AnalysisConfig {
Precision
tensorrt_precision_mode_
{
Precision
::
kFloat32
};
bool
trt_use_static_engine_
{
false
};
bool
trt_use_calib_mode_
{
true
};
bool
trt_use_cuda_graph_
{
false
};
bool
trt_use_varseqlen_
{
false
};
bool
trt_with_interleaved_
{
false
};
std
::
string
tensorrt_transformer_posid_
{
""
};
...
...
paddle/fluid/inference/tensorrt/engine.cc
浏览文件 @
ea0abf93
...
...
@@ -25,6 +25,7 @@ limitations under the License. */
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/enforce.h"
namespace
paddle
{
namespace
inference
{
...
...
@@ -129,12 +130,60 @@ void TensorRTEngine::Execute(int batch_size,
phi
::
Stream
(
reinterpret_cast
<
phi
::
StreamId
>
(
stream
)));
infer_context
->
setDeviceMemory
(
context_memory
);
}
// TODO(wilber): Is cudaGraph has conflict with memory sharing?
if
(
startup_with_cudagraph_
&&
!
cudagraph_inited_
)
{
// Avoid capturing initialization calls by executing the enqueue function at
// least once before starting CUDA graph capture.
const
auto
ret
=
Enqueue
(
infer_context
,
buffers
,
batch_size
,
stream
);
PADDLE_ENFORCE_EQ
(
ret
,
true
,
phi
::
errors
::
PreconditionNotMet
(
"Trt CudaGraph test run failed."
));
cudaStreamSynchronize
(
stream
);
cuda_graph_
.
BeginCapture
(
stream
);
// The built TRT engine may contain operations that are not permitted under
// CUDA graph capture mode. When the stream is capturing, the call may
// return false if the current CUDA graph capture fails.
if
(
Enqueue
(
infer_context
,
buffers
,
batch_size
,
stream
))
{
cuda_graph_
.
EndCapture
(
stream
);
cudagraph_inited_
=
true
;
}
else
{
cuda_graph_
.
EndCaptureOnError
(
stream
);
// Ensure any CUDA error has been cleaned up.
PADDLE_ENFORCE_GPU_SUCCESS
(
cudaGetLastError
());
LOG
(
WARNING
)
<<
"The built TensorRT engine contains operations that are "
"not permitted under "
"CUDA graph capture mode. The specified UseCudaGraph "
"flag has been ignored. The inference will be "
"launched without using CUDA graph launch."
;
cudagraph_inited_
=
false
;
}
startup_with_cudagraph_
=
false
;
}
Enqueue
(
infer_context
,
buffers
,
batch_size
,
stream
);
}
bool
TensorRTEngine
::
Enqueue
(
nvinfer1
::
IExecutionContext
*
context
,
std
::
vector
<
void
*>
*
buffers
,
int
batch_size
,
cudaStream_t
stream
)
{
if
(
cudagraph_inited_
)
{
VLOG
(
1
)
<<
"cuda_graph init success, so we will use cuda graph launch the "
"entire graph."
;
return
cuda_graph_
.
Launch
(
stream
);
}
bool
ret
;
if
(
!
with_dynamic_shape
())
{
infer_
context
->
enqueue
(
batch_size
,
buffers
->
data
(),
stream
,
nullptr
);
ret
=
context
->
enqueue
(
batch_size
,
buffers
->
data
(),
stream
,
nullptr
);
}
else
{
infer_
context
->
enqueueV2
(
buffers
->
data
(),
stream
,
nullptr
);
ret
=
context
->
enqueueV2
(
buffers
->
data
(),
stream
,
nullptr
);
}
SetRuntimeBatch
(
batch_size
);
return
ret
;
}
void
TensorRTEngine
::
FreezeNetwork
()
{
...
...
paddle/fluid/inference/tensorrt/engine.h
浏览文件 @
ea0abf93
...
...
@@ -49,6 +49,64 @@ namespace paddle {
namespace
inference
{
namespace
tensorrt
{
// The code is mainly from TensorRT, thanks to the project.
class
TrtCudaGraph
{
public:
TrtCudaGraph
()
=
default
;
~
TrtCudaGraph
()
{
if
(
cuda_graph_exec_
)
{
cudaGraphExecDestroy
(
cuda_graph_exec_
);
}
}
void
BeginCapture
(
cudaStream_t
stream
)
{
PADDLE_ENFORCE_GPU_SUCCESS
(
cudaStreamBeginCapture
(
stream
,
cudaStreamCaptureModeThreadLocal
));
}
bool
Launch
(
cudaStream_t
stream
)
{
return
cudaGraphLaunch
(
cuda_graph_exec_
,
stream
);
}
void
EndCapture
(
cudaStream_t
stream
)
{
PADDLE_ENFORCE_GPU_SUCCESS
(
cudaStreamEndCapture
(
stream
,
&
cuda_graph_
));
PADDLE_ENFORCE_GPU_SUCCESS
(
cudaGraphInstantiate
(
&
cuda_graph_exec_
,
cuda_graph_
,
nullptr
,
nullptr
,
0
));
PADDLE_ENFORCE_GPU_SUCCESS
(
cudaGraphDestroy
(
cuda_graph_
));
}
void
EndCaptureOnError
(
cudaStream_t
stream
)
{
// There are two possibilities why stream capture would fail:
// (1) stream is in cudaErrorStreamCaptureInvalidated state.
// (2) TRT reports a failure.
// In case (1), the returning cuda_graph_ should be nullptr.
// In case (2), the returning cuda_graph_ is not nullptr, but it should not
// be used.
const
auto
ret
=
cudaStreamEndCapture
(
stream
,
&
cuda_graph_
);
if
(
ret
==
cudaErrorStreamCaptureInvalidated
)
{
PADDLE_ENFORCE_EQ
(
cuda_graph_
==
nullptr
,
true
,
platform
::
errors
::
PreconditionNotMet
(
"CudaGraph capture stream failed."
));
}
else
{
PADDLE_ENFORCE_GPU_SUCCESS
(
ret
);
PADDLE_ENFORCE_NOT_NULL
(
cuda_graph_
,
phi
::
errors
::
PreconditionNotMet
(
"CudaGraph capture stream failed."
));
PADDLE_ENFORCE_GPU_SUCCESS
(
cudaGraphDestroy
(
cuda_graph_
));
cuda_graph_
=
nullptr
;
}
// Clean up any cuda error.
cudaGetLastError
();
LOG
(
WARNING
)
<<
"The TRT CUDA graph capture on the stream has failed."
;
}
private:
DISABLE_COPY_AND_ASSIGN
(
TrtCudaGraph
);
cudaGraph_t
cuda_graph_
{};
cudaGraphExec_t
cuda_graph_exec_
{};
};
namespace
plugin
{
class
PluginTensorRT
;
}
// namespace plugin
...
...
@@ -445,6 +503,11 @@ class TensorRTEngine {
std
::
vector
<
void
*>*
buffers
,
cudaStream_t
stream
=
nullptr
);
bool
Enqueue
(
nvinfer1
::
IExecutionContext
*
context
,
std
::
vector
<
void
*>*
buffers
,
int
batch
,
cudaStream_t
stream
);
nvinfer1
::
INetworkDefinition
*
network
()
{
return
infer_network_
.
get
();
}
ShapeMapType
min_input_shape
()
{
return
min_input_shape_
;
}
...
...
@@ -682,6 +745,11 @@ class TensorRTEngine {
context_memory_sharing_
=
context_memory_sharing
;
}
void
SetAllNodesLowerToTrt
(
bool
all_nodes_offload_to_trt
)
{
// all nodes are in trt, so we can use cudaGraph to optimize runtime.
startup_with_cudagraph_
=
all_nodes_offload_to_trt
;
}
private:
// Each ICudaEngine object is bound to a specific GPU when it is instantiated,
// ensure that the thread is associated with the correct device by calling
...
...
@@ -744,6 +812,11 @@ class TensorRTEngine {
infer_ptr
<
nvinfer1
::
IHostMemory
>
ihost_memory_
;
std
::
unordered_map
<
nvinfer1
::
ITensor
*
,
float
>
quant_dynamic_range_
;
// cudagraph related
TrtCudaGraph
cuda_graph_
;
bool
cudagraph_inited_
{
false
};
bool
startup_with_cudagraph_
{
false
};
std
::
unordered_map
<
std
::
string
,
paddle
::
any
>
attrs_
;
std
::
unordered_map
<
std
::
string
,
std
::
function
<
void
(
void
)
>>
attr_dels_
;
#if IS_TRT_VERSION_GE(6000)
...
...
paddle/fluid/inference/tensorrt/test_engine.cc
浏览文件 @
ea0abf93
...
...
@@ -274,6 +274,7 @@ TEST_F(TensorRTEngineTest, test_pool2d) {
buffers
[
0
]
=
reinterpret_cast
<
void
*>
(
x_v_gpu_data
);
buffers
[
1
]
=
reinterpret_cast
<
void
*>
(
y_gpu_data
);
engine_
->
SetAllNodesLowerToTrt
(
true
);
engine_
->
Execute
(
2
,
&
buffers
,
ctx_
->
stream
());
LOG
(
INFO
)
<<
"to get output"
;
...
...
paddle/fluid/pybind/inference_api.cc
浏览文件 @
ea0abf93
...
...
@@ -840,7 +840,8 @@ void BindAnalysisConfig(py::module *m) {
py
::
arg
(
"min_subgraph_size"
)
=
3
,
py
::
arg
(
"precision_mode"
)
=
AnalysisConfig
::
Precision
::
kFloat32
,
py
::
arg
(
"use_static"
)
=
false
,
py
::
arg
(
"use_calib_mode"
)
=
true
)
py
::
arg
(
"use_calib_mode"
)
=
true
,
py
::
arg
(
"use_cuda_graph"
)
=
false
)
.
def
(
"enable_tensorrt_memory_optim"
,
&
AnalysisConfig
::
EnableTensorRTMemoryOptim
,
py
::
arg
(
"engine_memory_sharing"
)
=
true
,
...
...
test/cpp/inference/api/CMakeLists.txt
浏览文件 @
ea0abf93
...
...
@@ -1377,7 +1377,7 @@ if(WITH_TESTING AND WITH_INFERENCE_API_TEST)
set_tests_properties
(
test_analyzer_ernie PROPERTIES TIMEOUT 120
)
endif
()
if
(
WITH_GPU AND TENSORRT_FOUND
)
set_tests_properties
(
trt_mobilenet_test PROPERTIES TIMEOUT
12
0
)
set_tests_properties
(
trt_mobilenet_test PROPERTIES TIMEOUT
24
0
)
if
(
WITH_MKLDNN
)
set_tests_properties
(
test_analyzer_bfloat16_resnet50 PROPERTIES TIMEOUT
120
)
...
...
test/cpp/inference/api/trt_mobilenet_test.cc
浏览文件 @
ea0abf93
...
...
@@ -99,4 +99,30 @@ TEST(PredictorPool, use_gpu) {
predictor
->
Run
();
}
TEST
(
PredictorPool
,
use_trt_cuda_graph
)
{
std
::
string
model_dir
=
FLAGS_infer_model
+
"/"
+
"mobilenet"
;
Config
config
;
config
.
EnableUseGpu
(
100
,
0
);
config
.
SetModel
(
model_dir
);
config
.
EnableTensorRtEngine
(
1
<<
20
,
1
,
3
,
PrecisionType
::
kFloat32
,
false
,
false
,
true
);
config
.
Exp_DisableTensorRtOPs
({
"fc"
});
config
.
EnableTensorRtDLA
(
0
);
services
::
PredictorPool
pred_pool
(
config
,
1
);
auto
predictor
=
pred_pool
.
Retrive
(
0
);
auto
input_names
=
predictor
->
GetInputNames
();
auto
input_t
=
predictor
->
GetInputHandle
(
input_names
[
0
]);
std
::
vector
<
int
>
in_shape
=
{
1
,
3
,
224
,
224
};
int
in_num
=
std
::
accumulate
(
in_shape
.
begin
(),
in_shape
.
end
(),
1
,
[](
int
&
a
,
int
&
b
)
{
return
a
*
b
;
});
std
::
vector
<
float
>
input
(
in_num
,
0
);
input_t
->
Reshape
(
in_shape
);
input_t
->
CopyFromCpu
(
input
.
data
());
predictor
->
Run
();
}
}
// namespace paddle_infer
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录