Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
30b10630
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
30b10630
编写于
6月 13, 2022
作者:
Z
zhoutianzi666
提交者:
GitHub
6月 13, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add only split (#43424)
上级
65e86580
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
313 addition
and
51 deletion
+313
-51
paddle/fluid/inference/tensorrt/convert/op_converter.h
paddle/fluid/inference/tensorrt/convert/op_converter.h
+197
-2
paddle/fluid/inference/tensorrt/convert/split_op.cc
paddle/fluid/inference/tensorrt/convert/split_op.cc
+87
-21
paddle/fluid/inference/tensorrt/engine.h
paddle/fluid/inference/tensorrt/engine.h
+1
-1
paddle/fluid/inference/tensorrt/op_teller.cc
paddle/fluid/inference/tensorrt/op_teller.cc
+0
-9
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_slice.py
...id/tests/unittests/ir/inference/test_trt_convert_slice.py
+8
-6
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_split.py
...id/tests/unittests/ir/inference/test_trt_convert_split.py
+20
-12
未找到文件。
paddle/fluid/inference/tensorrt/convert/op_converter.h
浏览文件 @
30b10630
...
@@ -295,20 +295,215 @@ class OpConverter {
...
@@ -295,20 +295,215 @@ class OpConverter {
engine
->
ClearWeights
();
engine
->
ClearWeights
();
}
}
// rank(result) = rank(input)
nvinfer1
::
ITensor
*
Gather
(
nvinfer1
::
ITensor
*
input
,
const
std
::
vector
<
int32_t
>
indices
,
int
axis
=
0
)
{
auto
*
indices_tensor
=
Add1DConstantLayer
(
indices
,
" "
);
auto
*
result
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Gather
,
*
input
,
*
indices_tensor
,
axis
)
->
getOutput
(
0
);
return
result
;
}
// paddle allows negative index
// for axis length = 5, paddle allows [-5, 4]
nvinfer1
::
ITensor
*
FixNegIndices
(
nvinfer1
::
ITensor
*
input_shape
,
nvinfer1
::
ITensor
*
indices
)
{
int
rank
=
input_shape
->
getDimensions
().
nbDims
;
std
::
vector
<
int32_t
>
zero
=
std
::
vector
<
int32_t
>
(
rank
,
0
);
std
::
vector
<
int32_t
>
minus_one
=
std
::
vector
<
int32_t
>
(
rank
,
-
1
);
nvinfer1
::
ITensor
*
zero_tensor
=
Add1DConstantLayer
(
zero
);
nvinfer1
::
ITensor
*
minus_one_tensor
=
Add1DConstantLayer
(
minus_one
);
// -1, 0
auto
*
sign
=
Max
(
Min
(
indices
,
zero_tensor
),
minus_one_tensor
);
return
Sub
(
indices
,
Prod
(
sign
,
input_shape
));
}
nvinfer1
::
ITensor
*
Shape
(
nvinfer1
::
ITensor
*
input
)
{
return
TRT_ENGINE_ADD_LAYER
(
engine_
,
Shape
,
*
input
)
->
getOutput
(
0
);
}
// Concat not make rank changed
nvinfer1
::
ITensor
*
Concat
(
const
std
::
vector
<
nvinfer1
::
ITensor
*>&
inputs
,
int
axis
=
0
)
{
auto
*
layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Concatenation
,
inputs
.
data
(),
inputs
.
size
());
if
(
axis
!=
0
)
layer
->
setAxis
(
axis
);
nvinfer1
::
ITensor
*
c
=
layer
->
getOutput
(
0
);
return
c
;
}
nvinfer1
::
ITensor
*
Sum
(
nvinfer1
::
ITensor
*
a
,
nvinfer1
::
ITensor
*
b
)
{
nvinfer1
::
ITensor
*
c
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
ElementWise
,
*
a
,
*
b
,
nvinfer1
::
ElementWiseOperation
::
kSUM
)
->
getOutput
(
0
);
return
c
;
}
nvinfer1
::
ITensor
*
Prod
(
nvinfer1
::
ITensor
*
a
,
nvinfer1
::
ITensor
*
b
)
{
nvinfer1
::
ITensor
*
c
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
ElementWise
,
*
a
,
*
b
,
nvinfer1
::
ElementWiseOperation
::
kPROD
)
->
getOutput
(
0
);
return
c
;
}
nvinfer1
::
ITensor
*
Min
(
nvinfer1
::
ITensor
*
a
,
nvinfer1
::
ITensor
*
b
)
{
nvinfer1
::
ITensor
*
c
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
ElementWise
,
*
a
,
*
b
,
nvinfer1
::
ElementWiseOperation
::
kMIN
)
->
getOutput
(
0
);
return
c
;
}
nvinfer1
::
ITensor
*
Max
(
nvinfer1
::
ITensor
*
a
,
nvinfer1
::
ITensor
*
b
)
{
nvinfer1
::
ITensor
*
c
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
ElementWise
,
*
a
,
*
b
,
nvinfer1
::
ElementWiseOperation
::
kMAX
)
->
getOutput
(
0
);
return
c
;
}
nvinfer1
::
ITensor
*
Sub
(
nvinfer1
::
ITensor
*
a
,
nvinfer1
::
ITensor
*
b
)
{
nvinfer1
::
ITensor
*
c
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
ElementWise
,
*
a
,
*
b
,
nvinfer1
::
ElementWiseOperation
::
kSUB
)
->
getOutput
(
0
);
return
c
;
}
nvinfer1
::
ITensor
*
Div
(
nvinfer1
::
ITensor
*
a
,
nvinfer1
::
ITensor
*
b
)
{
nvinfer1
::
ITensor
*
c
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
ElementWise
,
*
a
,
*
b
,
nvinfer1
::
ElementWiseOperation
::
kDIV
)
->
getOutput
(
0
);
return
c
;
}
nvinfer1
::
ITensor
*
Act
(
nvinfer1
::
ITensor
*
a
,
nvinfer1
::
ActivationType
act_type
)
{
nvinfer1
::
ITensor
*
c
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Activation
,
*
a
,
act_type
)
->
getOutput
(
0
);
return
c
;
}
// Get element tensor of 1D shape tensor
nvinfer1
::
ITensor
*
GetEleTensorOfShape
(
nvinfer1
::
ITensor
*
shape_tensor
,
int
index
,
bool
is_scalar
=
false
)
{
auto
*
tensor
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Gather
,
*
shape_tensor
,
*
Add1DConstantLayer
(
index
,
" "
,
is_scalar
),
0
)
->
getOutput
(
0
);
return
tensor
;
}
// Create and add Multi-D constant float layer
nvinfer1
::
ITensor
*
AddConstantLayer
(
const
float
*
data
,
const
std
::
vector
<
int32_t
>&
weight_dims
,
const
std
::
string
&
weight_name
)
{
std
::
unique_ptr
<
framework
::
Tensor
>
tmp_tensor
(
new
framework
::
Tensor
());
int
data_size
=
std
::
accumulate
(
weight_dims
.
begin
(),
weight_dims
.
end
(),
1
,
std
::
multiplies
<
int
>
());
tmp_tensor
->
Resize
({
data_size
});
auto
*
tmp_data
=
tmp_tensor
->
mutable_data
<
float
>
(
platform
::
CPUPlace
());
for
(
int
i
=
0
;
i
<
data_size
;
i
++
)
{
tmp_data
[
i
]
=
data
[
i
];
}
engine_
->
SetWeights
(
weight_name
,
std
::
move
(
tmp_tensor
));
TensorRTEngine
::
Weight
weight
{
nvinfer1
::
DataType
::
kFLOAT
,
static_cast
<
void
*>
(
tmp_data
),
static_cast
<
size_t
>
(
data_size
)};
nvinfer1
::
Dims
trt_dims
;
trt_dims
.
nbDims
=
weight_dims
.
size
();
for
(
size_t
i
=
0
;
i
<
weight_dims
.
size
();
i
++
)
trt_dims
.
d
[
i
]
=
weight_dims
[
i
];
auto
const_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Constant
,
trt_dims
,
weight
.
get
());
return
const_layer
->
getOutput
(
0
);
}
// Create and add 1D constant float layer
nvinfer1
::
ITensor
*
Add1DConstantLayer
(
const
std
::
vector
<
float
>&
data
,
const
std
::
string
&
weight_name
=
""
,
bool
scalar
=
false
)
{
std
::
unique_ptr
<
framework
::
Tensor
>
tmp_tensor
(
new
framework
::
Tensor
());
int
data_size
=
data
.
size
();
tmp_tensor
->
Resize
({
data_size
});
auto
*
tmp_data
=
tmp_tensor
->
mutable_data
<
float
>
(
platform
::
CPUPlace
());
for
(
int
i
=
0
;
i
<
data_size
;
i
++
)
{
tmp_data
[
i
]
=
data
[
i
];
}
engine_
->
SetWeights
(
weight_name
,
std
::
move
(
tmp_tensor
));
TensorRTEngine
::
Weight
weight
{
nvinfer1
::
DataType
::
kFLOAT
,
static_cast
<
void
*>
(
tmp_data
),
static_cast
<
size_t
>
(
data_size
)};
nvinfer1
::
Dims
input_shape
;
input_shape
.
nbDims
=
scalar
?
0
:
1
;
input_shape
.
d
[
0
]
=
data_size
;
auto
const_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Constant
,
input_shape
,
weight
.
get
());
return
const_layer
->
getOutput
(
0
);
}
// Create and add 1D constant layer
nvinfer1
::
ITensor
*
Add1DConstantLayer
(
const
std
::
vector
<
int
>&
data
,
const
std
::
string
&
weight_name
=
""
,
bool
scalar
=
false
)
{
std
::
unique_ptr
<
framework
::
Tensor
>
tmp_tensor
(
new
framework
::
Tensor
());
int
data_size
=
data
.
size
();
tmp_tensor
->
Resize
({
data_size
});
auto
*
tmp_data
=
tmp_tensor
->
mutable_data
<
int
>
(
platform
::
CPUPlace
());
for
(
int
i
=
0
;
i
<
data_size
;
i
++
)
{
tmp_data
[
i
]
=
data
[
i
];
}
engine_
->
SetWeights
(
weight_name
,
std
::
move
(
tmp_tensor
));
TensorRTEngine
::
Weight
weight
{
nvinfer1
::
DataType
::
kINT32
,
static_cast
<
void
*>
(
tmp_data
),
static_cast
<
size_t
>
(
data_size
)};
nvinfer1
::
Dims
input_shape
;
input_shape
.
nbDims
=
scalar
?
0
:
1
;
input_shape
.
d
[
0
]
=
data_size
;
auto
const_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Constant
,
input_shape
,
weight
.
get
());
return
const_layer
->
getOutput
(
0
);
}
nvinfer1
::
ITensor
*
Add1DConstantLayer
(
nvinfer1
::
Dims
data
,
const
std
::
string
&
weight_name
=
""
,
bool
scalar
=
false
)
{
std
::
vector
<
int
>
tmp_data
;
for
(
int
i
=
0
;
i
<
data
.
nbDims
;
i
++
)
tmp_data
.
push_back
(
data
.
d
[
i
]);
return
Add1DConstantLayer
(
tmp_data
,
weight_name
,
scalar
);
}
nvinfer1
::
ITensor
*
Add1DConstantLayer
(
int32_t
data
,
const
std
::
string
&
weight_name
=
""
,
bool
scalar
=
false
)
{
std
::
vector
<
int
>
tmp_data
;
tmp_data
.
push_back
(
data
);
return
Add1DConstantLayer
(
tmp_data
,
weight_name
,
scalar
);
}
void
RreplenishLayerAndOutput
(
void
RreplenishLayerAndOutput
(
nvinfer1
::
ILayer
*
layer
,
const
std
::
string
&
layer_type
,
nvinfer1
::
ILayer
*
layer
,
const
std
::
string
&
layer_type
,
const
std
::
vector
<
std
::
string
>&
output_tensor_names
,
const
std
::
vector
<
std
::
string
>&
output_tensor_names
,
bool
test_mode
=
false
)
{
bool
test_mode
=
false
)
{
size_t
num_out
=
output_tensor_names
.
size
();
size_t
num_out
=
output_tensor_names
.
size
();
std
::
string
layer_name
=
layer_type
+
" (Output: "
;
for
(
size_t
i
=
0
;
i
<
num_out
;
i
++
)
{
for
(
size_t
i
=
0
;
i
<
num_out
;
i
++
)
{
layer
->
getOutput
(
i
)
->
setName
(
output_tensor_names
[
i
].
c_str
());
layer
->
getOutput
(
i
)
->
setName
(
output_tensor_names
[
i
].
c_str
());
engine_
->
SetITensor
(
output_tensor_names
[
i
],
layer
->
getOutput
(
i
));
engine_
->
SetITensor
(
output_tensor_names
[
i
],
layer
->
getOutput
(
i
));
if
(
test_mode
)
{
if
(
test_mode
)
{
engine_
->
DeclareOutput
(
output_tensor_names
[
i
]);
engine_
->
DeclareOutput
(
output_tensor_names
[
i
]);
}
}
layer_name
+=
output_tensor_names
[
i
];
if
(
i
!=
num_out
-
1
)
layer_name
+=
", "
;
}
}
layer
->
setName
(
layer
->
setName
((
layer_name
+
")"
).
c_str
());
(
layer_type
+
" (Output: "
+
output_tensor_names
[
0
]
+
")"
).
c_str
());
}
}
void
SetEngine
(
TensorRTEngine
*
engine
)
{
engine_
=
engine
;
}
void
SetEngine
(
TensorRTEngine
*
engine
)
{
engine_
=
engine
;
}
...
...
paddle/fluid/inference/tensorrt/convert/split_op.cc
浏览文件 @
30b10630
...
@@ -29,7 +29,6 @@ class SplitOpConverter : public OpConverter {
...
@@ -29,7 +29,6 @@ class SplitOpConverter : public OpConverter {
// Declare inputs
// Declare inputs
auto
*
input
=
engine_
->
GetITensor
(
op_desc
.
Input
(
"X"
)[
0
]);
auto
*
input
=
engine_
->
GetITensor
(
op_desc
.
Input
(
"X"
)[
0
]);
auto
input_dims
=
input
->
getDimensions
();
auto
input_dims
=
input
->
getDimensions
();
size_t
input_num
=
op_desc
.
Input
(
"X"
).
size
();
size_t
output_num
=
op_desc
.
Output
(
"Out"
).
size
();
size_t
output_num
=
op_desc
.
Output
(
"Out"
).
size
();
// Get Attrs
// Get Attrs
...
@@ -41,48 +40,115 @@ class SplitOpConverter : public OpConverter {
...
@@ -41,48 +40,115 @@ class SplitOpConverter : public OpConverter {
if
(
op_desc
.
HasAttr
(
"num"
))
{
if
(
op_desc
.
HasAttr
(
"num"
))
{
num
=
BOOST_GET_CONST
(
int
,
op_desc
.
GetAttr
(
"num"
));
num
=
BOOST_GET_CONST
(
int
,
op_desc
.
GetAttr
(
"num"
));
}
}
nvinfer1
::
ITensor
*
shape_tensor
=
nullptr
;
if
(
engine_
->
with_dynamic_shape
())
{
if
(
engine_
->
with_dynamic_shape
())
{
#if IS_TRT_VERSION_GE(6000)
axis
+=
(
axis
<
0
)
?
input_dims
.
nbDims
:
0
;
axis
+=
(
axis
<
0
)
?
input_dims
.
nbDims
:
0
;
#endif
// only be called in dynamic_shape mode
shape_tensor
=
Shape
(
input
);
}
else
{
}
else
{
axis
+=
(
axis
<
0
)
?
input_dims
.
nbDims
:
-
1
;
axis
+=
(
axis
<
0
)
?
input_dims
.
nbDims
:
-
1
;
}
}
if
(
num
>
0
)
{
bool
in_axis_dim_dynamic
=
false
;
int64_t
in_axis_dim
=
input_dims
.
d
[
axis
];
nvinfer1
::
ITensor
*
avg_len_tensor
=
nullptr
;
size_t
out_axis_dim
=
in_axis_dim
/
num
;
// need infer output_lengths
for
(
int
i
=
0
;
i
<
num
;
++
i
)
{
if
(
num
>
0
&&
output_lengths
.
empty
())
{
output_lengths
.
push_back
(
out_axis_dim
);
if
(
input_dims
.
d
[
axis
]
>
0
)
{
int64_t
in_axis_dim
=
input_dims
.
d
[
axis
];
size_t
out_axis_dim
=
in_axis_dim
/
num
;
for
(
int
i
=
0
;
i
<
num
;
++
i
)
{
output_lengths
.
push_back
(
out_axis_dim
);
}
}
else
{
in_axis_dim_dynamic
=
true
;
auto
*
num_tensor
=
Add1DConstantLayer
(
num
);
avg_len_tensor
=
Div
(
GetEleTensorOfShape
(
shape_tensor
,
axis
),
num_tensor
);
}
}
}
}
nvinfer1
::
ILayer
*
layer
=
nullptr
;
nvinfer1
::
ILayer
*
layer
=
nullptr
;
#if IS_TRT_VERSION_GE(6000)
if
(
engine_
->
with_dynamic_shape
())
{
nvinfer1
::
Dims
trt_step_dims
;
trt_step_dims
.
nbDims
=
input
->
getDimensions
().
nbDims
;
for
(
int
i
=
0
;
i
<
trt_step_dims
.
nbDims
;
i
++
)
trt_step_dims
.
d
[
i
]
=
1
;
std
::
vector
<
int32_t
>
gather_indices
;
gather_indices
.
resize
(
trt_step_dims
.
nbDims
);
std
::
iota
(
gather_indices
.
begin
(),
gather_indices
.
end
(),
0
);
gather_indices
[
axis
]
=
gather_indices
.
size
();
std
::
vector
<
int32_t
>
zeros
(
trt_step_dims
.
nbDims
,
0
);
auto
*
zeros_tensor
=
Add1DConstantLayer
(
zeros
);
// input : [N,C,H,W]
int
start_point
=
0
;
for
(
size_t
i
=
0
;
i
<
output_num
;
i
++
)
{
nvinfer1
::
ITensor
*
this_len_tensor
=
nullptr
;
nvinfer1
::
ITensor
*
start_point_tensor
=
nullptr
;
if
(
!
in_axis_dim_dynamic
)
{
this_len_tensor
=
Add1DConstantLayer
(
output_lengths
[
i
]);
start_point_tensor
=
Add1DConstantLayer
(
start_point
);
start_point
+=
output_lengths
[
i
];
}
else
{
this_len_tensor
=
avg_len_tensor
;
auto
*
i_tensor
=
Add1DConstantLayer
(
i
);
start_point_tensor
=
Prod
(
i_tensor
,
avg_len_tensor
);
}
std
::
vector
<
nvinfer1
::
ITensor
*>
concat_inputs1
=
{
zeros_tensor
,
start_point_tensor
};
std
::
vector
<
nvinfer1
::
ITensor
*>
concat_inputs2
=
{
shape_tensor
,
this_len_tensor
};
auto
*
start_tensor
=
Gather
(
Concat
(
concat_inputs1
),
gather_indices
);
auto
*
size_tensor
=
Gather
(
Concat
(
concat_inputs2
),
gather_indices
);
layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Slice
,
*
input
,
trt_step_dims
,
trt_step_dims
,
trt_step_dims
);
layer
->
setInput
(
1
,
*
start_tensor
);
layer
->
setInput
(
2
,
*
size_tensor
);
auto
output_name
=
op_desc
.
Output
(
"Out"
)[
i
];
RreplenishLayerAndOutput
(
layer
,
"split"
,
{
output_name
},
test_mode
);
}
}
else
{
auto
chw_input_dims
=
input
->
getDimensions
();
nvinfer1
::
Dims
trt_start_dims
;
trt_start_dims
.
nbDims
=
chw_input_dims
.
nbDims
;
memset
(
trt_start_dims
.
d
,
0
,
sizeof
(
int32_t
)
*
chw_input_dims
.
nbDims
);
nvinfer1
::
Dims
trt_size_dims
=
chw_input_dims
;
nvinfer1
::
Dims
trt_step_dims
;
trt_step_dims
.
nbDims
=
chw_input_dims
.
nbDims
;
for
(
int
i
=
0
;
i
<
trt_step_dims
.
nbDims
;
i
++
)
trt_step_dims
.
d
[
i
]
=
1
;
// input : [C,H,W]
for
(
size_t
i
=
0
;
i
<
output_num
;
i
++
)
{
trt_start_dims
.
d
[
axis
]
=
std
::
accumulate
(
output_lengths
.
begin
(),
output_lengths
.
begin
()
+
i
,
0
);
trt_size_dims
.
d
[
axis
]
=
output_lengths
[
i
];
layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Slice
,
*
input
,
trt_start_dims
,
trt_size_dims
,
trt_step_dims
);
auto
output_name
=
op_desc
.
Output
(
"Out"
)[
i
];
RreplenishLayerAndOutput
(
layer
,
"split"
,
{
output_name
},
test_mode
);
}
}
#else
if
(
engine_
->
with_dynamic_shape
())
{
if
(
engine_
->
with_dynamic_shape
())
{
bool
with_fp16
=
bool
with_fp16
=
engine_
->
WithFp16
()
&&
!
engine_
->
disable_trt_plugin_fp16
();
engine_
->
WithFp16
()
&&
!
engine_
->
disable_trt_plugin_fp16
();
plugin
::
SplitPluginDynamic
*
plugin
=
plugin
::
SplitPluginDynamic
*
plugin
=
new
plugin
::
SplitPluginDynamic
(
axis
,
output_lengths
,
with_fp16
);
new
plugin
::
SplitPluginDynamic
(
axis
,
output_lengths
,
with_fp16
);
layer
=
engine_
->
AddDynamicPlugin
(
&
input
,
input_num
,
plugin
);
layer
=
engine_
->
AddDynamicPlugin
(
&
input
,
1
,
plugin
);
}
else
{
}
else
{
bool
with_fp16
=
bool
with_fp16
=
engine_
->
WithFp16
()
&&
!
engine_
->
disable_trt_plugin_fp16
();
engine_
->
WithFp16
()
&&
!
engine_
->
disable_trt_plugin_fp16
();
plugin
::
SplitPlugin
*
plugin
=
plugin
::
SplitPlugin
*
plugin
=
new
plugin
::
SplitPlugin
(
axis
,
output_lengths
,
with_fp16
);
new
plugin
::
SplitPlugin
(
axis
,
output_lengths
,
with_fp16
);
layer
=
engine_
->
AddPluginV2Ext
(
&
input
,
input_num
,
plugin
);
layer
=
engine_
->
AddPluginV2Ext
(
&
input
,
1
,
plugin
);
}
}
std
::
vector
<
std
::
string
>
output_names
;
std
::
string
layer_name
=
"split (Output: "
;
for
(
size_t
i
=
0
;
i
<
output_num
;
i
++
)
{
for
(
size_t
i
=
0
;
i
<
output_num
;
i
++
)
{
auto
output_name
=
op_desc
.
Output
(
"Out"
)[
i
];
output_names
.
push_back
(
op_desc
.
Output
(
"Out"
)[
i
]);
layer
->
getOutput
(
i
)
->
setName
(
output_name
.
c_str
());
engine_
->
SetITensor
(
output_name
,
layer
->
getOutput
(
i
));
layer_name
+=
output_name
;
if
(
test_mode
)
{
engine_
->
DeclareOutput
(
output_name
);
}
}
}
layer
->
setName
((
layer_name
+
")"
).
c_str
());
RreplenishLayerAndOutput
(
layer
,
"split"
,
output_names
,
test_mode
);
#endif
}
}
};
};
...
...
paddle/fluid/inference/tensorrt/engine.h
浏览文件 @
30b10630
...
@@ -686,7 +686,7 @@ class TensorRTEngine {
...
@@ -686,7 +686,7 @@ class TensorRTEngine {
// them, and an macro like this is more extensible when underlying TensorRT
// them, and an macro like this is more extensible when underlying TensorRT
// library add new layer supports.
// library add new layer supports.
#define TRT_ENGINE_ADD_LAYER(engine__, layer__, ...) \
#define TRT_ENGINE_ADD_LAYER(engine__, layer__, ...) \
engine__->network()->add##layer__(__VA_ARGS__)
;
engine__->network()->add##layer__(__VA_ARGS__)
class
TRTEngineManager
{
class
TRTEngineManager
{
public:
public:
...
...
paddle/fluid/inference/tensorrt/op_teller.cc
浏览文件 @
30b10630
...
@@ -1041,15 +1041,6 @@ bool OpTeller::Tell(const framework::ir::Node* node, bool use_no_calib_int8,
...
@@ -1041,15 +1041,6 @@ bool OpTeller::Tell(const framework::ir::Node* node, bool use_no_calib_int8,
return
false
;
return
false
;
}
}
}
}
}
else
{
for
(
size_t
i
=
0
;
i
<
axes
.
size
();
i
++
)
{
if
(
starts
[
i
]
<
0
||
ends
[
i
]
<
0
)
{
VLOG
(
3
)
<<
"Invalid slice attribute 'starts' or 'ends'. "
"Negative starts or ends not supported in TensorRT "
"when running in dynamic shape mode."
;
return
false
;
}
}
}
}
}
}
}
}
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_slice.py
浏览文件 @
30b10630
...
@@ -29,10 +29,7 @@ class TrtConvertSliceTest(TrtLayerAutoScanTest):
...
@@ -29,10 +29,7 @@ class TrtConvertSliceTest(TrtLayerAutoScanTest):
attrs
=
[
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
]
out_shape
=
list
(
inputs
[
'input_data'
].
shape
)
for
x
in
attrs
[
0
][
"decrease_axis"
]:
if
x
<
0
:
return
False
for
x
in
range
(
len
(
attrs
[
0
][
"axes"
])):
for
x
in
range
(
len
(
attrs
[
0
][
"axes"
])):
start
=
0
start
=
0
end
=
0
end
=
0
...
@@ -48,15 +45,20 @@ class TrtConvertSliceTest(TrtLayerAutoScanTest):
...
@@ -48,15 +45,20 @@ class TrtConvertSliceTest(TrtLayerAutoScanTest):
end
=
attrs
[
0
][
"ends"
][
x
]
end
=
attrs
[
0
][
"ends"
][
x
]
start
=
max
(
0
,
start
)
start
=
max
(
0
,
start
)
end
=
max
(
0
,
end
)
end
=
max
(
0
,
end
)
out_shape
[
attrs
[
0
][
"axes"
][
x
]]
=
end
-
start
if
start
>=
end
:
if
start
>=
end
:
return
False
return
False
for
x
in
attrs
[
0
][
"decrease_axis"
]:
if
x
<
0
:
return
False
if
(
out_shape
[
x
]
!=
1
):
return
False
return
True
return
True
def
sample_program_configs
(
self
):
def
sample_program_configs
(
self
):
def
generate_input1
(
attrs
:
List
[
Dict
[
str
,
Any
]]):
def
generate_input1
(
attrs
:
List
[
Dict
[
str
,
Any
]]):
return
np
.
ones
([
6
,
6
,
64
,
64
]).
astype
(
np
.
float32
)
return
np
.
random
.
random
([
6
,
6
,
64
,
64
]).
astype
(
np
.
float32
)
for
axes
in
[[
0
,
1
],
[
1
,
3
],
[
2
,
3
]]:
for
axes
in
[[
0
,
1
],
[
1
,
3
],
[
2
,
3
]]:
for
starts
in
[[
0
,
1
]]:
for
starts
in
[[
0
,
1
]]:
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_split.py
浏览文件 @
30b10630
...
@@ -73,13 +73,13 @@ class TrtConvertSplitTest(TrtLayerAutoScanTest):
...
@@ -73,13 +73,13 @@ class TrtConvertSplitTest(TrtLayerAutoScanTest):
def
generate_input1
(
attrs
:
List
[
Dict
[
str
,
Any
]],
batch
):
def
generate_input1
(
attrs
:
List
[
Dict
[
str
,
Any
]],
batch
):
if
self
.
dims
==
4
:
if
self
.
dims
==
4
:
return
np
.
ones
([
batch
,
3
,
3
,
24
]).
astype
(
np
.
float32
)
return
np
.
random
.
random
([
batch
,
3
,
3
,
24
]).
astype
(
np
.
float32
)
elif
self
.
dims
==
3
:
elif
self
.
dims
==
3
:
return
np
.
ones
([
batch
,
3
,
24
]).
astype
(
np
.
float32
)
return
np
.
random
.
random
([
batch
,
3
,
24
]).
astype
(
np
.
float32
)
elif
self
.
dims
==
2
:
elif
self
.
dims
==
2
:
return
np
.
ones
([
batch
,
24
]).
astype
(
np
.
float32
)
return
np
.
random
.
random
([
batch
,
24
]).
astype
(
np
.
float32
)
elif
self
.
dims
==
1
:
elif
self
.
dims
==
1
:
return
np
.
ones
([
24
]).
astype
(
np
.
float32
)
return
np
.
random
.
random
([
24
]).
astype
(
np
.
float32
)
def
generate_AxisTensor
(
attrs
:
List
[
Dict
[
str
,
Any
]]):
def
generate_AxisTensor
(
attrs
:
List
[
Dict
[
str
,
Any
]]):
return
np
.
ones
([
1
]).
astype
(
np
.
int32
)
return
np
.
ones
([
1
]).
astype
(
np
.
int32
)
...
@@ -162,25 +162,33 @@ class TrtConvertSplitTest(TrtLayerAutoScanTest):
...
@@ -162,25 +162,33 @@ class TrtConvertSplitTest(TrtLayerAutoScanTest):
def
generate_dynamic_shape
(
attrs
):
def
generate_dynamic_shape
(
attrs
):
if
self
.
dims
==
4
:
if
self
.
dims
==
4
:
self
.
dynamic_shape
.
min_input_shape
=
{
self
.
dynamic_shape
.
min_input_shape
=
{
"split_input"
:
[
1
,
3
,
3
,
24
]
"split_input"
:
[
1
,
3
-
1
,
3
-
1
,
24
-
1
]
}
}
self
.
dynamic_shape
.
max_input_shape
=
{
self
.
dynamic_shape
.
max_input_shape
=
{
"split_input"
:
[
9
,
3
,
3
,
24
]
"split_input"
:
[
9
,
3
+
1
,
3
+
1
,
24
+
1
]
}
}
self
.
dynamic_shape
.
opt_input_shape
=
{
self
.
dynamic_shape
.
opt_input_shape
=
{
"split_input"
:
[
1
,
3
,
3
,
24
]
"split_input"
:
[
1
,
3
,
3
,
24
]
}
}
elif
self
.
dims
==
3
:
elif
self
.
dims
==
3
:
self
.
dynamic_shape
.
min_input_shape
=
{
"split_input"
:
[
1
,
3
,
24
]}
self
.
dynamic_shape
.
min_input_shape
=
{
self
.
dynamic_shape
.
max_input_shape
=
{
"split_input"
:
[
9
,
3
,
24
]}
"split_input"
:
[
1
,
3
-
1
,
24
-
1
]
}
self
.
dynamic_shape
.
max_input_shape
=
{
"split_input"
:
[
9
,
3
+
1
,
24
+
1
]
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"split_input"
:
[
1
,
3
,
24
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"split_input"
:
[
1
,
3
,
24
]}
elif
self
.
dims
==
2
:
elif
self
.
dims
==
2
:
self
.
dynamic_shape
.
min_input_shape
=
{
"split_input"
:
[
1
,
24
]}
self
.
dynamic_shape
.
min_input_shape
=
{
self
.
dynamic_shape
.
max_input_shape
=
{
"split_input"
:
[
9
,
24
]}
"split_input"
:
[
1
,
24
-
1
]
}
self
.
dynamic_shape
.
max_input_shape
=
{
"split_input"
:
[
9
,
24
+
1
]
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"split_input"
:
[
1
,
24
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"split_input"
:
[
1
,
24
]}
elif
self
.
dims
==
1
:
elif
self
.
dims
==
1
:
self
.
dynamic_shape
.
min_input_shape
=
{
"split_input"
:
[
24
]}
self
.
dynamic_shape
.
min_input_shape
=
{
"split_input"
:
[
24
-
1
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"split_input"
:
[
24
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"split_input"
:
[
24
+
1
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"split_input"
:
[
24
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"split_input"
:
[
24
]}
def
clear_dynamic_shape
():
def
clear_dynamic_shape
():
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录