engine.h 29.9 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <NvInfer.h>
18

19
#include <map>
Y
Yan Chunwei 已提交
20
#include <memory>
21
#include <mutex>  // NOLINT
22
#include <string>
Y
Yan Chunwei 已提交
23
#include <unordered_map>
24
#include <unordered_set>
25
#include <utility>
26
#include <vector>
27 28
#include "NvInferRuntimeCommon.h"
#include "paddle/fluid/framework/lod_tensor.h"
29
#include "paddle/fluid/framework/scope.h"
N
nhzlx 已提交
30
#include "paddle/fluid/framework/tensor.h"
31
#include "paddle/fluid/framework/tensor_util.h"
Z
Zhaolong Xing 已提交
32
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
Y
Yan Chunwei 已提交
33 34
#include "paddle/fluid/inference/engine.h"
#include "paddle/fluid/inference/tensorrt/helper.h"
35
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"
N
nhzlx 已提交
36
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
37
#include "paddle/fluid/inference/utils/singleton.h"
38
#include "paddle/fluid/platform/enforce.h"
39
#include "paddle/phi/common/data_type.h"
40
#include "paddle/utils/any.h"
Y
Yan Chunwei 已提交
41 42 43 44 45

namespace paddle {
namespace inference {
namespace tensorrt {

W
wanghuancoder 已提交
46 47 48 49
namespace plugin {
class PluginTensorRT;
}  // namespace plugin

50 51 52 53 54 55 56 57 58 59 60
using FluidDT = framework::proto::VarType_Type;
using TRT_DT = nvinfer1::DataType;

namespace {  // NOLINT

TRT_DT FluidDataType2TRT(FluidDT type) {
  switch (type) {
    case FluidDT::VarType_Type_FP32:
      return TRT_DT::kFLOAT;
    case FluidDT::VarType_Type_INT32:
      return TRT_DT::kINT32;
W
wenbin 已提交
61 62
    case FluidDT::VarType_Type_FP16:
      return TRT_DT::kHALF;
63 64 65 66 67 68 69 70 71 72
    default:
      return TRT_DT::kINT32;
  }
  PADDLE_THROW(platform::errors::InvalidArgument(
      "unknown fluid datatype in TRT op converter"));
  return TRT_DT::kINT32;
}

// The T can be int32 or int64 type.
template <typename T>
73 74
nvinfer1::Dims Vec2TRT_Dims(const std::vector<T>& shape,
                            std::string input,
75
                            bool with_dynamic_shape = false) {
76 77
  PADDLE_ENFORCE_GT(shape.size(),
                    0UL,
78
                    platform::errors::InvalidArgument(
79
                        "TensorRT's tensor input requires at least 1 "
80
                        "dimensions, but input %s has %d dims.",
81 82
                        input,
                        shape.size()));
W
wenbin 已提交
83

84 85 86 87 88 89 90 91 92 93 94 95 96
  auto ShapeStr = [](const std::vector<T>& shape) {
    std::ostringstream os;
    os << "[";
    for (size_t i = 0; i < shape.size(); ++i) {
      if (i == shape.size() - 1) {
        os << shape[i];
      } else {
        os << shape[i] << ",";
      }
    }
    os << "]";
    return os.str();
  };
97 98
  if (!with_dynamic_shape) {
    if (shape.size() == 4UL) {
99 100 101 102
      if (shape[2] == -1 || shape[3] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
103 104
            input,
            ShapeStr(shape)));
105
      }
106
      return nvinfer1::Dims3(shape[1], shape[2], shape[3]);
W
wenbin 已提交
107 108 109 110 111
    } else if (shape.size() == 5UL) {
      if (shape[2] == -1 || shape[3] == -1 || shape[4] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
112 113
            input,
            ShapeStr(shape)));
W
wenbin 已提交
114 115
      }
      return nvinfer1::Dims4(shape[1], shape[2], shape[3], shape[4]);
116
    } else if (shape.size() == 3UL) {
117 118 119 120
      if (shape[1] == -1 || shape[2] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
121 122
            input,
            ShapeStr(shape)));
123
      }
124
      return nvinfer1::Dims2(shape[1], shape[2]);
125 126 127 128 129
    } else if (shape.size() == 2UL) {
      if (shape[1] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
130 131
            input,
            ShapeStr(shape)));
132 133 134 135 136
      }
      nvinfer1::Dims dims;
      dims.nbDims = 1;
      dims.d[0] = shape[1];
      return dims;
137
    }
138
    // static shape doesn't support 1D op so far.
139 140
    PADDLE_ENFORCE_NE(shape.size(),
                      1UL,
141 142 143
                      platform::errors::InvalidArgument(
                          "The input [%s] shape of trt subgraph is %s."
                          "it's not supported by trt so far",
144 145
                          input,
                          ShapeStr(shape)));
146 147 148 149 150 151 152

    nvinfer1::Dims dims;
    dims.nbDims = shape.size() - 1;
    for (size_t i = 1; i < shape.size(); i++) {
      dims.d[i - 1] = shape[i];
    }
    return dims;
153 154
  } else {
    if (shape.size() == 4UL) {
155
      return nvinfer1::Dims4(shape[0], shape[1], shape[2], shape[3]);
156 157 158
    } else if (shape.size() == 3UL) {
      return nvinfer1::Dims3(shape[0], shape[1], shape[2]);
    }
159 160 161 162 163 164
    nvinfer1::Dims dims;
    dims.nbDims = shape.size();
    for (size_t i = 0; i < shape.size(); i++) {
      dims.d[i] = shape[i];
    }
    return dims;
165 166
  }
}
167
}  // namespace
168

N
nhzlx 已提交
169
class TRTInt8Calibrator;
W
wanghuancoder 已提交
170

Y
Yan Chunwei 已提交
171 172 173 174
/*
 * TensorRT Engine.
 *
 * There are two alternative ways to use it, one is  to build from a paddle
175
 * protobuf model, another way is to manually construct the network.
Y
Yan Chunwei 已提交
176
 */
177 178
class TensorRTEngine {
  using DescType = ::paddle::framework::proto::BlockDesc;
179
  using ShapeMapType = std::map<std::string, std::vector<int>>;
180
  using PredictorID = int;
181

Y
Yan Chunwei 已提交
182 183 184 185
 public:
  // Weight is model parameter.
  class Weight {
   public:
186
    Weight() = default;
187
    Weight(nvinfer1::DataType dtype, void* value, size_t num_elem) {
Y
Yan Chunwei 已提交
188 189 190 191
      w_.type = dtype;
      w_.values = value;
      w_.count = num_elem;
    }
192
    const nvinfer1::Weights& get() { return w_; }
Y
Yan Chunwei 已提交
193

194 195 196 197 198 199 200 201
    void SetDataType(nvinfer1::DataType type) { w_.type = type; }

    void SetDataType(phi::DataType type);

    void SetValues(const void* values) { w_.values = values; }

    void SetCount(int64_t num) { w_.count = num; }

202 203
    std::vector<int64_t> dims;

Y
Yan Chunwei 已提交
204 205 206 207
   private:
    nvinfer1::Weights w_;
  };

Z
Zhaolong Xing 已提交
208
  TensorRTEngine(
209
      int max_batch,
210
      int64_t max_workspace,
Z
Zhaolong Xing 已提交
211
      AnalysisConfig::Precision precision = AnalysisConfig::Precision::kFloat32,
212 213
      TRTInt8Calibrator* calibrator = nullptr,
      int device_id = 0,
214 215 216
      const ShapeMapType min_input_shape = {},
      const ShapeMapType max_input_shape = {},
      const ShapeMapType optim_input_shape = {},
217
      bool disable_trt_plugin_fp16 = false,
218
      phi::DataType model_precision = phi::DataType::FLOAT32,
Z
Zhaolong Xing 已提交
219
      nvinfer1::ILogger& logger = NaiveLogger::Global())
Y
Yan Chunwei 已提交
220 221
      : max_batch_(max_batch),
        max_workspace_(max_workspace),
Z
Zhaolong Xing 已提交
222
        precision_(precision),
N
nhzlx 已提交
223
        calibrator_(calibrator),
N
nhzlx 已提交
224
        device_id_(device_id),
225 226 227
        min_input_shape_(min_input_shape),
        max_input_shape_(max_input_shape),
        optim_input_shape_(optim_input_shape),
228
        disable_trt_plugin_fp16_(disable_trt_plugin_fp16),
229
        model_precision_(model_precision),
230 231 232 233
        logger_(logger) {
    if (min_input_shape_.size() != 0 && max_input_shape_.size() != 0 &&
        optim_input_shape_.size() != 0) {
      PADDLE_ENFORCE_EQ(
234 235
          min_input_shape_.size(),
          max_input_shape_.size(),
236 237 238
          platform::errors::InvalidArgument(
              "The min_input_shape_'s size(%d) should be equal to the "
              "size(%d) of max_input_shape_",
239 240
              min_input_shape_.size(),
              max_input_shape_.size()));
241
      PADDLE_ENFORCE_EQ(
242 243
          min_input_shape_.size(),
          optim_input_shape_.size(),
244 245 246
          platform::errors::InvalidArgument(
              "The min_input_shape_'s size(%d) should be equal to the "
              "size(%d) of optim_input_shape_",
247 248
              min_input_shape_.size(),
              optim_input_shape_.size()));
249 250 251 252 253 254 255
#if IS_TRT_VERSION_GE(6000)
      with_dynamic_shape_ = true;
#else
      LOG(WARNING) << "Using dynamic shape of TRT need ensure that the TRT "
                      "version should be at least 6.";
#endif
    }
256
    dy::initLibNvInferPlugins(&logger, "");
257
  }
Y
Yan Chunwei 已提交
258

259 260 261 262 263 264 265 266 267
  ~TensorRTEngine() {
    for (auto& attr : attrs_) {
      if (attr_dels_.find(attr.first) != attr_dels_.end()) {
        attr_dels_[attr.first]();
      }
    }
    attrs_.clear();
    attr_dels_.clear();
  }
Y
Yan Chunwei 已提交
268

269
  // Add an input and set its name, data type and dimension.
Y
Yan Chunwei 已提交
270 271 272 273 274
  nvinfer1::ITensor* DeclareInput(const std::string& name,
                                  nvinfer1::DataType dtype,
                                  const nvinfer1::Dims& dim);
  // Set the offset-th output from a layer as the network's output, and set its
  // name.
275 276
  void DeclareOutput(const nvinfer1::ILayer* layer,
                     int offset,
Y
Yan Chunwei 已提交
277
                     const std::string& name);
L
Luo Tao 已提交
278 279
  // Set the itensor_map_[name] as the network's output, and set its name.
  void DeclareOutput(const std::string& name);
280
  void ClearTensorMap() { itensor_map_.clear(); }
Y
Yan Chunwei 已提交
281

282
  void DeleteITensor(const std::string& name, nvinfer1::ITensor* tensor);
L
Luo Tao 已提交
283 284 285
  void SetITensor(const std::string& name, nvinfer1::ITensor* tensor);
  // Get an ITensor called name.
  nvinfer1::ITensor* GetITensor(const std::string& name);
286
  nvinfer1::ITensor* ConvertWeight2ITensor(const std::string& name);
287
  std::unordered_map<std::string, nvinfer1::ITensor*>* GetITensorMap();
Y
Yan Chunwei 已提交
288 289

  nvinfer1::ICudaEngine* engine() { return infer_engine_.get(); }
290
  nvinfer1::IExecutionContext* context() {
291 292 293 294 295 296 297 298 299
#ifndef PADDLE_WITH_TESTING
    PADDLE_ENFORCE_GT(
        predictor_id_per_thread,
        -1,
        platform::errors::InvalidArgument(
            "thread local var predictor_id_per_thread must be "
            "initialized to >= 0, but now predictor_id_per_thread = %d",
            predictor_id_per_thread));
#endif
300
    std::unique_lock<std::mutex> lock(mutex_);
301
    if (infer_context_.find(predictor_id_per_thread) == infer_context_.end()) {
302 303 304 305
      PADDLE_ENFORCE_NOT_NULL(
          infer_engine_,
          platform::errors::InvalidArgument(
              "You should build engine first and then set the context."));
W
wenbin 已提交
306 307 308
      // We may see trt warning: Profile 0 has been chosen by another
      // IExecutionContext...
      // It's ok. We will set it later.
309 310
      infer_context_[predictor_id_per_thread].reset(
          infer_engine_->createExecutionContext());
W
wenbin 已提交
311 312 313
      if (with_dynamic_shape_) {
        // need new profile if it's not the first
        if (cur_profile_num_ > 0) {
314 315
          infer_context_[predictor_id_per_thread]->setOptimizationProfile(
              cur_profile_num_);
W
wenbin 已提交
316
        }
317
        profile_index_[predictor_id_per_thread] = cur_profile_num_;
W
wenbin 已提交
318 319
        ++cur_profile_num_;
      }
320
    }
321
    return infer_context_[predictor_id_per_thread].get();
322
  }
W
wenbin 已提交
323 324 325

  int GetProfileIndex() {
    if (max_profile_num_ > 1) {
326 327 328 329 330 331 332 333 334
#ifndef PADDLE_WITH_TESTING
      PADDLE_ENFORCE_GT(
          predictor_id_per_thread,
          -1,
          platform::errors::InvalidArgument(
              "thread local var predictor_id_per_thread must be "
              "initialized to >= 0, but now predictor_id_per_thread = %d",
              predictor_id_per_thread));
#endif
W
wenbin 已提交
335
      std::unique_lock<std::mutex> lock(mutex_);
336
      return profile_index_[predictor_id_per_thread];
W
wenbin 已提交
337 338 339 340 341 342 343 344 345 346 347
    } else {
      return 0;
    }
  }

  int GetBindingsOffset() {
    return (binding_num_ / max_profile_num_) * GetProfileIndex();
  }

  int GetNbBindings() { return binding_num_; }

348 349 350 351 352
  void ResetContext() {
    PADDLE_ENFORCE_NOT_NULL(
        infer_engine_,
        platform::errors::InvalidArgument(
            "You should build engine first and then set the context."));
353 354 355 356 357 358 359 360 361 362 363 364
#ifndef PADDLE_WITH_TESTING
    PADDLE_ENFORCE_GT(
        predictor_id_per_thread,
        -1,
        platform::errors::InvalidArgument(
            "thread local var predictor_id_per_thread must be "
            "initialized to >= 0, but now predictor_id_per_thread = %d",
            predictor_id_per_thread));
#endif
    std::unique_lock<std::mutex> lock(mutex_);
    infer_context_[predictor_id_per_thread].reset(nullptr);
    infer_context_.erase(predictor_id_per_thread);
365
  }
N
nhzlx 已提交
366 367

  nvinfer1::IHostMemory* Serialize() {
368 369 370 371
    PADDLE_ENFORCE_NOT_NULL(
        infer_engine_,
        platform::errors::InvalidArgument(
            "The TensorRT engine must be built first before serialization"));
Z
zlsh80826 已提交
372
#if IS_TRT_VERSION_LT(8000)
N
nhzlx 已提交
373
    ihost_memory_.reset(infer_engine_->serialize());
Z
zlsh80826 已提交
374 375 376 377 378 379
#else
    PADDLE_ENFORCE_NOT_NULL(
        ihost_memory_,
        platform::errors::InvalidArgument(
            "TensorRT >= 8.0 requires that buildSerializedNetwork is called"));
#endif
N
nhzlx 已提交
380 381 382 383
    return ihost_memory_.get();
  }

  void Deserialize(const std::string& engine_serialized_data) {
N
nhzlx 已提交
384
    freshDeviceId();
N
nhzlx 已提交
385
    infer_ptr<nvinfer1::IRuntime> runtime(createInferRuntime(&logger_));
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408

    if (use_dla_) {
      if (precision_ != AnalysisConfig::Precision::kInt8 &&
          precision_ != AnalysisConfig::Precision::kHalf) {
        LOG(WARNING) << "TensorRT DLA must be used with int8 or fp16, but you "
                        "set float32, so DLA is not used.";
      } else if (runtime->getNbDLACores() == 0) {
        LOG(WARNING)
            << "TensorRT DLA is set by config, but your device does not have "
               "DLA, so DLA is not used.";
      } else {
        if (dla_core_ < 0 || dla_core_ >= runtime->getNbDLACores()) {
          dla_core_ = 0;
          LOG(WARNING) << "Invalid DLACore, must be 0 < DLACore < "
                       << runtime->getNbDLACores() << ", but got " << dla_core_
                       << ", so use use 0 as default.";
        }
        runtime->setDLACore(dla_core_);
        LOG(INFO) << "TensorRT DLA enabled in Deserialize(), DLACore "
                  << dla_core_;
      }
    }

409 410
    infer_engine_.reset(runtime->deserializeCudaEngine(
        engine_serialized_data.c_str(), engine_serialized_data.size()));
411

412 413 414 415 416 417 418 419
    PADDLE_ENFORCE_NOT_NULL(
        infer_engine_,
        platform::errors::Fatal(
            "Building TRT cuda engine failed when deserializing engine info. "
            "Please check:\n1. Your TRT serialization is generated and loaded "
            "on the same GPU architecture;\n2. The Paddle Inference version of "
            "generating serialization file and doing inference are "
            "consistent."));
420

W
wenbin 已提交
421
    binding_num_ = infer_engine_->getNbBindings();
422
    GetEngineInfo();
N
nhzlx 已提交
423 424
  }

425 426
  void SetRuntimeBatch(size_t batch_size);
  int GetRuntimeBatch();
427 428 429 430 431 432 433

  bool WithFp16() {
    bool enable_fp16 = (precision_ == AnalysisConfig::Precision::kHalf);
    bool support_fp16 = infer_builder_->platformHasFastFp16();
    return enable_fp16 && support_fp16;
  }

N
nhzlx 已提交
434
  int GetDeviceId() { return device_id_; }
435

436
  nvinfer1::IPluginV2Layer* AddPlugin(nvinfer1::ITensor* const* inputs,
437 438
                                      int num_inputs,
                                      plugin::PluginTensorRT*);
439 440 441 442 443

  nvinfer1::IPluginV2Layer* AddPluginV2Ext(nvinfer1::ITensor* const* inputs,
                                           int num_inputs,
                                           plugin::PluginTensorRTV2Ext* plugin);

444 445 446 447
  nvinfer1::IPluginV2Layer* AddPluginV2IOExt(nvinfer1::ITensor* const* inputs,
                                             int num_inputs,
                                             nvinfer1::IPluginV2IOExt* plugin);

448 449 450
  void SetTensorDynamicRange(nvinfer1::ITensor* tensor, float range) {
    quant_dynamic_range_[tensor] = range;
  }
451

452 453 454 455
  // Get fp16 trt weight. If src weight is not fp16, we will cast.
  Weight GetFp16TrtWeight(const std::string& name,
                          const framework::Tensor& weight_tensor);

456 457 458 459 460 461 462 463
  // Get fp32 trt weight. If src weight is not fp32, we will cast.
  Weight GetFp32TrtWeight(const std::string& name,
                          const framework::Tensor& weight_tensor);

  // if the src weight type is fp16, then return fp16 trt weight, etc.
  Weight GetTrtWeight(const std::string& name,
                      const framework::Tensor& weight_tensor);

464 465 466 467 468 469 470 471
  float GetTensorDynamicRange(nvinfer1::ITensor* tensor) {
    return quant_dynamic_range_[tensor];
  }

  bool DynamicRangeIsSet(nvinfer1::ITensor* tensor) {
    return quant_dynamic_range_.count(tensor);
  }

N
nhzlx 已提交
472 473 474 475 476 477 478
  // A pointer to CPU memory is needed of the TRT weight.
  // Before TRT runs, fluid loads weight into GPU storage.
  // so we need to copy the weights from GPU to CPU in our op converter.
  // We use a map to store these weights for the weight memory is not released
  // in advance, which affecting the construction of TRT Op.
  std::unordered_map<std::string /*name*/, std::unique_ptr<framework::Tensor>>
      weight_map;
Y
Yan Chunwei 已提交
479

480 481 482 483 484 485
  // When setting weight_map, a self-increasing suffix is needed for the names
  // so as to avoid repeatedly setting weights with the same name.
  void SetWeights(std::string w_name,
                  std::unique_ptr<framework::Tensor> w_tensor) {
    static int suffix_counter = 0;
    std::string suffix = std::to_string(suffix_counter);
P
Pei Yang 已提交
486
    std::string splitter = "__";
487 488 489 490 491 492 493 494
    std::string name_with_suffix = w_name + splitter + suffix;
    PADDLE_ENFORCE_EQ(weight_map.count(name_with_suffix),
                      0,
                      platform::errors::AlreadyExists(
                          "The weight named %s is set into the weight map "
                          "twice in TRT OP converter.",
                          name_with_suffix));
    weight_map[name_with_suffix] = std::move(w_tensor);
495 496 497
    suffix_counter += 1;
  }

498
  void SetUseOSS(bool use_varseqlen) { use_varseqlen_ = use_varseqlen; }
499 500
  void SetUseDLA(bool use_dla) { use_dla_ = use_dla; }
  void SetDLACore(int dla_core) { dla_core_ = dla_core; }
501
  void SetWithErnie(bool with_ernie) { with_ernie_ = with_ernie; }
502 503 504
  void SetWithInterleaved(bool with_interleaved) {
    with_interleaved_ = with_interleaved;
  }
505 506 507 508 509 510
  void SetTransformerPosid(std::string tensorrt_transformer_posid) {
    tensorrt_transformer_posid_ = tensorrt_transformer_posid;
  }
  void SetTransformerMaskid(std::string tensorrt_transformer_maskid) {
    tensorrt_transformer_maskid_ = tensorrt_transformer_maskid;
  }
511 512 513 514 515 516
  void ClearWeights() {
    for (auto& weight_pair : weight_map) {
      weight_pair.second.reset(nullptr);
    }
  }

517 518 519 520 521 522 523
  // NOTE: The func bellow was modified to adapt the dynamic shape.
  // Initialize the inference network, so that TensorRT layers can add to this
  // network.
  void InitNetwork();
  // After finishing adding ops, freeze this network and creates the execution
  // environment.
  void FreezeNetwork();
524 525
  void Execute(int batch_size,
               std::vector<void*>* buffers,
526 527
               cudaStream_t stream = nullptr);

528
  nvinfer1::INetworkDefinition* network() { return infer_network_.get(); }
529 530 531 532

  ShapeMapType min_input_shape() { return min_input_shape_; }
  ShapeMapType max_input_shape() { return max_input_shape_; }
  ShapeMapType optim_input_shape() { return optim_input_shape_; }
533 534 535 536 537 538 539 540 541

  bool AdjustDynamicShapeRange(const ShapeMapType& runtime_input_shape,
                               std::vector<std::string>* changed) {
    bool ret = false;
    changed->clear();
    for (const auto& it : runtime_input_shape) {
      auto name = it.first;
      auto input_shape = it.second;
      PADDLE_ENFORCE_EQ(
542 543
          min_input_shape_.count(name),
          true,
544 545
          platform::errors::InvalidArgument(
              "TRT dynamic_shape min_input_shape %s not found.", name));
546 547
      PADDLE_ENFORCE_EQ(min_input_shape_[name].size(),
                        input_shape.size(),
548 549 550 551
                        platform::errors::InvalidArgument(
                            "TRT dynamic_shape min_input_shape %s size not "
                            "equal, the min_input_shape[%s].size()=%d"
                            ", but the runtime_input_shape[%s].size()=%d.",
552 553 554 555
                            name,
                            name,
                            min_input_shape_[name].size(),
                            name,
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
                            input_shape.size()));
      auto bak_min_shape = min_input_shape_[name];
      auto bak_max_shape = max_input_shape_[name];
      bool min_change = false;
      bool max_change = false;
      for (size_t d = 0; d < input_shape.size(); ++d) {
        if (input_shape[d] < min_input_shape_[name][d]) {
          ret = true;
          min_change = true;
          min_input_shape_[name][d] = input_shape[d];
        }
        if (input_shape[d] > max_input_shape_[name][d]) {
          ret = true;
          max_change = true;
          max_input_shape_[name][d] = input_shape[d];
        }
      }

      if (min_change)
        LOG(INFO) << "refactor shape range: " << name << ", min_shape from "
                  << Vec2Str(bak_min_shape) << " to "
                  << Vec2Str(min_input_shape_[name]);
      if (max_change)
        LOG(INFO) << "refactor shape range: " << name << ", max_shape from "
                  << Vec2Str(bak_max_shape) << " to "
                  << Vec2Str(max_input_shape_[name]);
      if (min_change || max_change) changed->push_back(name);
    }
    return ret;
  }

587
  bool use_varseqlen() { return use_varseqlen_; }
588
  bool with_ernie() { return with_ernie_; }
589
  bool with_interleaved() { return with_interleaved_; }
590 591 592 593 594 595
  std::string tensorrt_transformer_posid() {
    return tensorrt_transformer_posid_;
  }
  std::string tensorrt_transformer_maskid() {
    return tensorrt_transformer_maskid_;
  }
596
  bool disable_trt_plugin_fp16() { return disable_trt_plugin_fp16_; }
597
  bool with_dynamic_shape() { return with_dynamic_shape_; }
598
  AnalysisConfig::Precision precision() { return precision_; }
599

600
#if IS_TRT_VERSION_GE(6000)
601
  nvinfer1::IPluginV2Layer* AddDynamicPlugin(
602 603
      nvinfer1::ITensor* const* inputs,
      int num_inputs,
604
      plugin::DynamicPluginTensorRT* plugin) {
605 606 607 608 609
    owned_pluginv2_.emplace_back(plugin);
    return network()->addPluginV2(inputs, num_inputs, *plugin);
  }
#endif

610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
  bool Has(const std::string& attr_name) const {
    return attrs_.count(attr_name) > 0;
  }

  void Erase(const std::string& attr_name) {
    if (!Has(attr_name)) {
      return;
    }
    if (attr_dels_.find(attr_name) != attr_dels_.end()) {
      attr_dels_[attr_name]();
      attr_dels_.erase(attr_name);
    }
    attrs_.erase(attr_name);
  }

  // Set a pointer to the attribute. Engine takes ownership of the attribute.
  template <typename AttrType>
  void Set(const std::string& attr_name, AttrType* attr) {
    if (attrs_.count(attr_name) == 0) {
      PADDLE_ENFORCE_EQ(
630 631
          attrs_.count(attr_name),
          0,
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
          platform::errors::AlreadyExists(
              "Attribute %s already set in trt engine.", attr_name));
    } else {
      VLOG(3) << "Setting the attribute " << attr_name << " for trt engine "
              << this;
    }
    attrs_[attr_name] = attr;
    attr_dels_[attr_name] = [attr, attr_name]() {
      VLOG(3) << "deleting " << attr_name;
      delete attr;
    };
  }

  // Set a pointer to the attribute. Engine doesn't take ownership. Caller
  // should delete the attribute.
  template <typename AttrType>
  void SetNotOwned(const std::string& attr_name, AttrType* attr) {
    PADDLE_ENFORCE_EQ(
650 651
        attrs_.count(attr_name),
        0,
652 653 654 655 656 657 658 659
        platform::errors::AlreadyExists(
            "Attribute %s already set in trt engine.", attr_name));
    attrs_[attr_name] = attr;
  }

  // Get a reference to the attributed previously set.
  template <typename AttrType>
  AttrType& Get(const std::string& attr_name) const {
660 661
    PADDLE_ENFORCE_NE(attrs_.find(attr_name),
                      attrs_.end(),
662 663 664
                      platform::errors::InvalidArgument(
                          "Attribute %s not found in trt engine.", attr_name));
    try {
665 666
      return *paddle::any_cast<AttrType*>(attrs_.at(attr_name));
    } catch (paddle::bad_any_cast&) {
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
      auto TypeToString = [](const std::type_info& info) -> std::string {
        if (std::type_index(info) == std::type_index(typeid(bool*))) {
          return "bool";
        } else if (std::type_index(info) == std::type_index(typeid(int*))) {
          return "int";
        } else if (std::type_index(info) ==
                   std::type_index(typeid(const int*))) {
          return "const int";
        } else if (std::type_index(info) ==
                   std::type_index(typeid(std::string*))) {
          return "std::string";
        }
        return info.name();
      };

      PADDLE_THROW(platform::errors::InvalidArgument(
683 684
          "Invalid type for attritube %s, expected: %s, actual: %s.",
          attr_name,
685 686 687 688 689
          TypeToString(typeid(AttrType*)),
          TypeToString(attrs_.at(attr_name).type())));
    }
  }

W
wenbin 已提交
690
  void SetProfileNum(int num) { max_profile_num_ = num; }
691 692 693 694

  void GetEngineInfo();

  void SetUseInspector(bool use_inspector) { use_inspector_ = use_inspector; }
695
  void SetScope(const framework::Scope& scope) { scope_ = &scope; }
696

Y
Yan Chunwei 已提交
697
 private:
N
nhzlx 已提交
698 699 700 701
  // Each ICudaEngine object is bound to a specific GPU when it is instantiated,
  // ensure that the thread is associated with the correct device by calling
  // freshDeviceId().
  void freshDeviceId();
702 703
  // Used for convert weight into Itensor
  const framework::Scope* scope_;
N
nhzlx 已提交
704

Y
Yan Chunwei 已提交
705 706
  // the max batch size
  int max_batch_;
707 708
  // the runtime batch size
  static int runtime_batch_;
Y
Yan Chunwei 已提交
709
  // the max memory size the engine uses
710
  int64_t max_workspace_;
711

Z
Zhaolong Xing 已提交
712
  AnalysisConfig::Precision precision_;
N
nhzlx 已提交
713 714 715
  TRTInt8Calibrator* calibrator_;
  // batch size of the current data, will be updated each Executation.
  int batch_size_{-1};
N
nhzlx 已提交
716

N
nhzlx 已提交
717
  int device_id_;
W
wenbin 已提交
718 719
  int max_profile_num_{1};
  int cur_profile_num_{0};
720
  std::unordered_map<PredictorID, int> profile_index_;
721 722 723
  ShapeMapType min_input_shape_;
  ShapeMapType max_input_shape_;
  ShapeMapType optim_input_shape_;
724
  bool disable_trt_plugin_fp16_{false};
725
  phi::DataType model_precision_{phi::DataType::FLOAT32};
726
  bool use_varseqlen_{false};
727 728
  bool use_dla_{false};
  int dla_core_{0};
729
  bool with_ernie_{false};
730
  bool with_interleaved_{false};
731 732
  std::string tensorrt_transformer_posid_;
  std::string tensorrt_transformer_maskid_;
Y
Yan Chunwei 已提交
733 734 735
  nvinfer1::ILogger& logger_;

  // max data size for the buffers.
L
Luo Tao 已提交
736 737
  std::unordered_map<std::string /*name*/, nvinfer1::ITensor* /*ITensor*/>
      itensor_map_;
738

739
  std::vector<std::unique_ptr<plugin::PluginTensorRT>> owned_plugin_;
740
  std::vector<std::unique_ptr<plugin::PluginTensorRTV2Ext>> owned_plugin_v2ext_;
741
  std::vector<std::unique_ptr<nvinfer1::IPluginV2IOExt>> owned_plugin_v2ioext_;
Y
Yan Chunwei 已提交
742 743 744 745

  // TensorRT related internal members
  template <typename T>
  struct Destroyer {
746 747 748 749 750
    void operator()(T* x) {
      if (x) {
        x->destroy();
      }
    }
Y
Yan Chunwei 已提交
751 752 753 754 755 756
  };
  template <typename T>
  using infer_ptr = std::unique_ptr<T, Destroyer<T>>;
  infer_ptr<nvinfer1::IBuilder> infer_builder_;
  infer_ptr<nvinfer1::INetworkDefinition> infer_network_;
  infer_ptr<nvinfer1::ICudaEngine> infer_engine_;
757
  std::unordered_map<PredictorID, infer_ptr<nvinfer1::IExecutionContext>>
758
      infer_context_;
N
nhzlx 已提交
759
  infer_ptr<nvinfer1::IHostMemory> ihost_memory_;
760
  std::unordered_map<nvinfer1::ITensor*, float> quant_dynamic_range_;
761

762
  std::unordered_map<std::string, paddle::any> attrs_;
763 764
  std::unordered_map<std::string, std::function<void(void)>> attr_dels_;

765 766 767
  // For dynamic shape
  bool with_dynamic_shape_{false};
#if IS_TRT_VERSION_GE(6000)
W
wenbin 已提交
768
  int binding_num_;
769
  infer_ptr<nvinfer1::IBuilderConfig> infer_builder_config_;
W
wenbin 已提交
770
  std::vector<nvinfer1::IOptimizationProfile*> optim_profiles_;
771
  std::vector<std::unique_ptr<plugin::DynamicPluginTensorRT>> owned_pluginv2_;
772
#endif
773
  std::mutex mutex_;
774
  bool use_inspector_;
775 776 777

 public:
  thread_local static int predictor_id_per_thread;
Y
Yan Chunwei 已提交
778 779
};  // class TensorRTEngine

780
// Add a layer__ into engine__ with args ARGS.
Y
Yan Chunwei 已提交
781 782 783 784 785 786 787 788 789
// For example:
//
// Reference
// https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#charRNN_define_network
//
// will add a fully connected layer into the engine.
// TensorRT has too many layers, so that is not wise to add member functions for
// them, and an macro like this is more extensible when underlying TensorRT
// library add new layer supports.
790
#define TRT_ENGINE_ADD_LAYER(engine__, layer__, ...) \
Z
zhoutianzi666 已提交
791
  engine__->network()->add##layer__(__VA_ARGS__)
Y
Yan Chunwei 已提交
792

793 794 795 796 797 798 799 800 801 802 803 804
class TRTEngineManager {
 public:
  bool Empty() const { return engines_.size() == 0; }
  bool Has(const std::string& name) const {
    if (engines_.count(name) == 0) return false;
    return engines_.at(name).get() != nullptr;
  }

  TensorRTEngine* Get(const std::string& name) const {
    return engines_.at(name).get();
  }

Z
Zhaolong Xing 已提交
805
  TensorRTEngine* Create(
806 807
      std::string name,
      int max_batch,
808
      int64_t max_workspace,
Z
Zhaolong Xing 已提交
809
      AnalysisConfig::Precision precision = AnalysisConfig::Precision::kFloat32,
810 811
      TRTInt8Calibrator* calibrator = nullptr,
      int device_id = 0,
812 813 814
      const std::map<std::string, std::vector<int>> min_input_shape = {},
      const std::map<std::string, std::vector<int>> max_input_shape = {},
      const std::map<std::string, std::vector<int>> optim_input_shape = {},
815
      bool disable_trt_plugin_fp16 = false,
816
      phi::DataType model_precision = phi::DataType::FLOAT32,
Z
Zhaolong Xing 已提交
817
      nvinfer1::ILogger& logger = NaiveLogger::Global()) {
818 819 820 821 822 823 824 825 826
    auto* p = new TensorRTEngine(max_batch,
                                 max_workspace,
                                 precision,
                                 calibrator,
                                 device_id,
                                 min_input_shape,
                                 max_input_shape,
                                 optim_input_shape,
                                 disable_trt_plugin_fp16,
827
                                 model_precision,
828
                                 logger);
829 830 831 832 833 834 835 836 837 838
    engines_[name].reset(p);
    return p;
  }

  void DeleteAll() {
    for (auto& item : engines_) {
      item.second.reset(nullptr);
    }
  }

W
Wilber 已提交
839 840 841 842 843 844 845 846
  void DeleteKey(const std::string& key) {
    auto iter = engines_.find(key);
    if (iter != engines_.end()) {
      iter->second.reset(nullptr);
      engines_.erase(iter);
    }
  }

847 848 849 850
 private:
  std::unordered_map<std::string, std::unique_ptr<TensorRTEngine>> engines_;
};

Y
Yan Chunwei 已提交
851 852 853
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle