Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
24187fcb
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
24187fcb
编写于
8月 01, 2022
作者:
W
Wangzheee
提交者:
GitHub
8月 01, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Paddle Inference] add varlen_token_prune plugin, pass, convert (#44733)
* add varlen_token_prune plugin, pass, convert
上级
8482f1ae
变更
15
隐藏空白更改
内联
并排
Showing
15 changed file
with
355 addition
and
193 deletion
+355
-193
paddle/fluid/framework/ir/remove_padding_recover_padding_pass.cc
...fluid/framework/ir/remove_padding_recover_padding_pass.cc
+8
-2
paddle/fluid/inference/tensorrt/convert/emb_eltwise_layernorm.cc
...fluid/inference/tensorrt/convert/emb_eltwise_layernorm.cc
+46
-14
paddle/fluid/inference/tensorrt/convert/fc_op.cc
paddle/fluid/inference/tensorrt/convert/fc_op.cc
+0
-3
paddle/fluid/inference/tensorrt/convert/fused_token_prune_op.cc
.../fluid/inference/tensorrt/convert/fused_token_prune_op.cc
+37
-14
paddle/fluid/inference/tensorrt/convert/multihead_matmul_op.cc
...e/fluid/inference/tensorrt/convert/multihead_matmul_op.cc
+6
-37
paddle/fluid/inference/tensorrt/convert/preln_emb_eltwise_layernorm.cc
...inference/tensorrt/convert/preln_emb_eltwise_layernorm.cc
+36
-9
paddle/fluid/inference/tensorrt/convert/sparse_multihead_matmul_op.cc
.../inference/tensorrt/convert/sparse_multihead_matmul_op.cc
+6
-38
paddle/fluid/inference/tensorrt/engine.cc
paddle/fluid/inference/tensorrt/engine.cc
+13
-0
paddle/fluid/inference/tensorrt/engine.h
paddle/fluid/inference/tensorrt/engine.h
+1
-0
paddle/fluid/inference/tensorrt/plugin/fused_token_prune_op_plugin.cu
.../inference/tensorrt/plugin/fused_token_prune_op_plugin.cu
+167
-53
paddle/fluid/inference/tensorrt/plugin/fused_token_prune_op_plugin.h
...d/inference/tensorrt/plugin/fused_token_prune_op_plugin.h
+17
-14
paddle/fluid/inference/tensorrt/plugin/recover_padding_plugin.cu
...fluid/inference/tensorrt/plugin/recover_padding_plugin.cu
+7
-3
paddle/fluid/inference/tensorrt/plugin/remove_padding_plugin.cu
.../fluid/inference/tensorrt/plugin/remove_padding_plugin.cu
+3
-2
paddle/fluid/inference/tensorrt/plugin/test_fused_token_prune_plugin.cc
...nference/tensorrt/plugin/test_fused_token_prune_plugin.cc
+4
-2
paddle/fluid/inference/tensorrt/test_dynamic_engine.cc
paddle/fluid/inference/tensorrt/test_dynamic_engine.cc
+4
-2
未找到文件。
paddle/fluid/framework/ir/remove_padding_recover_padding_pass.cc
浏览文件 @
24187fcb
...
...
@@ -359,6 +359,7 @@ void RemovePaddingRecoverPaddingPass::ApplyImpl(ir::Graph* graph) const {
std
::
vector
<
int64_t
>
skip_layernorm_x_shape
=
skip_layernorm_x
->
Var
()
->
GetShape
();
check_flag
=
true
;
if
(
skip_layernorm_x_shape
.
size
()
!=
multihead_matmul_input_shape
.
size
())
{
check_flag
=
false
;
VLOG
(
3
)
<<
"Transformer model remove_padding shape check failed, return "
...
...
@@ -395,6 +396,7 @@ void RemovePaddingRecoverPaddingPass::ApplyImpl(ir::Graph* graph) const {
GET_IR_NODE_FROM_SUBGRAPH
(
fc_op
,
fc_op
,
fc
);
std
::
vector
<
int64_t
>
fc_input_shape
=
fc_input
->
Var
()
->
GetShape
();
check_flag
=
true
;
if
((
fc_input_shape
.
size
()
!=
multihead_matmul_input_shape
.
size
())
||
(
fc_input_shape
.
size
()
!=
3
))
{
check_flag
=
false
;
...
...
@@ -446,11 +448,13 @@ void RemovePaddingRecoverPaddingPass::ApplyImpl(ir::Graph* graph) const {
std
::
vector
<
int64_t
>
activation_input_shape
=
activation_input
->
Var
()
->
GetShape
();
check_flag
=
true
;
if
((
activation_input_shape
.
size
()
!=
multihead_matmul_input_shape
.
size
())
||
(
activation_input_shape
.
size
()
!=
3
))
{
check_flag
=
false
;
VLOG
(
3
)
<<
"Transformer model remove_padding shape check failed, return "
VLOG
(
3
)
<<
"Activation: Transformer model remove_padding "
"shape(activation_input_shape.size()) check failed, return "
"remove_padding pass."
;
return
;
}
...
...
@@ -465,7 +469,8 @@ void RemovePaddingRecoverPaddingPass::ApplyImpl(ir::Graph* graph) const {
check_flag
=
false
;
}
if
(
!
check_flag
)
{
VLOG
(
3
)
<<
"Transformer model remove_padding shape check failed, return "
VLOG
(
3
)
<<
"Activation: Transformer model remove_padding "
"shape(activation_input_shape[i]) check failed, return "
"remove_padding pass."
;
return
;
}
...
...
@@ -530,6 +535,7 @@ void RemovePaddingRecoverPaddingPass::ApplyImpl(ir::Graph* graph) const {
std
::
vector
<
int64_t
>
skip_layernorm_x_shape
=
preln_skip_layernorm_x
->
Var
()
->
GetShape
();
check_flag
=
true
;
if
(
skip_layernorm_x_shape
.
size
()
!=
multihead_matmul_input_shape
.
size
())
{
check_flag
=
false
;
VLOG
(
3
)
<<
"Transformer model remove_padding shape check failed, return "
...
...
paddle/fluid/inference/tensorrt/convert/emb_eltwise_layernorm.cc
浏览文件 @
24187fcb
...
...
@@ -60,6 +60,50 @@ class EmbEltwiseLayerNormOpConverter : public OpConverter {
std
::
vector
<
std
::
string
>
{
word_id_name
,
pos_id_name
,
sent_id_name
};
emb_names
=
std
::
vector
<
std
::
string
>
{
word_emb_name
,
pos_emb_name
,
sent_emb_name
};
auto
mask_id_tensor
=
engine_
->
GetITensor
(
"mask_id"
);
auto
mask_dims
=
mask_id_tensor
->
getDimensions
();
auto
slice_start_dims
=
mask_dims
;
auto
slice_stride_dims
=
mask_dims
;
for
(
int
i
=
0
;
i
<
mask_dims
.
nbDims
;
i
++
)
{
slice_start_dims
.
d
[
i
]
=
0
;
slice_stride_dims
.
d
[
i
]
=
1
;
}
auto
*
shape_tensor
=
Shape
(
mask_id_tensor
);
std
::
vector
<
nvinfer1
::
ITensor
*>
size_vec_tensor
;
for
(
int
i
=
0
;
i
<
mask_dims
.
nbDims
;
i
++
)
{
size_vec_tensor
.
push_back
(
Add1DConstantLayer
(
1
));
}
size_vec_tensor
[
1
]
=
GetEleTensorOfShape
(
shape_tensor
,
1
);
auto
size_tensor
=
Concat
(
size_vec_tensor
);
auto
slice_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Slice
,
*
mask_id_tensor
,
slice_start_dims
,
slice_start_dims
,
slice_stride_dims
);
// unuseful slice_start_dims
slice_layer
->
setInput
(
2
,
*
size_tensor
);
slice_layer
->
setName
(
(
"Embeltwise_slice_layer (Output: slice_max_seqlen "
+
op_desc
.
Output
(
"Out"
)[
0
]
+
")"
)
.
c_str
());
engine_
->
SetTensorDynamicRange
(
slice_layer
->
getOutput
(
0
),
1.0
f
);
auto
*
reshape_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Shuffle
,
*
slice_layer
->
getOutput
(
0
));
nvinfer1
::
Dims
shape_dim
;
shape_dim
.
nbDims
=
1
;
shape_dim
.
d
[
0
]
=
-
1
;
reshape_layer
->
setReshapeDimensions
(
shape_dim
);
reshape_layer
->
setName
((
"Embeltwise_reshape_layer (Output: max_seqlen "
+
op_desc
.
Output
(
"Out"
)[
0
]
+
")"
)
.
c_str
());
engine_
->
SetTensorDynamicRange
(
reshape_layer
->
getOutput
(
0
),
1.0
f
);
engine_
->
SetITensor
(
"max_seqlen_tensor"
,
reshape_layer
->
getOutput
(
0
));
}
else
{
id_names
=
op_desc
.
Input
(
"Ids"
);
emb_names
=
op_desc
.
Input
(
"Embs"
);
...
...
@@ -192,20 +236,8 @@ class EmbEltwiseLayerNormOpConverter : public OpConverter {
plugin_inputs
.
emplace_back
(
engine_
->
GetITensor
(
pos_id_name
));
// cu_seqlens,
// eval_placeholder_2
auto
max_seqlen_tensor
=
engine_
->
GetITensor
(
mask_id_name
);
auto
*
shuffle_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Shuffle
,
*
max_seqlen_tensor
);
nvinfer1
::
Dims
shape_dim
;
shape_dim
.
nbDims
=
1
;
shape_dim
.
d
[
0
]
=
-
1
;
shuffle_layer
->
setReshapeDimensions
(
shape_dim
);
shuffle_layer
->
setName
(
(
"Embeltwise_Shuffle_reshape (Output: max_seqlen "
+
op_desc
.
Output
(
"Out"
)[
0
]
+
")"
)
.
c_str
());
engine_
->
SetTensorDynamicRange
(
shuffle_layer
->
getOutput
(
0
),
1.0
f
);
plugin_inputs
.
emplace_back
(
shuffle_layer
->
getOutput
(
0
));
// max_seqlen, eval_placeholder_3
plugin_inputs
.
emplace_back
(
engine_
->
GetITensor
(
"max_seqlen_tensor"
));
// max_seqlen, eval_placeholder_3
auto
creator
=
GetPluginRegistry
()
->
getPluginCreator
(
"CustomEmbLayerNormPluginDynamic"
,
"2"
);
...
...
paddle/fluid/inference/tensorrt/convert/fc_op.cc
浏览文件 @
24187fcb
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
...
...
paddle/fluid/inference/tensorrt/convert/fused_token_prune_op.cc
浏览文件 @
24187fcb
...
...
@@ -23,7 +23,6 @@ class FusedTokenPruneOpConverter : public OpConverter {
bool
test_mode
)
override
{
framework
::
OpDesc
op_desc
(
op
,
nullptr
);
nvinfer1
::
ILayer
*
layer
=
nullptr
;
auto
*
Attn
=
engine_
->
GetITensor
(
op_desc
.
Input
(
"Attn"
).
front
());
auto
*
X
=
engine_
->
GetITensor
(
op_desc
.
Input
(
"X"
).
front
());
auto
*
Mask
=
engine_
->
GetITensor
(
op_desc
.
Input
(
"Mask"
).
front
());
...
...
@@ -36,28 +35,54 @@ class FusedTokenPruneOpConverter : public OpConverter {
op_desc
.
HasAttr
(
"keep_order"
)
?
PADDLE_GET_CONST
(
bool
,
op_desc
.
GetAttr
(
"keep_order"
))
:
false
;
std
::
vector
<
nvinfer1
::
ITensor
*>
itensors
=
{
Attn
,
X
,
Mask
,
NewMask
};
auto
output_name
=
op_desc
.
Output
(
"SlimmedX"
)[
0
];
auto
out_inds_name
=
op_desc
.
Output
(
"CLSInds"
)[
0
];
if
(
engine_
->
with_dynamic_shape
())
{
#if IS_TRT_VERSION_GE(6000)
bool
with_fp16
=
engine_
->
WithFp16
()
&&
!
engine_
->
disable_trt_plugin_fp16
();
if
(
engine_
->
precision
()
==
AnalysisConfig
::
Precision
::
kInt8
)
{
with_fp16
=
true
;
}
bool
flag_varseqlen
=
engine_
->
use_varseqlen
();
plugin
::
FusedTokenPrunePluginDynamic
*
plugin
=
new
plugin
::
FusedTokenPrunePluginDynamic
(
with_fp16
,
keep_first_token
,
keep_order
);
layer
=
engine_
->
AddDynamicPlugin
(
itensors
.
data
(),
4
,
plugin
);
#else
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
"You are running the TRT Dynamic Shape mode, need to confirm that "
"your TRT version is no less than 6.0"
));
#endif
with_fp16
,
keep_first_token
,
keep_order
,
flag_varseqlen
);
if
(
flag_varseqlen
)
{
auto
*
word_id
=
engine_
->
GetITensor
(
"word_id"
);
auto
*
pos_id
=
engine_
->
GetITensor
(
"pos_id"
);
auto
*
mask_id
=
engine_
->
GetITensor
(
"mask_id"
);
std
::
vector
<
nvinfer1
::
ITensor
*>
itensors
=
{
Attn
,
X
,
Mask
,
NewMask
,
word_id
,
pos_id
,
mask_id
};
layer
=
engine_
->
AddDynamicPlugin
(
itensors
.
data
(),
7
,
plugin
);
layer
->
getOutput
(
0
)
->
setName
(
output_name
.
c_str
());
engine_
->
SetITensor
(
output_name
,
layer
->
getOutput
(
0
));
layer
->
getOutput
(
1
)
->
setName
(
out_inds_name
.
c_str
());
engine_
->
SetITensor
(
out_inds_name
,
layer
->
getOutput
(
1
));
engine_
->
DeleteITensor
(
"word_id"
,
word_id
);
layer
->
getOutput
(
2
)
->
setName
(
"word_id_after_token_prune"
);
engine_
->
SetITensor
(
"word_id"
,
layer
->
getOutput
(
2
));
engine_
->
DeleteITensor
(
"pos_id"
,
pos_id
);
layer
->
getOutput
(
3
)
->
setName
(
"pos_id_after_token_prune"
);
engine_
->
SetITensor
(
"pos_id"
,
layer
->
getOutput
(
3
));
engine_
->
DeleteITensor
(
"mask_id"
,
mask_id
);
layer
->
getOutput
(
4
)
->
setName
(
"mask_id_after_token_prune"
);
engine_
->
SetITensor
(
"mask_id"
,
layer
->
getOutput
(
4
));
}
else
{
std
::
vector
<
nvinfer1
::
ITensor
*>
itensors
=
{
Attn
,
X
,
Mask
,
NewMask
};
layer
=
engine_
->
AddDynamicPlugin
(
itensors
.
data
(),
4
,
plugin
);
layer
->
getOutput
(
0
)
->
setName
(
output_name
.
c_str
());
engine_
->
SetITensor
(
output_name
,
layer
->
getOutput
(
0
));
layer
->
getOutput
(
1
)
->
setName
(
out_inds_name
.
c_str
());
engine_
->
SetITensor
(
out_inds_name
,
layer
->
getOutput
(
1
));
}
layer
->
setName
(
(
"fused_token_prune(Output: "
+
output_name
+
")"
).
c_str
());
}
else
{
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
"You are running the Ernie(Bert) model in static shape mode, which "
...
...
@@ -65,8 +90,6 @@ class FusedTokenPruneOpConverter : public OpConverter {
"You can use the config.SetTRTDynamicShapeInfo(...) interface to set "
"the shape information to run the dynamic shape mode."
));
}
RreplenishLayerAndOutput
(
layer
,
"fused_token_prune"
,
{
output_name
,
out_inds_name
},
test_mode
);
}
};
...
...
paddle/fluid/inference/tensorrt/convert/multihead_matmul_op.cc
浏览文件 @
24187fcb
...
...
@@ -94,6 +94,8 @@ class MultiheadMatMulOpConverter : public OpConverter {
nvinfer1
::
Weights
bias
{
nvinfer1
::
DataType
::
kFLOAT
,
static_cast
<
void
*>
(
bias_data
),
static_cast
<
int32_t
>
(
bias_t
->
numel
())};
auto
max_seqlen_tensor
=
engine_
->
GetITensor
(
"max_seqlen_tensor"
);
auto
pos_id_tensor
=
engine_
->
GetITensor
(
"pos_id"
);
if
(
engine_
->
with_interleaved
())
{
VLOG
(
4
)
<<
"fused multihead_matmul op: use_varseqlen and "
"with_interleaved"
;
...
...
@@ -154,31 +156,9 @@ class MultiheadMatMulOpConverter : public OpConverter {
std
::
vector
<
nvinfer1
::
ITensor
*>
plugin_inputs
;
plugin_inputs
.
emplace_back
(
fc_layer
->
getOutput
(
0
));
if
(
engine_
->
Has
(
"ernie_pos_name"
))
{
plugin_inputs
.
emplace_back
(
engine_
->
GetITensor
(
engine_
->
Get
<
std
::
string
>
(
"ernie_pos_name"
)));
}
else
{
plugin_inputs
.
emplace_back
(
engine_
->
GetITensor
(
engine_
->
network
()
->
getInput
(
2
)
->
getName
()));
// cu_seqlens, eval_placeholder_2
}
auto
max_seqlen_tensor
=
engine_
->
GetITensor
(
engine_
->
network
()
->
getInput
(
3
)
->
getName
());
engine_
->
SetTensorDynamicRange
(
max_seqlen_tensor
,
1.0
f
);
auto
*
shuffle_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Shuffle
,
*
const_cast
<
nvinfer1
::
ITensor
*>
(
max_seqlen_tensor
));
nvinfer1
::
Dims
shape_dim
;
shape_dim
.
nbDims
=
1
;
shape_dim
.
d
[
0
]
=
-
1
;
shuffle_layer
->
setReshapeDimensions
(
shape_dim
);
engine_
->
SetTensorDynamicRange
(
shuffle_layer
->
getOutput
(
0
),
1.0
f
);
plugin_inputs
.
emplace_back
(
pos_id_tensor
);
plugin_inputs
.
emplace_back
(
shuffle_layer
->
getOutput
(
0
));
// max_seqlen, eval_placeholder_3
shuffle_layer
->
setName
(
(
"Multihead: Shuffle: (Output: "
+
output_name
+
")"
).
c_str
());
max_seqlen_tensor
);
// max_seqlen, eval_placeholder_3
auto
plugin_layer
=
engine_
->
network
()
->
addPluginV2
(
plugin_inputs
.
data
(),
plugin_inputs
.
size
(),
*
plugin
);
layer
=
plugin_layer
;
...
...
@@ -299,20 +279,9 @@ class MultiheadMatMulOpConverter : public OpConverter {
std
::
vector
<
nvinfer1
::
ITensor
*>
plugin_inputs
;
plugin_inputs
.
emplace_back
(
fc_layer
->
getOutput
(
0
));
plugin_inputs
.
emplace_back
(
engine_
->
GetITensor
(
"qkv_plugin_mask"
));
plugin_inputs
.
emplace_back
(
engine_
->
GetITensor
(
"pos_id"
));
auto
max_seqlen_tensor
=
engine_
->
GetITensor
(
"mask_id"
);
auto
*
shuffle_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Shuffle
,
*
const_cast
<
nvinfer1
::
ITensor
*>
(
max_seqlen_tensor
));
nvinfer1
::
Dims
shape_dim
;
shape_dim
.
nbDims
=
1
;
shape_dim
.
d
[
0
]
=
-
1
;
shuffle_layer
->
setReshapeDimensions
(
shape_dim
);
engine_
->
SetTensorDynamicRange
(
shuffle_layer
->
getOutput
(
0
),
1.0
f
);
plugin_inputs
.
emplace_back
(
pos_id_tensor
);
plugin_inputs
.
emplace_back
(
shuffle_layer
->
getOutput
(
0
)
);
// max_seqlen, eval_placeholder_3
max_seqlen_tensor
);
// max_seqlen, eval_placeholder_3
auto
plugin_layer
=
engine_
->
network
()
->
addPluginV2
(
plugin_inputs
.
data
(),
plugin_inputs
.
size
(),
*
plugin
);
...
...
paddle/fluid/inference/tensorrt/convert/preln_emb_eltwise_layernorm.cc
浏览文件 @
24187fcb
...
...
@@ -157,20 +157,47 @@ class PrelnEmbEltwiseLayerNormOpConverter : public OpConverter {
plugin_inputs
.
emplace_back
(
engine_
->
GetITensor
(
pos_id_name
));
// cu_seqlens,
// eval_placeholder_2
auto
max_seqlen_tensor
=
engine_
->
GetITensor
(
mask_id_name
);
auto
*
shuffle_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Shuffle
,
*
max_seqlen_tensor
);
auto
mask_id_tensor
=
engine_
->
GetITensor
(
"mask_id"
);
auto
mask_dims
=
mask_id_tensor
->
getDimensions
();
auto
slice_start_dims
=
mask_dims
;
auto
slice_size_dims
=
mask_dims
;
auto
slice_stride_dims
=
mask_dims
;
for
(
int
i
=
0
;
i
<
mask_dims
.
nbDims
;
i
++
)
{
slice_start_dims
.
d
[
i
]
=
0
;
slice_size_dims
.
d
[
i
]
=
1
;
slice_stride_dims
.
d
[
i
]
=
1
;
}
slice_size_dims
.
d
[
1
]
=
mask_dims
.
d
[
1
];
auto
*
slice_size_tensor
=
Add1DConstantLayer
(
slice_size_dims
);
auto
slice_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Slice
,
*
mask_id_tensor
,
slice_start_dims
,
slice_start_dims
,
slice_stride_dims
);
// unuseful slice_start_dims
slice_layer
->
setInput
(
2
,
*
slice_size_tensor
);
slice_layer
->
setName
(
(
"PrelnEmbeltwise_slice_layer (Output: slice_max_seqlen "
+
op_desc
.
Output
(
"Out"
)[
0
]
+
")"
)
.
c_str
());
engine_
->
SetTensorDynamicRange
(
slice_layer
->
getOutput
(
0
),
1.0
f
);
auto
*
reshape_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Shuffle
,
*
slice_layer
->
getOutput
(
0
));
nvinfer1
::
Dims
shape_dim
;
shape_dim
.
nbDims
=
1
;
shape_dim
.
d
[
0
]
=
-
1
;
shuffl
e_layer
->
setReshapeDimensions
(
shape_dim
);
shuffl
e_layer
->
setName
(
(
"PrelnEmbeltwise_
Shuffle_reshape
(Output: max_seqlen "
+
op_desc
.
Output
(
"Out
_0
"
)[
0
]
+
")"
)
reshap
e_layer
->
setReshapeDimensions
(
shape_dim
);
reshap
e_layer
->
setName
(
(
"PrelnEmbeltwise_
reshape_layer
(Output: max_seqlen "
+
op_desc
.
Output
(
"Out"
)[
0
]
+
")"
)
.
c_str
());
engine_
->
SetTensorDynamicRange
(
shuffle_layer
->
getOutput
(
0
),
1.0
f
);
engine_
->
SetTensorDynamicRange
(
reshape_layer
->
getOutput
(
0
),
1.0
f
);
engine_
->
SetITensor
(
"max_seqlen_tensor"
,
reshape_layer
->
getOutput
(
0
));
plugin_inputs
.
emplace_back
(
shuffl
e_layer
->
getOutput
(
0
));
// max_seqlen, eval_placeholder_3
reshap
e_layer
->
getOutput
(
0
));
// max_seqlen, eval_placeholder_3
auto
creator
=
GetPluginRegistry
()
->
getPluginCreator
(
"CustomEmbLayerNormPluginDynamic"
,
"3"
);
...
...
paddle/fluid/inference/tensorrt/convert/sparse_multihead_matmul_op.cc
浏览文件 @
24187fcb
...
...
@@ -111,6 +111,8 @@ class SparseMultiheadMatMulOpConverter : public OpConverter {
nvinfer1
::
Weights
bias
{
nvinfer1
::
DataType
::
kFLOAT
,
static_cast
<
void
*>
(
bias_data
),
static_cast
<
int32_t
>
(
bias_t
->
numel
())};
auto
max_seqlen_tensor
=
engine_
->
GetITensor
(
"max_seqlen_tensor"
);
auto
pos_id_tensor
=
engine_
->
GetITensor
(
"pos_id"
);
if
(
engine_
->
with_interleaved
())
{
VLOG
(
4
)
<<
"fused multihead_matmul op: use_varseqlen and "
"with_interleaved"
;
...
...
@@ -171,31 +173,9 @@ class SparseMultiheadMatMulOpConverter : public OpConverter {
std
::
vector
<
nvinfer1
::
ITensor
*>
plugin_inputs
;
plugin_inputs
.
emplace_back
(
fc_layer
->
getOutput
(
0
));
if
(
engine_
->
Has
(
"ernie_pos_name"
))
{
plugin_inputs
.
emplace_back
(
engine_
->
GetITensor
(
engine_
->
Get
<
std
::
string
>
(
"ernie_pos_name"
)));
}
else
{
plugin_inputs
.
emplace_back
(
engine_
->
GetITensor
(
engine_
->
network
()
->
getInput
(
2
)
->
getName
()));
// cu_seqlens, eval_placeholder_2
}
auto
max_seqlen_tensor
=
engine_
->
GetITensor
(
engine_
->
network
()
->
getInput
(
3
)
->
getName
());
engine_
->
SetTensorDynamicRange
(
max_seqlen_tensor
,
1.0
f
);
auto
*
shuffle_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Shuffle
,
*
const_cast
<
nvinfer1
::
ITensor
*>
(
max_seqlen_tensor
));
nvinfer1
::
Dims
shape_dim
;
shape_dim
.
nbDims
=
1
;
shape_dim
.
d
[
0
]
=
-
1
;
shuffle_layer
->
setReshapeDimensions
(
shape_dim
);
engine_
->
SetTensorDynamicRange
(
shuffle_layer
->
getOutput
(
0
),
1.0
f
);
plugin_inputs
.
emplace_back
(
pos_id_tensor
);
plugin_inputs
.
emplace_back
(
shuffle_layer
->
getOutput
(
0
));
// max_seqlen, eval_placeholder_3
shuffle_layer
->
setName
(
(
"Multihead: Shuffle: (Output: "
+
output_name
+
")"
).
c_str
());
max_seqlen_tensor
);
// max_seqlen, eval_placeholder_3
auto
plugin_layer
=
engine_
->
network
()
->
addPluginV2
(
plugin_inputs
.
data
(),
plugin_inputs
.
size
(),
*
plugin
);
layer
=
plugin_layer
;
...
...
@@ -316,21 +296,9 @@ class SparseMultiheadMatMulOpConverter : public OpConverter {
std
::
vector
<
nvinfer1
::
ITensor
*>
plugin_inputs
;
plugin_inputs
.
emplace_back
(
fc_layer
->
getOutput
(
0
));
plugin_inputs
.
emplace_back
(
engine_
->
GetITensor
(
"qkv_plugin_mask"
));
plugin_inputs
.
emplace_back
(
engine_
->
GetITensor
(
"pos_id"
));
auto
max_seqlen_tensor
=
engine_
->
GetITensor
(
"mask_id"
);
auto
*
shuffle_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Shuffle
,
*
const_cast
<
nvinfer1
::
ITensor
*>
(
max_seqlen_tensor
));
nvinfer1
::
Dims
shape_dim
;
shape_dim
.
nbDims
=
1
;
shape_dim
.
d
[
0
]
=
-
1
;
shuffle_layer
->
setReshapeDimensions
(
shape_dim
);
engine_
->
SetTensorDynamicRange
(
shuffle_layer
->
getOutput
(
0
),
1.0
f
);
plugin_inputs
.
emplace_back
(
pos_id_tensor
);
plugin_inputs
.
emplace_back
(
shuffle_layer
->
getOutput
(
0
));
// max_seqlen, eval_placeholder_3
max_seqlen_tensor
);
// max_seqlen, eval_placeholder_3
auto
plugin_layer
=
engine_
->
network
()
->
addPluginV2
(
plugin_inputs
.
data
(),
plugin_inputs
.
size
(),
*
plugin
);
layer
=
plugin_layer
;
...
...
paddle/fluid/inference/tensorrt/engine.cc
浏览文件 @
24187fcb
...
...
@@ -410,6 +410,19 @@ void TensorRTEngine::DeclareOutput(const std::string &name) {
name
));
network
()
->
markOutput
(
*
output
);
}
void
TensorRTEngine
::
DeleteITensor
(
const
std
::
string
&
name
,
nvinfer1
::
ITensor
*
tensor
)
{
PADDLE_ENFORCE_NOT_NULL
(
tensor
,
platform
::
errors
::
InvalidArgument
(
"Tensor named %s of TRT engine should not be null."
,
name
));
PADDLE_ENFORCE_EQ
(
true
,
itensor_map_
.
count
(
name
),
platform
::
errors
::
InvalidArgument
(
"Tensor named %s of TRT engine should not be null"
,
name
));
itensor_map_
.
erase
(
name
);
}
void
TensorRTEngine
::
SetITensor
(
const
std
::
string
&
name
,
nvinfer1
::
ITensor
*
tensor
)
{
...
...
paddle/fluid/inference/tensorrt/engine.h
浏览文件 @
24187fcb
...
...
@@ -278,6 +278,7 @@ class TensorRTEngine {
void
DeclareOutput
(
const
std
::
string
&
name
);
void
ClearTensorMap
()
{
itensor_map_
.
clear
();
}
void
DeleteITensor
(
const
std
::
string
&
name
,
nvinfer1
::
ITensor
*
tensor
);
void
SetITensor
(
const
std
::
string
&
name
,
nvinfer1
::
ITensor
*
tensor
);
// Get an ITensor called name.
nvinfer1
::
ITensor
*
GetITensor
(
const
std
::
string
&
name
);
...
...
paddle/fluid/inference/tensorrt/plugin/fused_token_prune_op_plugin.cu
浏览文件 @
24187fcb
...
...
@@ -177,22 +177,75 @@ __global__ void TakeAlongAxis(const T* src,
}
}
__global__
void
pos_id_prune_kernel
(
const
int32_t
*
src
,
int32_t
*
dst
,
int
pos_nums
,
float
scale
)
{
dst
[
0
]
=
0
;
for
(
int
i
=
1
;
i
<
pos_nums
;
i
++
)
{
dst
[
i
]
=
dst
[
i
-
1
]
+
max
(
static_cast
<
int
>
((
src
[
i
]
-
src
[
i
-
1
])
*
scale
),
2
);
}
}
nvinfer1
::
DimsExprs
FusedTokenPrunePluginDynamic
::
getOutputDimensions
(
int
output_index
,
const
nvinfer1
::
DimsExprs
*
inputs
,
int
nb_inputs
,
nvinfer1
::
IExprBuilder
&
expr_builder
)
TRT_NOEXCEPT
{
auto
x_dims
=
inputs
[
1
],
new_mask_dims
=
inputs
[
3
];
if
(
output_index
==
0
)
{
nvinfer1
::
DimsExprs
ret
=
x_dims
;
ret
.
d
[
1
]
=
new_mask_dims
.
d
[
2
];
return
ret
;
if
(
flag_varseqlen_
)
{
if
(
output_index
==
0
)
{
nvinfer1
::
DimsExprs
ret
=
x_dims
;
ret
.
d
[
1
]
=
new_mask_dims
.
d
[
2
];
return
ret
;
}
else
if
(
output_index
==
1
)
{
nvinfer1
::
DimsExprs
ret
;
ret
.
nbDims
=
2
;
ret
.
d
[
0
]
=
new_mask_dims
.
d
[
0
];
ret
.
d
[
1
]
=
new_mask_dims
.
d
[
2
];
return
ret
;
}
else
if
(
output_index
==
2
)
{
// word id
nvinfer1
::
DimsExprs
ret
;
ret
.
nbDims
=
1
;
// max sum of seqlen: pre_seqlen * new_mask[2] / mask[1] + 2 * batchs
const
auto
*
two
=
expr_builder
.
constant
(
2
);
ret
.
d
[
0
]
=
expr_builder
.
operation
(
nvinfer1
::
DimensionOperation
::
kSUM
,
*
expr_builder
.
operation
(
nvinfer1
::
DimensionOperation
::
kFLOOR_DIV
,
*
expr_builder
.
operation
(
nvinfer1
::
DimensionOperation
::
kPROD
,
*
inputs
[
4
].
d
[
0
],
*
new_mask_dims
.
d
[
2
]),
*
inputs
[
6
].
d
[
1
]),
*
expr_builder
.
operation
(
nvinfer1
::
DimensionOperation
::
kPROD
,
*
two
,
*
inputs
[
6
].
d
[
0
]));
return
ret
;
}
else
if
(
output_index
==
3
)
{
// pos id
nvinfer1
::
DimsExprs
ret
=
inputs
[
5
];
return
ret
;
}
else
if
(
output_index
==
4
)
{
// mask id
nvinfer1
::
DimsExprs
ret
;
ret
.
nbDims
=
2
;
ret
.
d
[
0
]
=
inputs
[
6
].
d
[
0
];
ret
.
d
[
1
]
=
new_mask_dims
.
d
[
2
];
return
ret
;
}
}
else
{
nvinfer1
::
DimsExprs
ret
;
ret
.
nbDims
=
2
;
ret
.
d
[
0
]
=
new_mask_dims
.
d
[
0
];
ret
.
d
[
1
]
=
new_mask_dims
.
d
[
2
];
return
ret
;
if
(
output_index
==
0
)
{
nvinfer1
::
DimsExprs
ret
=
x_dims
;
ret
.
d
[
1
]
=
new_mask_dims
.
d
[
2
];
return
ret
;
}
else
{
nvinfer1
::
DimsExprs
ret
;
ret
.
nbDims
=
2
;
ret
.
d
[
0
]
=
new_mask_dims
.
d
[
0
];
ret
.
d
[
1
]
=
new_mask_dims
.
d
[
2
];
return
ret
;
}
}
}
...
...
@@ -215,26 +268,53 @@ bool FusedTokenPrunePluginDynamic::supportsFormatCombination(
nb_inputs
+
nb_outputs
));
const
nvinfer1
::
PluginTensorDesc
&
in
=
in_out
[
pos
];
if
(
pos
==
0
)
{
if
(
with_fp16_
)
{
if
(
flag_varseqlen_
)
{
if
(
pos
==
0
)
{
if
(
with_fp16_
)
{
#ifdef TRT_PLUGIN_FP16_AVALIABLE
return
(
in
.
type
==
nvinfer1
::
DataType
::
kFLOAT
||
in
.
type
==
nvinfer1
::
DataType
::
kHALF
)
&&
(
in
.
format
==
nvinfer1
::
TensorFormat
::
kLINEAR
);
return
(
in
.
type
==
nvinfer1
::
DataType
::
kFLOAT
||
in
.
type
==
nvinfer1
::
DataType
::
kHALF
)
&&
(
in
.
format
==
nvinfer1
::
TensorFormat
::
kLINEAR
);
#else
return
(
in
.
type
==
nvinfer1
::
DataType
::
kFLOAT
)
&&
(
in
.
format
==
nvinfer1
::
TensorFormat
::
kLINEAR
);
return
(
in
.
type
==
nvinfer1
::
DataType
::
kFLOAT
)
&&
(
in
.
format
==
nvinfer1
::
TensorFormat
::
kLINEAR
);
#endif
}
else
{
return
(
in
.
type
==
nvinfer1
::
DataType
::
kFLOAT
)
&&
(
in
.
format
==
nvinfer1
::
TensorFormat
::
kLINEAR
);
}
}
else
if
(
pos
<=
3
||
pos
==
7
)
{
const
nvinfer1
::
PluginTensorDesc
&
prev
=
in_out
[
0
];
return
in
.
type
==
prev
.
type
&&
in
.
format
==
prev
.
format
;
}
else
if
(
pos
==
6
||
pos
==
11
)
{
// mask_id, mask_id_out
return
in
.
type
==
nvinfer1
::
DataType
::
kFLOAT
&&
in
.
format
==
nvinfer1
::
TensorFormat
::
kLINEAR
;
}
else
{
return
(
in
.
type
==
nvinfer1
::
DataType
::
kFLOAT
)
&&
(
in
.
format
==
nvinfer1
::
TensorFormat
::
kLINEAR
)
;
return
in
.
type
==
nvinfer1
::
DataType
::
kINT32
&&
in
.
format
==
nvinfer1
::
TensorFormat
::
kLINEAR
;
}
}
else
if
(
pos
<=
4
)
{
const
nvinfer1
::
PluginTensorDesc
&
prev
=
in_out
[
pos
-
1
];
return
in
.
type
==
prev
.
type
&&
in
.
format
==
prev
.
format
;
}
else
{
const
nvinfer1
::
PluginTensorDesc
&
prev
=
in_out
[
pos
-
1
];
return
in
.
type
==
nvinfer1
::
DataType
::
kINT32
&&
in
.
format
==
prev
.
format
;
if
(
pos
==
0
)
{
if
(
with_fp16_
)
{
#ifdef TRT_PLUGIN_FP16_AVALIABLE
return
(
in
.
type
==
nvinfer1
::
DataType
::
kFLOAT
||
in
.
type
==
nvinfer1
::
DataType
::
kHALF
)
&&
(
in
.
format
==
nvinfer1
::
TensorFormat
::
kLINEAR
);
#else
return
(
in
.
type
==
nvinfer1
::
DataType
::
kFLOAT
)
&&
(
in
.
format
==
nvinfer1
::
TensorFormat
::
kLINEAR
);
#endif
}
else
{
return
(
in
.
type
==
nvinfer1
::
DataType
::
kFLOAT
)
&&
(
in
.
format
==
nvinfer1
::
TensorFormat
::
kLINEAR
);
}
}
else
if
(
pos
<=
4
)
{
const
nvinfer1
::
PluginTensorDesc
&
prev
=
in_out
[
0
];
return
in
.
type
==
prev
.
type
&&
in
.
format
==
prev
.
format
;
}
else
{
return
in
.
type
==
nvinfer1
::
DataType
::
kINT32
&&
in
.
format
==
nvinfer1
::
TensorFormat
::
kLINEAR
;
}
}
}
...
...
@@ -242,10 +322,22 @@ nvinfer1::DataType FusedTokenPrunePluginDynamic::getOutputDataType(
int
index
,
const
nvinfer1
::
DataType
*
input_types
,
int
nb_inputs
)
const
TRT_NOEXCEPT
{
if
(
index
==
0
)
{
return
input_types
[
1
];
}
else
if
(
index
==
1
)
{
return
nvinfer1
::
DataType
::
kINT32
;
if
(
flag_varseqlen_
)
{
if
(
index
==
0
)
{
return
input_types
[
1
];
}
else
if
(
index
==
4
)
{
return
nvinfer1
::
DataType
::
kFLOAT
;
}
else
{
// index = 1,2,3
return
nvinfer1
::
DataType
::
kINT32
;
}
}
else
{
if
(
index
==
0
)
{
return
input_types
[
1
];
}
else
{
// index = 1
return
nvinfer1
::
DataType
::
kINT32
;
}
}
}
...
...
@@ -273,15 +365,16 @@ size_t FusedTokenPrunePluginDynamic::getWorkspaceSize(
}
template
<
typename
T
>
int
FusedTokenPrunePluginDynamic
::
enqueueImpl
(
const
nvinfer1
::
PluginTensorDesc
*
input_desc
,
const
nvinfer1
::
PluginTensorDesc
*
output_desc
,
const
void
*
const
*
inputs
,
void
*
const
*
outputs
,
void
*
workspace_ptr
,
cudaStream_t
stream
,
int
device_id
,
T
max_value
)
{
inline
void
enqueueImpl
(
const
nvinfer1
::
PluginTensorDesc
*
input_desc
,
const
nvinfer1
::
PluginTensorDesc
*
output_desc
,
const
void
*
const
*
inputs
,
void
*
const
*
outputs
,
void
*
workspace_ptr
,
cudaStream_t
stream
,
int
device_id
,
T
max_value
,
bool
keep_first_token_
,
bool
keep_order_
)
{
// Dims
auto
attn_dims
=
input_desc
[
0
].
dims
;
auto
x_dims
=
input_desc
[
1
].
dims
;
...
...
@@ -462,8 +555,14 @@ int FusedTokenPrunePluginDynamic::enqueueImpl(
slimmed_x_len
,
c
);
}
}
return
cudaGetLastError
()
!=
cudaSuccess
;
inline
void
pos_id_prune
(
const
int32_t
*
input
,
int32_t
*
output
,
int
pos_nums
,
float
scale
,
cudaStream_t
stream
)
{
pos_id_prune_kernel
<<<
1
,
1
,
0
,
stream
>>>
(
input
,
output
,
pos_nums
,
scale
);
}
int
FusedTokenPrunePluginDynamic
::
enqueue
(
...
...
@@ -485,14 +584,16 @@ int FusedTokenPrunePluginDynamic::enqueue(
float
max
=
std
::
numeric_limits
<
float
>::
max
();
return
enqueueImpl
<
float
>
(
input_desc
,
output_desc
,
inputs
,
outputs
,
workspace
,
stream
,
device_id
,
max
);
enqueueImpl
<
float
>
(
input_desc
,
output_desc
,
inputs
,
outputs
,
workspace
,
stream
,
device_id
,
max
,
keep_first_token_
,
keep_order_
);
}
else
if
(
input_type
==
nvinfer1
::
DataType
::
kHALF
)
{
#ifdef TRT_PLUGIN_FP16_AVALIABLE
...
...
@@ -500,14 +601,16 @@ int FusedTokenPrunePluginDynamic::enqueue(
half
max
=
65504.0
;
return
enqueueImpl
<
half
>
(
input_desc
,
output_desc
,
inputs
,
outputs
,
workspace
,
stream
,
device_id
,
max
);
enqueueImpl
<
half
>
(
input_desc
,
output_desc
,
inputs
,
outputs
,
workspace
,
stream
,
device_id
,
max
,
keep_first_token_
,
keep_order_
);
#else
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
...
...
@@ -522,6 +625,17 @@ int FusedTokenPrunePluginDynamic::enqueue(
platform
::
errors
::
Fatal
(
"The FusedTokenPrune TRT Plugin's input type "
"should be float or half."
));
}
if
(
flag_varseqlen_
)
{
float
scale
=
static_cast
<
float
>
(
input_desc
[
3
].
dims
.
d
[
2
])
/
input_desc
[
6
].
dims
.
d
[
1
];
// outputs[2]=inputs[4]; // word_id
const
int32_t
*
inputs5
=
static_cast
<
const
int32_t
*>
(
inputs
[
5
]);
int32_t
*
outputs3
=
static_cast
<
int32_t
*>
(
outputs
[
3
]);
pos_id_prune
(
inputs5
,
outputs3
,
input_desc
[
5
].
dims
.
d
[
0
],
scale
,
stream
);
// pos_id
// outputs[4]=inputs[6]; // new_mask
}
return
cudaGetLastError
()
!=
cudaSuccess
;
}
#endif
...
...
paddle/fluid/inference/tensorrt/plugin/fused_token_prune_op_plugin.h
浏览文件 @
24187fcb
...
...
@@ -28,34 +28,45 @@ class FusedTokenPrunePluginDynamic : public DynamicPluginTensorRT {
public:
explicit
FusedTokenPrunePluginDynamic
(
bool
with_fp16
,
bool
keep_first_token
,
bool
keep_order
)
:
keep_first_token_
(
keep_first_token
),
keep_order_
(
keep_order
)
{
bool
keep_order
,
bool
flag_varseqlen
)
:
keep_first_token_
(
keep_first_token
),
keep_order_
(
keep_order
),
flag_varseqlen_
(
flag_varseqlen
)
{
with_fp16_
=
with_fp16
;
}
FusedTokenPrunePluginDynamic
(
void
const
*
serial_data
,
size_t
serial_length
)
{
DeserializeValue
(
&
serial_data
,
&
serial_length
,
&
with_fp16_
);
DeserializeValue
(
&
serial_data
,
&
serial_length
,
&
keep_first_token_
);
DeserializeValue
(
&
serial_data
,
&
serial_length
,
&
keep_order_
);
DeserializeValue
(
&
serial_data
,
&
serial_length
,
&
flag_varseqlen_
);
}
nvinfer1
::
IPluginV2DynamicExt
*
clone
()
const
TRT_NOEXCEPT
override
{
return
new
FusedTokenPrunePluginDynamic
(
with_fp16_
,
keep_first_token_
,
keep_order_
);
with_fp16_
,
keep_first_token_
,
keep_order_
,
flag_varseqlen_
);
}
const
char
*
getPluginType
()
const
TRT_NOEXCEPT
override
{
return
"fused_token_prune_plugin_dynamic"
;
}
int
getNbOutputs
()
const
TRT_NOEXCEPT
override
{
return
2
;
}
int
getNbOutputs
()
const
TRT_NOEXCEPT
override
{
if
(
flag_varseqlen_
)
{
return
5
;
}
else
{
return
2
;
}
}
int
initialize
()
TRT_NOEXCEPT
override
{
return
0
;
}
size_t
getSerializationSize
()
const
TRT_NOEXCEPT
override
{
return
SerializedSize
(
with_fp16_
)
+
SerializedSize
(
keep_first_token_
)
+
SerializedSize
(
keep_order_
);
SerializedSize
(
keep_order_
)
+
SerializedSize
(
flag_varseqlen_
)
;
}
void
serialize
(
void
*
buffer
)
const
TRT_NOEXCEPT
override
{
SerializeValue
(
&
buffer
,
with_fp16_
);
SerializeValue
(
&
buffer
,
keep_first_token_
);
SerializeValue
(
&
buffer
,
keep_order_
);
SerializeValue
(
&
buffer
,
flag_varseqlen_
);
}
nvinfer1
::
DimsExprs
getOutputDimensions
(
...
...
@@ -95,17 +106,9 @@ class FusedTokenPrunePluginDynamic : public DynamicPluginTensorRT {
void
destroy
()
TRT_NOEXCEPT
override
{
delete
this
;
}
private:
template
<
typename
T
>
int
enqueueImpl
(
const
nvinfer1
::
PluginTensorDesc
*
input_desc
,
const
nvinfer1
::
PluginTensorDesc
*
output_desc
,
const
void
*
const
*
inputs
,
void
*
const
*
outputs
,
void
*
workspace
,
cudaStream_t
stream
,
int
device_id
,
T
max_value
);
bool
keep_first_token_
;
bool
keep_order_
;
bool
flag_varseqlen_
;
};
class
FusedTokenPrunePluginDynamicCreator
:
public
nvinfer1
::
IPluginCreator
{
...
...
paddle/fluid/inference/tensorrt/plugin/recover_padding_plugin.cu
浏览文件 @
24187fcb
...
...
@@ -72,12 +72,16 @@ bool RecoverPaddingPlugin::supportsFormatCombination(
platform
::
errors
::
InvalidArgument
(
"Must have 1 output, "
"but got %d output(s). "
,
nbOutputs
));
if
(
pos
==
1
)
{
// PosId
, MaxSeqlen
if
(
pos
==
1
)
{
// PosId
return
inOut
[
pos
].
type
==
nvinfer1
::
DataType
::
kINT32
&&
inOut
[
pos
].
format
==
nvinfer1
::
TensorFormat
::
kLINEAR
;
}
else
if
(
pos
==
2
)
{
// mask_id
return
inOut
[
pos
].
type
==
nvinfer1
::
DataType
::
kFLOAT
&&
inOut
[
pos
].
format
==
nvinfer1
::
TensorFormat
::
kLINEAR
;
}
else
{
return
inOut
[
pos
].
type
==
nvinfer1
::
DataType
::
kFLOAT
&&
inOut
[
pos
].
format
==
nvinfer1
::
TensorFormat
::
kLINEAR
;
}
return
inOut
[
pos
].
type
==
nvinfer1
::
DataType
::
kFLOAT
&&
inOut
[
pos
].
format
==
nvinfer1
::
TensorFormat
::
kLINEAR
;
// return (inOut[pos].type == nvinfer1::DataType::kFLOAT && inOut[pos].format
// == nvinfer1::TensorFormat::kLINEAR)||
// (inOut[pos].type == nvinfer1::DataType::kHALF && inOut[pos].format ==
...
...
paddle/fluid/inference/tensorrt/plugin/remove_padding_plugin.cu
浏览文件 @
24187fcb
...
...
@@ -72,9 +72,10 @@ bool RemovePaddingPlugin::supportsFormatCombination(
if
(
pos
==
1
||
pos
==
2
)
{
// pos_id, work_id
return
inOut
[
pos
].
type
==
nvinfer1
::
DataType
::
kINT32
&&
inOut
[
pos
].
format
==
nvinfer1
::
TensorFormat
::
kLINEAR
;
}
else
{
return
inOut
[
pos
].
type
==
nvinfer1
::
DataType
::
kFLOAT
&&
inOut
[
pos
].
format
==
nvinfer1
::
TensorFormat
::
kLINEAR
;
}
return
inOut
[
pos
].
type
==
nvinfer1
::
DataType
::
kFLOAT
&&
inOut
[
pos
].
format
==
nvinfer1
::
TensorFormat
::
kLINEAR
;
// return (inOut[pos].type == nvinfer1::DataType::kFLOAT && inOut[pos].format
// == nvinfer1::TensorFormat::kLINEAR)||
// (inOut[pos].type == nvinfer1::DataType::kHALF && inOut[pos].format ==
...
...
paddle/fluid/inference/tensorrt/plugin/test_fused_token_prune_plugin.cc
浏览文件 @
24187fcb
...
...
@@ -22,8 +22,10 @@ namespace tensorrt {
namespace
plugin
{
TEST
(
fused_token_prune_op_plugin
,
test_plugin
)
{
FusedTokenPrunePluginDynamic
plugin
(
true
,
/*keep_first_token*/
false
,
/*keep_order*/
true
);
FusedTokenPrunePluginDynamic
plugin
(
true
,
/*keep_first_token*/
false
,
/*keep_order*/
true
,
/*flag_varseqlen*/
false
);
plugin
.
configurePlugin
(
nullptr
,
4
,
nullptr
,
2
);
plugin
.
initialize
();
plugin
.
getPluginType
();
...
...
paddle/fluid/inference/tensorrt/test_dynamic_engine.cc
浏览文件 @
24187fcb
...
...
@@ -293,8 +293,10 @@ TEST_F(TensorRTDynamicTestFusedTokenPrune, test_fused_token_prune) {
auto
*
new_mask
=
engine_
->
DeclareInput
(
"new_mask"
,
nvinfer1
::
DataType
::
kHALF
,
nvinfer1
::
Dims4
{
-
1
,
1
,
2
,
2
});
plugin
::
FusedTokenPrunePluginDynamic
*
plugin
=
new
plugin
::
FusedTokenPrunePluginDynamic
(
true
,
/*keep_first_token*/
false
,
/*keep_order*/
true
);
new
plugin
::
FusedTokenPrunePluginDynamic
(
true
,
/*keep_first_token*/
false
,
/*keep_order*/
true
,
/*flag_varseqlen*/
false
);
std
::
vector
<
nvinfer1
::
ITensor
*>
itensors
=
{
attn
,
x
,
mask
,
new_mask
};
auto
*
layer
=
engine_
->
AddDynamicPlugin
(
itensors
.
data
(),
4
,
plugin
);
PADDLE_ENFORCE_NOT_NULL
(
layer
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录