未验证 提交 4f95bc94 编写于 作者: Y Yan Chunwei 提交者: GitHub

feature/trt engine op test (#11182)

上级 fdf2d6fd
......@@ -18,6 +18,8 @@ limitations under the License. */
#include <unordered_map>
#include <vector>
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/variable.h"
#include "paddle/fluid/platform/enforce.h"
namespace paddle {
......@@ -107,6 +109,13 @@ class OrderedRegistry {
std::vector<std::unique_ptr<T>> data_;
};
template <typename T>
T &GetFromScope(const framework::Scope &scope, const std::string &name) {
framework::Variable *var = scope.FindVar(name);
PADDLE_ENFORCE(var != nullptr);
return *var->GetMutable<T>();
}
} // namespace analysis
} // namespace inference
} // namespace paddle
......
# Add TRT tests
nv_test(test_op_converter SRCS test_op_converter.cc mul_op.cc conv2d_op.cc DEPS ${FLUID_CORE_MODULES} tensorrt_engine)
# This test is not stable
# See https://paddleci.ngrok.io/viewLog.html?tab=buildLog&buildTypeId=Paddle_PrCi2&buildId=36834&_focus=8828
#nv_test(test_trt_activation_op SRCS test_activation_op.cc activation_op.cc io_converter.cc
# DEPS ${FLUID_CORE_MODULES} activation_op tensorrt_engine
# SERIAL)
nv_library(tensorrt_converter
SRCS mul_op.cc conv2d_op.cc fc_op.cc
DEPS tensorrt_engine mul_op)
nv_test(test_op_converter SRCS test_op_converter.cc DEPS
${FLUID_CORE_MODULES} tensorrt_engine tensorrt_converter)
nv_test(test_io_converter SRCS test_io_converter.cc io_converter.cc DEPS dynload_cuda dynamic_loader lod_tensor)
nv_test(test_trt_mul_op SRCS test_mul_op.cc mul_op.cc
DEPS ${FLUID_CORE_MODULES} tensorrt_engine mul_op SERIAL)
......
......@@ -12,6 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
namespace paddle {
......@@ -36,8 +37,8 @@ class ReluOpConverter : public OpConverter {
}
};
REGISTER_TRT_OP_CONVERTER(relu, ReluOpConverter);
} // namespace tensorrt
} // namespace inference
} // namespace paddle
REGISTER_TRT_OP_CONVERTER(relu, ReluOpConverter);
......@@ -22,14 +22,14 @@ class Conv2dOpConverter : public OpConverter {
public:
Conv2dOpConverter() {}
void operator()(const framework::proto::OpDesc& op,
const framework::Scope& scope) override {
const framework::Scope& scope, bool test_mode) override {
LOG(INFO)
<< "convert a fluid conv2d op to tensorrt conv layer without bias";
}
};
REGISTER_TRT_OP_CONVERTER(conv2d, Conv2dOpConverter);
} // namespace tensorrt
} // namespace inference
} // namespace paddle
REGISTER_TRT_OP_CONVERTER(conv2d, Conv2dOpConverter);
......@@ -56,7 +56,7 @@ void ReorderCKtoKC(TensorRTEngine::Weight& iweights,
class FcOpConverter : public OpConverter {
public:
void operator()(const framework::proto::OpDesc& op,
const framework::Scope& scope) override {
const framework::Scope& scope, bool test_mode) override {
VLOG(4) << "convert a fluid fc op to tensorrt fc layer without bias";
framework::OpDesc op_desc(op, nullptr);
......@@ -106,14 +106,16 @@ class FcOpConverter : public OpConverter {
n_output, weight.get(), bias.get());
auto output_name = op_desc.Output("Out").front();
engine_->DeclareOutput(layer, 0, output_name);
engine_->SetITensor(output_name, layer->getOutput(0));
if (test_mode) {
engine_->DeclareOutput(output_name);
}
}
};
REGISTER_TRT_OP_CONVERTER(fc, FcOpConverter);
} // namespace tensorrt
} // namespace inference
} // namespace paddle
REGISTER_TRT_OP_CONVERTER(fc, FcOpConverter);
USE_OP(mul);
......@@ -23,9 +23,8 @@ namespace tensorrt {
*/
class MulOpConverter : public OpConverter {
public:
MulOpConverter() {}
void operator()(const framework::proto::OpDesc& op,
const framework::Scope& scope) override {
const framework::Scope& scope, bool test_mode) override {
VLOG(4) << "convert a fluid mul op to tensorrt mul layer without bias";
framework::OpDesc op_desc(op, nullptr);
......@@ -37,12 +36,18 @@ class MulOpConverter : public OpConverter {
engine_, MatrixMultiply, *const_cast<nvinfer1::ITensor*>(input1), false,
*const_cast<nvinfer1::ITensor*>(input2), false);
engine_->DeclareOutput(layer, 0, op_desc.Output("Out")[0]);
auto output_name = op_desc.Output("Out")[0];
engine_->SetITensor(output_name, layer->getOutput(0));
if (test_mode) { // the test framework can not determine which is the
// output, so place the declaration inside.
engine_->DeclareOutput(output_name);
}
}
};
REGISTER_TRT_OP_CONVERTER(mul, MulOpConverter);
} // namespace tensorrt
} // namespace inference
} // namespace paddle
USE_OP(mul);
REGISTER_TRT_OP_CONVERTER(mul, MulOpConverter);
......@@ -17,6 +17,7 @@ limitations under the License. */
#include <string>
#include <unordered_map>
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/inference/tensorrt/engine.h"
#include "paddle/fluid/inference/utils/singleton.h"
......@@ -34,12 +35,15 @@ class OpConverter {
// Converter logic for an op.
virtual void operator()(const framework::proto::OpDesc& op,
const framework::Scope& scope) {}
const framework::Scope& scope,
bool test_mode = false) {}
// Convert a single fluid operaotr and add the corresponding layer to TRT.
// Convert a single fluid operator and add the corresponding layer to TRT.
// test_mode: whether the instance executes in an unit test.
void ConvertOp(const framework::proto::OpDesc& op,
const std::unordered_set<std::string>& parameters,
const framework::Scope& scope, TensorRTEngine* engine) {
const framework::Scope& scope, TensorRTEngine* engine,
bool test_mode = false) {
framework::OpDesc op_desc(op, nullptr);
OpConverter* it{nullptr};
......@@ -57,7 +61,7 @@ class OpConverter {
PADDLE_ENFORCE_NOT_NULL(it, "no OpConverter for optype [%s]",
op_desc.Type());
it->SetEngine(engine);
(*it)(op, scope);
(*it)(op, scope, test_mode);
}
// convert fluid block to tensorrt network
......@@ -77,6 +81,9 @@ class OpConverter {
// TensorRT engine
TensorRTEngine* engine_{nullptr};
protected:
bool test_mode_;
private:
// registered op converter map, whose key is the fluid op type, and value is
// the pointer position of corresponding OpConverter class.
......@@ -85,13 +92,24 @@ class OpConverter {
framework::Scope* scope_{nullptr};
};
#define REGISTER_TRT_OP_CONVERTER(op_type__, Converter__) \
struct trt_##op_type__##_converter { \
trt_##op_type__##_converter() { \
Registry<OpConverter>::Register<Converter__>(#op_type__); \
} \
}; \
trt_##op_type__##_converter trt_##op_type__##_converter__;
#define REGISTER_TRT_OP_CONVERTER(op_type__, Converter__) \
struct trt_##op_type__##_converter : public ::paddle::framework::Registrar { \
trt_##op_type__##_converter() { \
::paddle::inference:: \
Registry<paddle::inference::tensorrt::OpConverter>::Register< \
::paddle::inference::tensorrt::Converter__>(#op_type__); \
} \
}; \
trt_##op_type__##_converter trt_##op_type__##_converter__; \
int TouchConverterRegister_##op_type__() { \
trt_##op_type__##_converter__.Touch(); \
return 0; \
}
#define USE_TRT_CONVERTER(op_type__) \
extern int TouchConverterRegister_##op_type__(); \
static int use_op_converter_trt_##op_type__ __attribute__((unused)) = \
TouchConverterRegister_##op_type__();
} // namespace tensorrt
} // namespace inference
......
......@@ -36,3 +36,5 @@ TEST(OpConverter, ConvertBlock) {
} // namespace tensorrt
} // namespace inference
} // namespace paddle
USE_TRT_CONVERTER(conv2d)
......@@ -27,6 +27,7 @@ limitations under the License. */
#include "paddle/fluid/inference/analysis/helper.h"
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/engine.h"
#include "paddle/fluid/inference/utils/singleton.h"
namespace paddle {
namespace inference {
......@@ -104,8 +105,8 @@ class TRTConvertValidation {
void SetOp(const framework::proto::OpDesc& desc) {
op_ = framework::OpRegistry::CreateOp(desc);
OpConverter op_converter;
op_converter.ConvertOp(desc, parameters_, scope_, engine_.get());
Singleton<OpConverter>::Global().ConvertOp(
desc, parameters_, scope_, engine_.get(), true /*test_mode*/);
engine_->FreezeNetwork();
......
......@@ -43,9 +43,10 @@ void TensorRTEngine::Execute(int batch_size) {
}
TensorRTEngine::~TensorRTEngine() {
cudaStreamSynchronize(*stream_);
// clean buffer
for (auto& buf : buffers_) {
if (buf.buffer != nullptr) {
if (buf.device == DeviceType::GPU && buf.buffer != nullptr) {
PADDLE_ENFORCE_EQ(0, cudaFree(buf.buffer));
buf.buffer = nullptr;
buf.max_size = 0;
......@@ -80,6 +81,8 @@ void TensorRTEngine::FreezeNetwork() {
auto& buf = buffer(item.first);
CHECK(buf.buffer == nullptr); // buffer should be allocated only once.
PADDLE_ENFORCE_EQ(0, cudaMalloc(&buf.buffer, item.second));
VLOG(4) << "buffer malloc " << item.first << " " << item.second << " "
<< buf.buffer;
buf.size = buf.max_size = item.second;
buf.device = DeviceType::GPU;
}
......@@ -96,6 +99,7 @@ nvinfer1::ITensor* TensorRTEngine::DeclareInput(const std::string& name,
PADDLE_ENFORCE(input, "infer network add input %s failed", name);
buffer_sizes_[name] = kDataTypeSize[static_cast<int>(dtype)] *
analysis::AccuDims(dims.d, dims.nbDims);
PADDLE_ENFORCE(input->isNetworkInput());
TensorRTEngine::SetITensor(name, input);
return input;
}
......@@ -109,7 +113,9 @@ void TensorRTEngine::DeclareOutput(const nvinfer1::ILayer* layer, int offset,
SetITensor(name, output);
PADDLE_ENFORCE(output != nullptr);
output->setName(name.c_str());
PADDLE_ENFORCE(!output->isNetworkInput());
infer_network_->markOutput(*output);
PADDLE_ENFORCE(output->isNetworkOutput());
// output buffers' size can only be decided latter, set zero here to mark this
// and will reset latter.
buffer_sizes_[name] = 0;
......@@ -122,6 +128,7 @@ void TensorRTEngine::DeclareOutput(const std::string& name) {
auto* output = TensorRTEngine::GetITensor(name);
PADDLE_ENFORCE(output != nullptr);
output->setName(name.c_str());
PADDLE_ENFORCE(!output->isNetworkInput());
infer_network_->markOutput(*output);
// output buffers' size can only be decided latter, set zero here to mark this
// and will reset latter.
......
......@@ -21,6 +21,7 @@ limitations under the License. */
#include <vector>
#include "paddle/fluid/inference/engine.h"
#include "paddle/fluid/inference/tensorrt/helper.h"
#include "paddle/fluid/inference/utils/singleton.h"
namespace paddle {
namespace inference {
......@@ -131,7 +132,11 @@ class TensorRTEngine : public EngineBase {
// TensorRT related internal members
template <typename T>
struct Destroyer {
void operator()(T* x) { x->destroy(); }
void operator()(T* x) {
if (x) {
x->destroy();
}
}
};
template <typename T>
using infer_ptr = std::unique_ptr<T, Destroyer<T>>;
......@@ -155,6 +160,27 @@ class TensorRTEngine : public EngineBase {
#define TRT_ENGINE_ADD_LAYER(engine__, layer__, ARGS...) \
engine__->network()->add##layer__(ARGS);
/*
* Helper to control the TensorRT engine's creation and deletion.
*/
class TRT_EngineManager {
public:
TensorRTEngine* Create(int max_batch, int max_workspace,
cudaStream_t* stream) {
engines_.emplace_back(new TensorRTEngine(max_batch, max_workspace, stream));
return engines_.back().get();
}
void DeleteALl() {
for (auto& ptr : engines_) {
ptr.reset(nullptr);
}
}
private:
std::vector<std::unique_ptr<TensorRTEngine>> engines_;
};
} // namespace tensorrt
} // namespace inference
} // namespace paddle
......@@ -227,6 +227,8 @@ op_library(softmax_op DEPS softmax)
op_library(sequence_softmax_op DEPS softmax)
if (WITH_GPU AND TENSORRT_FOUND)
op_library(tensorrt_engine_op DEPS tensorrt_engine)
nv_test(test_tensorrt_engine_op SRCS tensorrt_engine_op_test.cc
DEPS tensorrt_engine_op tensorrt_engine tensorrt_converter)
else()
set(DEPS_OPS ${DEPS_OPS} tensorrt_engine_op)
endif()
......
......@@ -17,23 +17,93 @@
#include "paddle/fluid/operators/tensorrt_engine_op.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/engine.h"
#include "paddle/fluid/inference/utils/singleton.h"
namespace paddle {
namespace operators {
using inference::Singleton;
using inference::tensorrt::TRT_EngineManager;
using FluidDT = framework::proto::VarType_Type;
using TRT_DT = nvinfer1::DataType;
namespace {
TRT_DT FluidDataType2TRT(FluidDT type) {
switch (type) {
case FluidDT::VarType_Type_FP32:
return TRT_DT::kFLOAT;
case FluidDT::VarType_Type_INT32:
return TRT_DT::kINT32;
default:
return TRT_DT::kINT32;
}
PADDLE_THROW("unkown type");
return TRT_DT::kINT32;
}
nvinfer1::Dims Vec2TRT_Dims(const std::vector<int64_t> &shape) {
PADDLE_ENFORCE_GT(shape.size(), 1UL,
"TensorRT' tensor input requires at least 2 dimensions");
PADDLE_ENFORCE_LE(shape.size(), 4UL,
"TensorRT' tensor input requires at most 4 dimensions");
switch (shape.size()) {
case 2:
return nvinfer1::Dims2(shape[0], shape[1]);
case 3:
return nvinfer1::Dims3(shape[0], shape[1], shape[2]);
case 4:
return nvinfer1::Dims4(shape[0], shape[1], shape[2], shape[3]);
default:
return nvinfer1::Dims();
}
return nvinfer1::Dims();
}
} // namespace
template <typename DeviceContext, typename T>
void paddle::operators::TensorRTEngineKernel<DeviceContext, T>::Prepare(
const framework::ExecutionContext &context) const {
VLOG(4) << "Prepare engine";
// Get the ProgramDesc and pass to convert.
const auto &block = context.Attr<framework::proto::BlockDesc>("subgraph");
framework::proto::BlockDesc block_desc;
block_desc.ParseFromString(context.Attr<std::string>("subgraph"));
max_batch_ = context.Attr<int>("max_batch");
auto max_workspace = context.Attr<int>("max_workspace");
engine_.reset(new inference::tensorrt::TensorRTEngine(
max_batch_, max_workspace, nullptr));
engine_ = Singleton<TRT_EngineManager>::Global().Create(
max_batch_, max_workspace, &stream_);
engine_->InitNetwork();
framework::BlockDesc block(nullptr /*programdesc*/, &block_desc);
// Add inputs
VLOG(4) << "declare inputs";
for (auto &input : context.Inputs("Xs")) {
VLOG(4) << "declare input " << input;
auto *var = block.FindVar(input);
PADDLE_ENFORCE_EQ(var->GetType(), FluidDT::VarType_Type_LOD_TENSOR,
"TensorRT engine only takes LoDTensor as input");
auto shape = var->GetShape();
engine_->DeclareInput(
input, FluidDataType2TRT(
var->Proto()->type().lod_tensor().tensor().data_type()),
Vec2TRT_Dims(var->GetShape()));
}
// TODO(Superjomn) parameters should be passed after analysised from outside.
inference::Singleton<inference::tensorrt::OpConverter>::Global().ConvertBlock(
block, {}, context.scope(), engine_.get());
block_desc, {}, context.scope(), engine_);
// Add outputs
VLOG(4) << "declare outputs";
for (auto &output : context.Outputs("Ys")) {
VLOG(4) << "declare output " << output;
engine_->DeclareOutput(output);
}
engine_->FreezeNetwork();
}
......@@ -42,7 +112,9 @@ class TensorRTEngineOpMaker : public framework::OpProtoAndCheckerMaker {
void Make() override {
AddInput("Xs", "A list of inputs.").AsDuplicable();
AddOutput("Ys", "A list of outputs").AsDuplicable();
AddAttr<std::string>("subgraph", "the subgraph");
AddAttr<std::string>("subgraph", "the subgraph.");
AddAttr<int>("max_batch", "the maximum batch size.");
AddAttr<int>("max_workspace", "the maximum batch size.");
AddComment("TensorRT engine operator.");
}
};
......
......@@ -32,9 +32,12 @@ class TensorRTEngineOp : public framework::OperatorWithKernel {
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
auto input0 = ctx.Inputs("Xs").front();
framework::OpKernelType kt = framework::OpKernelType(
framework::ToDataType(
ctx.Input<framework::LoDTensor>("pre_ids")->type()),
framework::ToDataType(ctx.scope()
.FindVar(input0)
->GetMutable<framework::LoDTensor>()
->type()),
platform::CPUPlace());
return kt;
}
......@@ -50,17 +53,16 @@ class TensorRTEngineKernel : public framework::OpKernel<T> {
auto input_names = context.op().Inputs("Xs");
PADDLE_ENFORCE(!input_names.empty(), "should pass more than one inputs");
// Try to determine a batch_size
auto* tensor0 = context.Input<framework::LoDTensor>(input_names.front());
PADDLE_ENFORCE_NOT_NULL(tensor0);
int batch_size = tensor0->dims()[0];
auto& tensor0 = inference::analysis::GetFromScope<framework::LoDTensor>(
context.scope(), input_names.front());
int batch_size = tensor0.dims()[0];
PADDLE_ENFORCE_LE(batch_size, max_batch_);
// Convert input tensor from fluid to engine.
for (const auto& x : context.Inputs("Xs")) {
// convert input and copy to TRT engine's buffer
auto* v = context.scope().FindVar(x);
PADDLE_ENFORCE_NOT_NULL(v, "no variable called %s", x);
auto& t = v->Get<framework::LoDTensor>();
auto& t = inference::analysis::GetFromScope<framework::LoDTensor>(
context.scope(), x);
if (platform::is_cpu_place(t.place())) {
engine_->SetInputFromCPU(x, static_cast<const void*>(t.data<void>()),
t.memory_size());
......@@ -86,13 +88,18 @@ class TensorRTEngineKernel : public framework::OpKernel<T> {
fluid_t->Resize(framework::make_ddim(ddim));
auto size = inference::analysis::AccuDims(dims.d, dims.nbDims);
if (platform::is_cpu_place(fluid_t->place())) {
// TODO(Superjomn) change this float to dtype size.
engine_->GetOutputInCPU(
y, fluid_t->mutable_data<float>(platform::CPUPlace()), size);
y, fluid_t->mutable_data<float>(platform::CPUPlace()),
size * sizeof(float));
} else {
engine_->GetOutputInGPU(
y, fluid_t->mutable_data<float>(platform::CUDAPlace()), size);
y, fluid_t->mutable_data<float>(platform::CUDAPlace()),
size * sizeof(float));
}
}
cudaStreamSynchronize(stream_);
}
protected:
......@@ -100,7 +107,8 @@ class TensorRTEngineKernel : public framework::OpKernel<T> {
void Prepare(const framework::ExecutionContext& context) const;
private:
mutable std::unique_ptr<inference::tensorrt::TensorRTEngine> engine_;
mutable cudaStream_t stream_;
mutable inference::tensorrt::TensorRTEngine* engine_{nullptr};
mutable int max_batch_{0};
};
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/convert/ut_helper.h"
USE_CPU_ONLY_OP(tensorrt_engine);
namespace paddle {
namespace operators {
namespace {
void CreateCPUTensor(framework::Scope* scope, const std::string& name,
const std::vector<int64_t>& shape) {
auto* var = scope->Var(name);
auto* tensor = var->GetMutable<framework::LoDTensor>();
auto dims = framework::make_ddim(shape);
tensor->Resize(dims);
platform::CPUPlace place;
platform::CPUDeviceContext ctx(place);
inference::tensorrt::RandomizeTensor(tensor, place, ctx);
}
void AddTensorToBlockDesc(framework::proto::BlockDesc* block,
const std::string& name,
const std::vector<int64_t>& shape) {
using framework::proto::VarType;
auto* var = block->add_vars();
framework::VarDesc desc(name);
desc.SetType(VarType::LOD_TENSOR);
desc.SetDataType(VarType::FP32);
desc.SetShape(shape);
*var = *desc.Proto();
}
template <typename T>
void SetAttr(framework::proto::OpDesc* op, const std::string& name,
const T& data);
template <>
void SetAttr<std::string>(framework::proto::OpDesc* op, const std::string& name,
const std::string& data) {
auto* attr = op->add_attrs();
attr->set_name(name);
attr->set_type(paddle::framework::proto::AttrType::STRING);
attr->set_s(data);
}
template <>
void SetAttr<int>(framework::proto::OpDesc* op, const std::string& name,
const int& data) {
auto* attr = op->add_attrs();
attr->set_name(name);
attr->set_type(paddle::framework::proto::AttrType::INT);
attr->set_i(data);
}
template <>
void SetAttr<int64_t>(framework::proto::OpDesc* op, const std::string& name,
const int64_t& data) {
auto* attr = op->add_attrs();
attr->set_name(name);
attr->set_type(paddle::framework::proto::AttrType::LONG);
attr->set_l(data);
}
} // namespace
TEST(TensorRTEngineOp, manual) {
framework::ProgramDesc program;
auto* block_ = program.Proto()->add_blocks();
block_->set_idx(0);
block_->set_parent_idx(-1);
LOG(INFO) << "create block desc";
framework::BlockDesc block_desc(&program, block_);
LOG(INFO) << "create mul op";
auto* mul = block_desc.AppendOp();
mul->SetType("mul");
mul->SetInput("X", std::vector<std::string>({"x"})); // 2 x 4
mul->SetInput("Y", std::vector<std::string>({"y"})); // 4 x 6
mul->SetOutput("Out", std::vector<std::string>({"z"})); // 2 x 6
LOG(INFO) << "create fc op";
auto* fc = block_desc.AppendOp();
fc->SetType("mul");
fc->SetInput("X", std::vector<std::string>({"z"}));
fc->SetInput("Y", std::vector<std::string>({"y0"})); // 6 x 8
fc->SetOutput("Out", std::vector<std::string>({"z0"})); // 2 x 8
// Set inputs' variable shape in BlockDesc
AddTensorToBlockDesc(block_, "x", std::vector<int64_t>({2, 4}));
AddTensorToBlockDesc(block_, "y", std::vector<int64_t>({4, 6}));
AddTensorToBlockDesc(block_, "y0", std::vector<int64_t>({6, 8}));
AddTensorToBlockDesc(block_, "z", std::vector<int64_t>({2, 6}));
// It is wired, need to copy manually.
*block_->add_ops() = *mul->Proto();
*block_->add_ops() = *fc->Proto();
ASSERT_EQ(block_->ops_size(), 2);
LOG(INFO) << "create tensorrt desc";
framework::OpDesc engine_op_desc(nullptr);
engine_op_desc.SetType("tensorrt_engine");
engine_op_desc.SetInput("Xs", std::vector<std::string>({"x", "y", "y0"}));
engine_op_desc.SetOutput("Ys", std::vector<std::string>({"z0"}));
SetAttr<std::string>(engine_op_desc.Proto(), "subgraph",
block_->SerializeAsString());
SetAttr<int>(engine_op_desc.Proto(), "max_batch", 30);
SetAttr<int>(engine_op_desc.Proto(), "max_workspace", 1 << 10);
LOG(INFO) << "create engine op";
auto engine_op = framework::OpRegistry::CreateOp(*engine_op_desc.Proto());
framework::Scope scope;
platform::CPUPlace place;
platform::CPUDeviceContext ctx(place);
// Prepare variables.
CreateCPUTensor(&scope, "x", std::vector<int64_t>({2, 4}));
CreateCPUTensor(&scope, "y", std::vector<int64_t>({4, 6}));
CreateCPUTensor(&scope, "z", std::vector<int64_t>({2, 6}));
CreateCPUTensor(&scope, "y0", std::vector<int64_t>({6, 8}));
CreateCPUTensor(&scope, "z0", std::vector<int64_t>({2, 8}));
// Execute them.
LOG(INFO) << "engine_op run";
engine_op->Run(scope, place);
}
} // namespace operators
} // namespace paddle
USE_TRT_CONVERTER(mul)
USE_TRT_CONVERTER(fc)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册