engine.h 16.8 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <NvInfer.h>
18
#include <map>
Y
Yan Chunwei 已提交
19
#include <memory>
20
#include <mutex>  // NOLINT
21
#include <string>
Y
Yan Chunwei 已提交
22
#include <unordered_map>
23
#include <unordered_set>
24
#include <utility>
25
#include <vector>
W
wanghuancoder 已提交
26

N
nhzlx 已提交
27
#include "paddle/fluid/framework/tensor.h"
28
#include "paddle/fluid/framework/tensor_util.h"
Z
Zhaolong Xing 已提交
29
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
Y
Yan Chunwei 已提交
30 31
#include "paddle/fluid/inference/engine.h"
#include "paddle/fluid/inference/tensorrt/helper.h"
32
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"
N
nhzlx 已提交
33
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin_factory.h"
N
nhzlx 已提交
34
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
35
#include "paddle/fluid/inference/utils/singleton.h"
Y
Yan Chunwei 已提交
36

W
wanghuancoder 已提交
37 38 39 40 41 42
namespace paddle {
namespace framework {
class Tensor;
}  // namespace framework
}  // namespace paddle

Y
Yan Chunwei 已提交
43 44 45 46
namespace paddle {
namespace inference {
namespace tensorrt {

W
wanghuancoder 已提交
47 48 49 50
namespace plugin {
class PluginTensorRT;
}  // namespace plugin

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
using FluidDT = framework::proto::VarType_Type;
using TRT_DT = nvinfer1::DataType;

namespace {  // NOLINT

TRT_DT FluidDataType2TRT(FluidDT type) {
  switch (type) {
    case FluidDT::VarType_Type_FP32:
      return TRT_DT::kFLOAT;
    case FluidDT::VarType_Type_INT32:
      return TRT_DT::kINT32;
    default:
      return TRT_DT::kINT32;
  }
  PADDLE_THROW(platform::errors::InvalidArgument(
      "unknown fluid datatype in TRT op converter"));
  return TRT_DT::kINT32;
}

// The T can be int32 or int64 type.
template <typename T>
nvinfer1::Dims Vec2TRT_Dims(const std::vector<T>& shape, std::string input,
                            bool with_dynamic_shape = false) {
74
  PADDLE_ENFORCE_GT(shape.size(), 0UL,
75
                    platform::errors::InvalidArgument(
76
                        "TensorRT's tensor input requires at least 1 "
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
                        "dimensions, but input %s has %d dims.",
                        input, shape.size()));
  PADDLE_ENFORCE_LE(shape.size(), 4UL,
                    platform::errors::InvalidArgument(
                        "TensorRT's tensor input requires at most 4 "
                        "dimensions, but input %s has %d dims.",
                        input, shape.size()));
  if (!with_dynamic_shape) {
    if (shape.size() == 4UL) {
      return nvinfer1::DimsCHW(shape[1], shape[2], shape[3]);
    } else if (shape.size() == 3UL) {
      return nvinfer1::Dims2(shape[1], shape[2]);
    }
    return nvinfer1::DimsCHW(shape[1], 1, 1);
  } else {
    if (shape.size() == 4UL) {
      return nvinfer1::DimsNCHW(shape[0], shape[1], shape[2], shape[3]);
    } else if (shape.size() == 3UL) {
      return nvinfer1::Dims3(shape[0], shape[1], shape[2]);
    }
97 98 99 100 101 102
    nvinfer1::Dims dims;
    dims.nbDims = shape.size();
    for (size_t i = 0; i < shape.size(); i++) {
      dims.d[i] = shape[i];
    }
    return dims;
103 104 105 106
  }
}
}  // NOLINT

N
nhzlx 已提交
107
class TRTInt8Calibrator;
W
wanghuancoder 已提交
108

Y
Yan Chunwei 已提交
109 110 111 112
/*
 * TensorRT Engine.
 *
 * There are two alternative ways to use it, one is  to build from a paddle
113
 * protobuf model, another way is to manually construct the network.
Y
Yan Chunwei 已提交
114
 */
115 116
class TensorRTEngine {
  using DescType = ::paddle::framework::proto::BlockDesc;
117
  using ShapeMapType = std::map<std::string, std::vector<int>>;
118

Y
Yan Chunwei 已提交
119 120 121 122
 public:
  // Weight is model parameter.
  class Weight {
   public:
123
    Weight() = default;
124
    Weight(nvinfer1::DataType dtype, void* value, size_t num_elem) {
Y
Yan Chunwei 已提交
125 126 127 128
      w_.type = dtype;
      w_.values = value;
      w_.count = num_elem;
    }
129
    const nvinfer1::Weights& get() { return w_; }
Y
Yan Chunwei 已提交
130

131 132
    std::vector<int64_t> dims;

Y
Yan Chunwei 已提交
133 134 135 136
   private:
    nvinfer1::Weights w_;
  };

Z
Zhaolong Xing 已提交
137 138 139 140
  TensorRTEngine(
      int max_batch, int max_workspace,
      AnalysisConfig::Precision precision = AnalysisConfig::Precision::kFloat32,
      TRTInt8Calibrator* calibrator = nullptr, int device_id = 0,
141 142 143
      const ShapeMapType min_input_shape = {},
      const ShapeMapType max_input_shape = {},
      const ShapeMapType optim_input_shape = {},
144
      bool disable_trt_plugin_fp16 = false,
Z
Zhaolong Xing 已提交
145
      nvinfer1::ILogger& logger = NaiveLogger::Global())
Y
Yan Chunwei 已提交
146 147
      : max_batch_(max_batch),
        max_workspace_(max_workspace),
Z
Zhaolong Xing 已提交
148
        precision_(precision),
N
nhzlx 已提交
149
        calibrator_(calibrator),
N
nhzlx 已提交
150
        device_id_(device_id),
151 152 153
        min_input_shape_(min_input_shape),
        max_input_shape_(max_input_shape),
        optim_input_shape_(optim_input_shape),
154
        disable_trt_plugin_fp16_(disable_trt_plugin_fp16),
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
        logger_(logger) {
    if (min_input_shape_.size() != 0 && max_input_shape_.size() != 0 &&
        optim_input_shape_.size() != 0) {
      PADDLE_ENFORCE_EQ(
          min_input_shape_.size(), max_input_shape_.size(),
          platform::errors::InvalidArgument(
              "The min_input_shape_'s size(%d) should be equal to the "
              "size(%d) of max_input_shape_",
              min_input_shape_.size(), max_input_shape_.size()));
      PADDLE_ENFORCE_EQ(
          min_input_shape_.size(), optim_input_shape_.size(),
          platform::errors::InvalidArgument(
              "The min_input_shape_'s size(%d) should be equal to the "
              "size(%d) of optim_input_shape_",
              min_input_shape_.size(), optim_input_shape_.size()));
#if IS_TRT_VERSION_GE(6000)
      with_dynamic_shape_ = true;
#else
      LOG(WARNING) << "Using dynamic shape of TRT need ensure that the TRT "
                      "version should be at least 6.";
#endif
    }
177
    dy::initLibNvInferPlugins(&logger, "");
178
  }
Y
Yan Chunwei 已提交
179

180
  ~TensorRTEngine() {}
Y
Yan Chunwei 已提交
181

182
  // Add an input and set its name, data type and dimension.
Y
Yan Chunwei 已提交
183 184 185 186 187 188 189
  nvinfer1::ITensor* DeclareInput(const std::string& name,
                                  nvinfer1::DataType dtype,
                                  const nvinfer1::Dims& dim);
  // Set the offset-th output from a layer as the network's output, and set its
  // name.
  void DeclareOutput(const nvinfer1::ILayer* layer, int offset,
                     const std::string& name);
L
Luo Tao 已提交
190 191
  // Set the itensor_map_[name] as the network's output, and set its name.
  void DeclareOutput(const std::string& name);
Y
Yan Chunwei 已提交
192

L
Luo Tao 已提交
193 194 195
  void SetITensor(const std::string& name, nvinfer1::ITensor* tensor);
  // Get an ITensor called name.
  nvinfer1::ITensor* GetITensor(const std::string& name);
Y
Yan Chunwei 已提交
196 197

  nvinfer1::ICudaEngine* engine() { return infer_engine_.get(); }
198 199 200 201 202 203 204 205 206 207 208 209
  nvinfer1::IExecutionContext* context() {
    std::unique_lock<std::mutex> lock(mutex_);
    const std::thread::id tid = std::this_thread::get_id();
    if (infer_context_.find(tid) == infer_context_.end()) {
      PADDLE_ENFORCE_NOT_NULL(
          infer_engine_,
          platform::errors::InvalidArgument(
              "You should build engine first and then set the context."));
      infer_context_[tid].reset(infer_engine_->createExecutionContext());
    }
    return infer_context_[tid].get();
  }
N
nhzlx 已提交
210 211

  nvinfer1::IHostMemory* Serialize() {
212 213 214 215
    PADDLE_ENFORCE_NOT_NULL(
        infer_engine_,
        platform::errors::InvalidArgument(
            "The TensorRT engine must be built first before serialization"));
N
nhzlx 已提交
216 217 218 219 220
    ihost_memory_.reset(infer_engine_->serialize());
    return ihost_memory_.get();
  }

  void Deserialize(const std::string& engine_serialized_data) {
N
nhzlx 已提交
221
    freshDeviceId();
N
nhzlx 已提交
222
    infer_ptr<nvinfer1::IRuntime> runtime(createInferRuntime(&logger_));
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245

    if (use_dla_) {
      if (precision_ != AnalysisConfig::Precision::kInt8 &&
          precision_ != AnalysisConfig::Precision::kHalf) {
        LOG(WARNING) << "TensorRT DLA must be used with int8 or fp16, but you "
                        "set float32, so DLA is not used.";
      } else if (runtime->getNbDLACores() == 0) {
        LOG(WARNING)
            << "TensorRT DLA is set by config, but your device does not have "
               "DLA, so DLA is not used.";
      } else {
        if (dla_core_ < 0 || dla_core_ >= runtime->getNbDLACores()) {
          dla_core_ = 0;
          LOG(WARNING) << "Invalid DLACore, must be 0 < DLACore < "
                       << runtime->getNbDLACores() << ", but got " << dla_core_
                       << ", so use use 0 as default.";
        }
        runtime->setDLACore(dla_core_);
        LOG(INFO) << "TensorRT DLA enabled in Deserialize(), DLACore "
                  << dla_core_;
      }
    }

P
Pei Yang 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
    if (with_dynamic_shape_) {
#if IS_TRT_VERSION_GE(6000)
      infer_engine_.reset(runtime->deserializeCudaEngine(
          engine_serialized_data.c_str(), engine_serialized_data.size(),
          nullptr));
#else

      PADDLE_THROW(platform::errors::PreconditionNotMet(
          "To enable dynamic shape support, the TensorRT version should be "
          "greater than 6.0.0"));

#endif
    } else {
      infer_engine_.reset(runtime->deserializeCudaEngine(
          engine_serialized_data.c_str(), engine_serialized_data.size(),
          &inference::Singleton<plugin::PluginFactoryTensorRT>::Global()));
    }
263 264 265 266 267 268 269 270
    PADDLE_ENFORCE_NOT_NULL(
        infer_engine_,
        platform::errors::Fatal(
            "Building TRT cuda engine failed when deserializing engine info. "
            "Please check:\n1. Your TRT serialization is generated and loaded "
            "on the same GPU architecture;\n2. The Paddle Inference version of "
            "generating serialization file and doing inference are "
            "consistent."));
N
nhzlx 已提交
271 272
  }

273 274
  void SetRuntimeBatch(size_t batch_size);
  int GetRuntimeBatch();
275 276 277 278 279 280 281

  bool WithFp16() {
    bool enable_fp16 = (precision_ == AnalysisConfig::Precision::kHalf);
    bool support_fp16 = infer_builder_->platformHasFastFp16();
    return enable_fp16 && support_fp16;
  }

N
nhzlx 已提交
282
  int GetDeviceId() { return device_id_; }
N
nhzlx 已提交
283
  nvinfer1::IPluginLayer* AddPlugin(nvinfer1::ITensor* const* inputs,
284
                                    int num_inputs, plugin::PluginTensorRT*);
285 286 287 288 289 290 291
  void SetTensorDynamicRange(nvinfer1::ITensor* tensor, float range) {
    quant_dynamic_range_[tensor] = range;
  }

  float* GetWeightCPUData(const std::string& name,
                          framework::Tensor* weight_tensor, bool enable_int8,
                          const std::vector<float>& scale = {});
N
nhzlx 已提交
292 293 294 295 296 297 298 299

  // A pointer to CPU memory is needed of the TRT weight.
  // Before TRT runs, fluid loads weight into GPU storage.
  // so we need to copy the weights from GPU to CPU in our op converter.
  // We use a map to store these weights for the weight memory is not released
  // in advance, which affecting the construction of TRT Op.
  std::unordered_map<std::string /*name*/, std::unique_ptr<framework::Tensor>>
      weight_map;
Y
Yan Chunwei 已提交
300

301 302 303 304 305 306
  // When setting weight_map, a self-increasing suffix is needed for the names
  // so as to avoid repeatedly setting weights with the same name.
  void SetWeights(std::string w_name,
                  std::unique_ptr<framework::Tensor> w_tensor) {
    static int suffix_counter = 0;
    std::string suffix = std::to_string(suffix_counter);
P
Pei Yang 已提交
307 308
    std::string splitter = "__";
    weight_map[w_name + splitter + suffix] = std::move(w_tensor);
309 310 311
    suffix_counter += 1;
  }

312
  void SetUseOSS(bool use_oss) { use_oss_ = use_oss; }
313 314
  void SetUseDLA(bool use_dla) { use_dla_ = use_dla; }
  void SetDLACore(int dla_core) { dla_core_ = dla_core; }
315 316
  void SetWithErnie(bool with_ernie) { with_ernie_ = with_ernie; }

317 318 319 320 321 322
  void ClearWeights() {
    for (auto& weight_pair : weight_map) {
      weight_pair.second.reset(nullptr);
    }
  }

323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
  // NOTE: The func bellow was modified to adapt the dynamic shape.
  // Initialize the inference network, so that TensorRT layers can add to this
  // network.
  void InitNetwork();
  // After finishing adding ops, freeze this network and creates the execution
  // environment.
  void FreezeNetwork();
  void Execute(int batch_size, std::vector<void*>* buffers,
               cudaStream_t stream = nullptr);

  nvinfer1::INetworkDefinition* network() {
    if (with_dynamic_shape_) {
      return infer_networkv2_.get();
    } else {
      return infer_network_.get();
    }
  }

  ShapeMapType min_input_shape() { return min_input_shape_; }
  ShapeMapType max_input_shape() { return max_input_shape_; }
  ShapeMapType optim_input_shape() { return optim_input_shape_; }
344 345
  bool use_oss() { return use_oss_; }
  bool with_ernie() { return with_ernie_; }
346
  bool disable_trt_plugin_fp16() { return disable_trt_plugin_fp16_; }
347 348
  bool with_dynamic_shape() { return with_dynamic_shape_; }

349 350 351 352 353 354 355 356 357
#if IS_TRT_VERSION_GE(6000)
  nvinfer1::IPluginV2Layer* AddPluginV2(nvinfer1::ITensor* const* inputs,
                                        int num_inputs,
                                        plugin::DynamicPluginTensorRT* plugin) {
    owned_pluginv2_.emplace_back(plugin);
    return network()->addPluginV2(inputs, num_inputs, *plugin);
  }
#endif

Y
Yan Chunwei 已提交
358
 private:
N
nhzlx 已提交
359 360 361 362 363
  // Each ICudaEngine object is bound to a specific GPU when it is instantiated,
  // ensure that the thread is associated with the correct device by calling
  // freshDeviceId().
  void freshDeviceId();

Y
Yan Chunwei 已提交
364 365
  // the max batch size
  int max_batch_;
366 367
  // the runtime batch size
  static int runtime_batch_;
Y
Yan Chunwei 已提交
368 369
  // the max memory size the engine uses
  int max_workspace_;
370

Z
Zhaolong Xing 已提交
371
  AnalysisConfig::Precision precision_;
N
nhzlx 已提交
372 373 374
  TRTInt8Calibrator* calibrator_;
  // batch size of the current data, will be updated each Executation.
  int batch_size_{-1};
N
nhzlx 已提交
375

N
nhzlx 已提交
376
  int device_id_;
377 378 379
  ShapeMapType min_input_shape_;
  ShapeMapType max_input_shape_;
  ShapeMapType optim_input_shape_;
380
  bool disable_trt_plugin_fp16_{false};
381
  bool use_oss_{false};
382 383
  bool use_dla_{false};
  int dla_core_{0};
384
  bool with_ernie_{false};
Y
Yan Chunwei 已提交
385 386 387
  nvinfer1::ILogger& logger_;

  // max data size for the buffers.
L
Luo Tao 已提交
388 389
  std::unordered_map<std::string /*name*/, nvinfer1::ITensor* /*ITensor*/>
      itensor_map_;
390

391
  std::vector<std::unique_ptr<plugin::PluginTensorRT>> owned_plugin_;
Y
Yan Chunwei 已提交
392 393 394 395

  // TensorRT related internal members
  template <typename T>
  struct Destroyer {
396 397 398 399 400
    void operator()(T* x) {
      if (x) {
        x->destroy();
      }
    }
Y
Yan Chunwei 已提交
401 402 403 404 405 406
  };
  template <typename T>
  using infer_ptr = std::unique_ptr<T, Destroyer<T>>;
  infer_ptr<nvinfer1::IBuilder> infer_builder_;
  infer_ptr<nvinfer1::INetworkDefinition> infer_network_;
  infer_ptr<nvinfer1::ICudaEngine> infer_engine_;
407 408
  std::unordered_map<std::thread::id, infer_ptr<nvinfer1::IExecutionContext>>
      infer_context_;
N
nhzlx 已提交
409
  infer_ptr<nvinfer1::IHostMemory> ihost_memory_;
410
  std::unordered_map<nvinfer1::ITensor*, float> quant_dynamic_range_;
411 412 413 414 415 416

  // For dynamic shape
  bool with_dynamic_shape_{false};
  infer_ptr<nvinfer1::INetworkDefinition> infer_networkv2_;
#if IS_TRT_VERSION_GE(6000)
  infer_ptr<nvinfer1::IBuilderConfig> infer_builder_config_;
417
  nvinfer1::IOptimizationProfile* optim_profile_;
418
  std::vector<std::unique_ptr<plugin::DynamicPluginTensorRT>> owned_pluginv2_;
419
#endif
420
  std::mutex mutex_;
Y
Yan Chunwei 已提交
421 422
};  // class TensorRTEngine

423
// Add a layer__ into engine__ with args ARGS.
Y
Yan Chunwei 已提交
424 425 426 427 428 429 430 431 432
// For example:
//
// Reference
// https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#charRNN_define_network
//
// will add a fully connected layer into the engine.
// TensorRT has too many layers, so that is not wise to add member functions for
// them, and an macro like this is more extensible when underlying TensorRT
// library add new layer supports.
433 434
#define TRT_ENGINE_ADD_LAYER(engine__, layer__, ...) \
  engine__->network()->add##layer__(__VA_ARGS__);
Y
Yan Chunwei 已提交
435

436 437 438 439 440 441 442 443 444 445 446 447
class TRTEngineManager {
 public:
  bool Empty() const { return engines_.size() == 0; }
  bool Has(const std::string& name) const {
    if (engines_.count(name) == 0) return false;
    return engines_.at(name).get() != nullptr;
  }

  TensorRTEngine* Get(const std::string& name) const {
    return engines_.at(name).get();
  }

Z
Zhaolong Xing 已提交
448 449 450 451
  TensorRTEngine* Create(
      std::string name, int max_batch, int max_workspace,
      AnalysisConfig::Precision precision = AnalysisConfig::Precision::kFloat32,
      TRTInt8Calibrator* calibrator = nullptr, int device_id = 0,
452 453 454
      const std::map<std::string, std::vector<int>> min_input_shape = {},
      const std::map<std::string, std::vector<int>> max_input_shape = {},
      const std::map<std::string, std::vector<int>> optim_input_shape = {},
455
      bool disable_trt_plugin_fp16 = false,
Z
Zhaolong Xing 已提交
456
      nvinfer1::ILogger& logger = NaiveLogger::Global()) {
457 458 459 460
    auto* p =
        new TensorRTEngine(max_batch, max_workspace, precision, calibrator,
                           device_id, min_input_shape, max_input_shape,
                           optim_input_shape, disable_trt_plugin_fp16, logger);
461 462 463 464 465 466 467 468 469 470 471 472 473 474
    engines_[name].reset(p);
    return p;
  }

  void DeleteAll() {
    for (auto& item : engines_) {
      item.second.reset(nullptr);
    }
  }

 private:
  std::unordered_map<std::string, std::unique_ptr<TensorRTEngine>> engines_;
};

Y
Yan Chunwei 已提交
475 476 477
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle