engine.h 9.4 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <NvInfer.h>
18
#include <map>
Y
Yan Chunwei 已提交
19
#include <memory>
20
#include <string>
Y
Yan Chunwei 已提交
21
#include <unordered_map>
22
#include <unordered_set>
23
#include <utility>
24
#include <vector>
N
nhzlx 已提交
25
#include "paddle/fluid/framework/tensor.h"
26
#include "paddle/fluid/framework/tensor_util.h"
Z
Zhaolong Xing 已提交
27
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
Y
Yan Chunwei 已提交
28 29
#include "paddle/fluid/inference/engine.h"
#include "paddle/fluid/inference/tensorrt/helper.h"
30
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"
N
nhzlx 已提交
31
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin_factory.h"
N
nhzlx 已提交
32
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
33
#include "paddle/fluid/inference/utils/singleton.h"
Y
Yan Chunwei 已提交
34 35 36 37 38

namespace paddle {
namespace inference {
namespace tensorrt {

N
nhzlx 已提交
39
class TRTInt8Calibrator;
Y
Yan Chunwei 已提交
40 41 42 43
/*
 * TensorRT Engine.
 *
 * There are two alternative ways to use it, one is  to build from a paddle
44
 * protobuf model, another way is to manually construct the network.
Y
Yan Chunwei 已提交
45
 */
46 47 48
class TensorRTEngine {
  using DescType = ::paddle::framework::proto::BlockDesc;

Y
Yan Chunwei 已提交
49 50 51 52
 public:
  // Weight is model parameter.
  class Weight {
   public:
53
    Weight() = default;
54
    Weight(nvinfer1::DataType dtype, void* value, size_t num_elem) {
Y
Yan Chunwei 已提交
55 56 57 58
      w_.type = dtype;
      w_.values = value;
      w_.count = num_elem;
    }
59
    const nvinfer1::Weights& get() { return w_; }
Y
Yan Chunwei 已提交
60

61 62
    std::vector<int64_t> dims;

Y
Yan Chunwei 已提交
63 64 65 66
   private:
    nvinfer1::Weights w_;
  };

Z
Zhaolong Xing 已提交
67 68 69 70 71
  TensorRTEngine(
      int max_batch, int max_workspace,
      AnalysisConfig::Precision precision = AnalysisConfig::Precision::kFloat32,
      TRTInt8Calibrator* calibrator = nullptr, int device_id = 0,
      nvinfer1::ILogger& logger = NaiveLogger::Global())
Y
Yan Chunwei 已提交
72 73
      : max_batch_(max_batch),
        max_workspace_(max_workspace),
Z
Zhaolong Xing 已提交
74
        precision_(precision),
N
nhzlx 已提交
75
        calibrator_(calibrator),
N
nhzlx 已提交
76
        device_id_(device_id),
77
        logger_(logger) {}
Y
Yan Chunwei 已提交
78

79
  ~TensorRTEngine() {}
Y
Yan Chunwei 已提交
80 81

  // TODO(Superjomn) implement it later when graph segmentation is supported.
82
  void Build(const DescType& paddle_model);
Y
Yan Chunwei 已提交
83

84 85
  void Execute(int batch_size, std::vector<void*>* buffers,
               cudaStream_t stream);
Y
Yan Chunwei 已提交
86 87 88 89

  // Initialize the inference network, so that TensorRT layers can add to this
  // network.
  void InitNetwork() {
N
nhzlx 已提交
90
    freshDeviceId();
91
    infer_builder_.reset(createInferBuilder(&logger_));
Y
Yan Chunwei 已提交
92 93
    infer_network_.reset(infer_builder_->createNetwork());
  }
94
  // After finishing adding ops, freeze this network and creates the execution
Y
Yan Chunwei 已提交
95 96 97
  // environment.
  void FreezeNetwork();

98
  // Add an input and set its name, data type and dimension.
Y
Yan Chunwei 已提交
99 100 101 102 103 104 105
  nvinfer1::ITensor* DeclareInput(const std::string& name,
                                  nvinfer1::DataType dtype,
                                  const nvinfer1::Dims& dim);
  // Set the offset-th output from a layer as the network's output, and set its
  // name.
  void DeclareOutput(const nvinfer1::ILayer* layer, int offset,
                     const std::string& name);
L
Luo Tao 已提交
106 107
  // Set the itensor_map_[name] as the network's output, and set its name.
  void DeclareOutput(const std::string& name);
N
nhzlx 已提交
108 109
  // Check if the ITensor has been declared
  bool HasDeclared(const std::string& name);
Y
Yan Chunwei 已提交
110

L
Luo Tao 已提交
111 112 113
  void SetITensor(const std::string& name, nvinfer1::ITensor* tensor);
  // Get an ITensor called name.
  nvinfer1::ITensor* GetITensor(const std::string& name);
Y
Yan Chunwei 已提交
114 115 116

  nvinfer1::ICudaEngine* engine() { return infer_engine_.get(); }
  nvinfer1::INetworkDefinition* network() { return infer_network_.get(); }
N
nhzlx 已提交
117 118 119 120 121 122 123 124 125

  nvinfer1::IHostMemory* Serialize() {
    PADDLE_ENFORCE(infer_engine_ != nullptr,
                   "You should build engine first and then serialize");
    ihost_memory_.reset(infer_engine_->serialize());
    return ihost_memory_.get();
  }

  void Deserialize(const std::string& engine_serialized_data) {
N
nhzlx 已提交
126
    freshDeviceId();
N
nhzlx 已提交
127 128
    infer_ptr<nvinfer1::IRuntime> runtime(createInferRuntime(&logger_));
    infer_engine_.reset(runtime->deserializeCudaEngine(
N
nhzlx 已提交
129 130
        engine_serialized_data.c_str(), engine_serialized_data.size(),
        &inference::Singleton<plugin::PluginFactoryTensorRT>::Global()));
N
nhzlx 已提交
131 132 133 134
    PADDLE_ENFORCE(infer_engine_ != nullptr,
                   "build cuda engine failed when deserialize engine info.!");
  }

135 136
  void SetRuntimeBatch(size_t batch_size);
  int GetRuntimeBatch();
N
nhzlx 已提交
137
  int GetDeviceId() { return device_id_; }
N
nhzlx 已提交
138
  nvinfer1::IPluginLayer* AddPlugin(nvinfer1::ITensor* const* inputs,
139
                                    int num_inputs, plugin::PluginTensorRT*);
140 141 142 143 144 145 146
  void SetTensorDynamicRange(nvinfer1::ITensor* tensor, float range) {
    quant_dynamic_range_[tensor] = range;
  }

  float* GetWeightCPUData(const std::string& name,
                          framework::Tensor* weight_tensor, bool enable_int8,
                          const std::vector<float>& scale = {});
N
nhzlx 已提交
147 148 149 150 151 152 153 154

  // A pointer to CPU memory is needed of the TRT weight.
  // Before TRT runs, fluid loads weight into GPU storage.
  // so we need to copy the weights from GPU to CPU in our op converter.
  // We use a map to store these weights for the weight memory is not released
  // in advance, which affecting the construction of TRT Op.
  std::unordered_map<std::string /*name*/, std::unique_ptr<framework::Tensor>>
      weight_map;
Y
Yan Chunwei 已提交
155

156 157 158 159 160 161 162 163 164 165
  // When setting weight_map, a self-increasing suffix is needed for the names
  // so as to avoid repeatedly setting weights with the same name.
  void SetWeights(std::string w_name,
                  std::unique_ptr<framework::Tensor> w_tensor) {
    static int suffix_counter = 0;
    std::string suffix = std::to_string(suffix_counter);
    weight_map[w_name + suffix] = std::move(w_tensor);
    suffix_counter += 1;
  }

166 167 168 169 170 171
  void ClearWeights() {
    for (auto& weight_pair : weight_map) {
      weight_pair.second.reset(nullptr);
    }
  }

Y
Yan Chunwei 已提交
172
 private:
N
nhzlx 已提交
173 174 175 176 177
  // Each ICudaEngine object is bound to a specific GPU when it is instantiated,
  // ensure that the thread is associated with the correct device by calling
  // freshDeviceId().
  void freshDeviceId();

Y
Yan Chunwei 已提交
178 179
  // the max batch size
  int max_batch_;
180 181
  // the runtime batch size
  static int runtime_batch_;
Y
Yan Chunwei 已提交
182 183
  // the max memory size the engine uses
  int max_workspace_;
184

Z
Zhaolong Xing 已提交
185
  AnalysisConfig::Precision precision_;
N
nhzlx 已提交
186 187 188
  TRTInt8Calibrator* calibrator_;
  // batch size of the current data, will be updated each Executation.
  int batch_size_{-1};
N
nhzlx 已提交
189

N
nhzlx 已提交
190
  int device_id_;
Y
Yan Chunwei 已提交
191 192 193 194
  nvinfer1::ILogger& logger_;

  // max data size for the buffers.
  std::unordered_map<std::string /*name*/, size_t /*max size*/> buffer_sizes_;
L
Luo Tao 已提交
195 196
  std::unordered_map<std::string /*name*/, nvinfer1::ITensor* /*ITensor*/>
      itensor_map_;
197

198
  std::vector<std::unique_ptr<plugin::PluginTensorRT>> owned_plugin_;
Y
Yan Chunwei 已提交
199 200 201 202

  // TensorRT related internal members
  template <typename T>
  struct Destroyer {
203 204 205 206 207
    void operator()(T* x) {
      if (x) {
        x->destroy();
      }
    }
Y
Yan Chunwei 已提交
208 209 210 211 212 213
  };
  template <typename T>
  using infer_ptr = std::unique_ptr<T, Destroyer<T>>;
  infer_ptr<nvinfer1::IBuilder> infer_builder_;
  infer_ptr<nvinfer1::INetworkDefinition> infer_network_;
  infer_ptr<nvinfer1::ICudaEngine> infer_engine_;
214 215
  std::unordered_map<std::thread::id, infer_ptr<nvinfer1::IExecutionContext>>
      infer_context_;
N
nhzlx 已提交
216
  infer_ptr<nvinfer1::IHostMemory> ihost_memory_;
217
  std::unordered_map<nvinfer1::ITensor*, float> quant_dynamic_range_;
Y
Yan Chunwei 已提交
218 219
};  // class TensorRTEngine

220 221 222 223
#define IS_TRT_VERSION_GE(version)                       \
  ((NV_TENSORRT_MAJOR * 1000 + NV_TENSORRT_MINOR * 100 + \
    NV_TENSORRT_PATCH * 10 + NV_TENSORRT_BUILD) >= version)

224
// Add a layer__ into engine__ with args ARGS.
Y
Yan Chunwei 已提交
225 226 227 228 229 230 231 232 233
// For example:
//
// Reference
// https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#charRNN_define_network
//
// will add a fully connected layer into the engine.
// TensorRT has too many layers, so that is not wise to add member functions for
// them, and an macro like this is more extensible when underlying TensorRT
// library add new layer supports.
234 235
#define TRT_ENGINE_ADD_LAYER(engine__, layer__, ...) \
  engine__->network()->add##layer__(__VA_ARGS__);
Y
Yan Chunwei 已提交
236

237 238 239 240 241 242 243 244 245 246 247 248
class TRTEngineManager {
 public:
  bool Empty() const { return engines_.size() == 0; }
  bool Has(const std::string& name) const {
    if (engines_.count(name) == 0) return false;
    return engines_.at(name).get() != nullptr;
  }

  TensorRTEngine* Get(const std::string& name) const {
    return engines_.at(name).get();
  }

Z
Zhaolong Xing 已提交
249 250 251 252 253 254
  TensorRTEngine* Create(
      std::string name, int max_batch, int max_workspace,
      AnalysisConfig::Precision precision = AnalysisConfig::Precision::kFloat32,
      TRTInt8Calibrator* calibrator = nullptr, int device_id = 0,
      nvinfer1::ILogger& logger = NaiveLogger::Global()) {
    auto* p = new TensorRTEngine(max_batch, max_workspace, precision,
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
                                 calibrator, device_id, logger);
    engines_[name].reset(p);
    return p;
  }

  void DeleteAll() {
    for (auto& item : engines_) {
      item.second.reset(nullptr);
    }
  }

 private:
  std::unordered_map<std::string, std::unique_ptr<TensorRTEngine>> engines_;
};

Y
Yan Chunwei 已提交
270 271 272
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle