未验证 提交 4e939c89 编写于 作者: J JYChen 提交者: GitHub

support 0-D output and 0-D as indice in __getitem__/__setitem__ (#52814)

* support 0-D output and 0-D as indice in __getitem__

* fix tests

* fix inference and UT

* add unittest for setitem

* fix xpu test

* fix xpu 0-d
上级 c686e7fd
......@@ -73,10 +73,10 @@ class TypedAttrVarInfoChecker {
platform::errors::InvalidArgument(
"Required Attribute with Variable type shall not be nullptr."));
auto shape = var_desc->GetShape();
PADDLE_ENFORCE_EQ(shape.size(),
PADDLE_ENFORCE_LE(shape.size(),
1U,
platform::errors::InvalidArgument(
"Required shape rank of Attribute(%s) == 1, "
"Required shape rank of Attribute(%s) <= 1, "
"but received rank == %s",
var_desc->Name(),
shape.size()));
......@@ -105,20 +105,21 @@ class TypedAttrVarInfoChecker {
platform::errors::InvalidArgument(
"Required Attribute with Variable type shall not be nullptr."));
auto shape = var_desc->GetShape();
PADDLE_ENFORCE_EQ(shape.size(),
PADDLE_ENFORCE_LE(shape.size(),
1U,
platform::errors::InvalidArgument(
"Required shape rank of Attribute(%s) == 1, "
"Required shape rank of Attribute(%s) <= 1, "
"but received rank == %s",
var_desc->Name(),
shape.size()));
PADDLE_ENFORCE_EQ(shape[0] == 1U || shape[0] == -1,
true,
platform::errors::InvalidArgument(
"Required shape[0] of Attribute(%s) == 1 or -1, "
"but received shape[0] == %s",
var_desc->Name(),
shape[0]));
PADDLE_ENFORCE_EQ(
shape.size() == 0U || shape[0] == 1U || shape[0] == -1,
true,
platform::errors::InvalidArgument(
"Required shape is (), or shape[0] of Attribute(%s) == 1 or -1, "
"but received shape[0] == %s",
var_desc->Name(),
shape[0]));
}
}
};
......
......@@ -86,10 +86,10 @@ template <typename T>
nvinfer1::Dims Vec2TRT_Dims(const std::vector<T>& shape,
std::string input,
bool with_dynamic_shape = false) {
PADDLE_ENFORCE_GT(shape.size(),
PADDLE_ENFORCE_GE(shape.size(),
0UL,
platform::errors::InvalidArgument(
"TensorRT's tensor input requires at least 1 "
"TensorRT's tensor input requires at least 0 "
"dimensions, but input %s has %d dims.",
input,
shape.size()));
......
......@@ -923,17 +923,6 @@ static PyObject* tensor__getitem_index_not_tensor(TensorObject* self,
}
if (!none_axes.empty()) {
// Deal with cases when all axes are decreased.
// After slice, the shape of out is [1], which should have been
// [], but Paddle doesn't support scalar.
// In order to ensure the correctness of the final shape of out,
// one dimension of out needs to be decreased.
// For example:
// # x.shape: (2,3,4)
// out = x[0, 1, 1, None] # out.shape : (1)
if (static_cast<int>(decrease_axis.size()) == tensor->dims().size()) {
none_axes.pop_back();
}
if (!none_axes.empty()) {
paddle::Tensor new_out;
{
......
......@@ -1068,18 +1068,6 @@ void BindImperative(py::module *m_ptr) {
tracer->TraceOp(op_type, ins, outs, std::move(attrs));
}
if (!none_axes.empty()) {
// Deal with cases when all axes are decreased.
// After slice, the shape of out is [1], which should have been
// [], but Paddle doesn't support scalar.
// In order to ensure the correctness of the final shape of out,
// one dimension of out needs to be decreased.
// For example:
// # x.shape: (2,3,4)
// out = x[0, 1, 1, None] # out.shape : (1)
if (static_cast<int>(decrease_axis.size()) ==
tensor->dims().size()) {
none_axes.pop_back();
}
if (!none_axes.empty()) {
// Deal with cases that decrease_axes is not empty
// For example:
......
......@@ -3918,9 +3918,6 @@ void StridedSliceRawInferMeta(const MetaTensor& x,
new_out_shape.push_back(out_dims[i]);
}
}
if (new_out_shape.size() == 0) {
new_out_shape.push_back(1);
}
out_dims = phi::make_ddim(new_out_shape);
}
VLOG(4) << "out_dims: " << out_dims;
......
......@@ -203,12 +203,6 @@ inline DDim GetDecreasedDims(const DDim slice_dims,
}
}
// NOTE(liym27): Paddle does not support that the rank of Tensor is 0, and
// uses [1] instead.
if (new_shape.size() == 0) {
new_shape.push_back(1);
}
decreased_dims = phi::make_ddim(new_shape);
}
return decreased_dims;
......
......@@ -266,6 +266,11 @@ void SetValueGradImpl(const Context& dev_ctx,
{fake_value_grad_dims.Get(), fake_value_grad_dims.size()},
static_cast<T>(0));
auto value_grad_dims_vec = phi::vectorize<int64_t>(value_grad_dims);
// for value is a 0-D Tensor
if (value_grad_dims.size() == 0) {
value_grad_dims_vec =
phi::vectorize<int64_t>(phi::make_ddim(std::vector<int>({1})));
}
for (auto offset : offsets) {
for (int i = 0; i < out_dims_size; i++) {
slice_end[i] = offset[i] + fake_value_grad_dims[i];
......
......@@ -70,9 +70,7 @@ class DistributedSliceImpl(DistributedOperatorImpl):
if i not in decrease_axis:
ref_indices.append(i)
if ref_indices == []:
assert len(out_dims_mapping) == 1
if is_dim_shard(out_dims_mapping[0]):
return False
assert len(out_dims_mapping) == 0
else:
for i in range(len(out_dims_mapping)):
ref_index = ref_indices[i]
......@@ -142,9 +140,7 @@ class DistributedSliceImpl(DistributedOperatorImpl):
ref_indices.append(i)
if ref_dims_mapping == []:
ref_dims_mapping = [-1]
assert len(ref_dims_mapping) == len(out_dims_mapping)
assert ref_dims_mapping[0] == out_dims_mapping[0]
changed = False
else:
assert len(ref_dims_mapping) == len(out_dims_mapping)
......
......@@ -1371,7 +1371,7 @@ def fftshift(x, axes=None, name=None):
elif isinstance(axes, int):
shifts = shape[axes] // 2
else:
shifts = paddle.concat([shape[ax] // 2 for ax in axes])
shifts = paddle.stack([shape[ax] // 2 for ax in axes])
return paddle.roll(x, shifts, axes, name=name)
......@@ -1416,7 +1416,7 @@ def ifftshift(x, axes=None, name=None):
elif isinstance(axes, int):
shifts = -shape[axes] // 2
else:
shifts = paddle.concat([-shape[ax] // 2 for ax in axes])
shifts = paddle.stack([-shape[ax] // 2 for ax in axes])
return paddle.roll(x, shifts, axes, name=name)
......
......@@ -43,7 +43,7 @@ class TestImperativeNumpyBridge(unittest.TestCase):
np.testing.assert_array_equal(var2.numpy(), data_np)
data_np[0][0] = -1
self.assertEqual(data_np[0][0], -1)
self.assertNotEqual(var2[0][0].numpy()[0], -1)
self.assertNotEqual(var2[0][0].numpy(), -1)
self.assertFalse(np.array_equal(var2.numpy(), data_np))
......
......@@ -140,16 +140,16 @@ class TestKthvalueOpWithNaN(unittest.TestCase):
nan_position = 100
self.x[0, nan_position, 2] = float('nan')
v, inds = self.x.kthvalue(k=200, axis=1)
self.assertTrue(np.isnan(v[0, 2].numpy()[0]))
self.assertEqual(inds[0, 2].numpy()[0], nan_position)
self.assertTrue(np.isnan(v[0, 2].numpy()))
self.assertEqual(inds[0, 2].numpy(), nan_position)
def test_nan_in_gpu_kernel():
paddle.set_device('gpu')
nan_position = 100
self.x[0, nan_position, 2] = float('nan')
v, inds = self.x.kthvalue(k=200, axis=1)
self.assertTrue(np.isnan(v[0, 2].numpy()[0]))
self.assertEqual(inds[0, 2].numpy()[0], nan_position)
self.assertTrue(np.isnan(v[0, 2].numpy()))
self.assertEqual(inds[0, 2].numpy(), nan_position)
test_nan_in_cpu_kernel()
if fluid.core.is_compiled_with_cuda():
......
......@@ -1590,7 +1590,7 @@ class TestSetValueInplace(unittest.TestCase):
a.stop_gradient = False
b = a[:]
c = b
b[paddle.to_tensor(0)] = 1.0
b[paddle.zeros([], dtype='int32')] = 1.0
self.assertTrue(id(b) == id(c))
np.testing.assert_array_equal(b.numpy(), c.numpy())
......
......@@ -541,8 +541,8 @@ class TestSliceAPI(unittest.TestCase):
def test_1(self):
with paddle_static_guard():
input = np.random.random([3, 4, 5, 6]).astype("float64")
minus_1 = paddle.tensor.fill_constant([1], "int32", -1)
minus_3 = paddle.tensor.fill_constant([1], "int64", -3)
minus_1 = paddle.tensor.fill_constant([], "int32", -1)
minus_3 = paddle.tensor.fill_constant([], "int64", -3)
starts = paddle.static.data(
name='starts', shape=[1, 3], dtype="float32"
)
......
......@@ -624,8 +624,7 @@ class TestVarBase(unittest.TestCase):
nw = w[1, 1, 1]
self.assertEqual(len(nw.shape), 1)
self.assertEqual(nw.shape[0], 1)
self.assertEqual(len(nw.shape), 0)
nw = w[:, :, :-1]
self.assertEqual((784, 100, 99), tuple(nw.shape))
......@@ -725,10 +724,10 @@ class TestVarBase(unittest.TestCase):
var = paddle.to_tensor(tensor_array)
one = paddle.ones(shape=[1], dtype="int32")
two = paddle.full(shape=[1], fill_value=2, dtype="int32")
negative_one = paddle.full(shape=[1], fill_value=-1, dtype="int32")
four = paddle.full(shape=[1], fill_value=4, dtype="int32")
one = paddle.ones(shape=[], dtype="int32")
two = paddle.full(shape=[], fill_value=2, dtype="int32")
negative_one = paddle.full(shape=[], fill_value=-1, dtype="int32")
four = paddle.full(shape=[], fill_value=4, dtype="int32")
var = fluid.dygraph.to_variable(tensor_array)
var1 = var[0, one, one]
......
......@@ -132,8 +132,7 @@ class TestVariable(unittest.TestCase):
nw = w[1, 1, 1]
self.assertEqual(len(nw.shape), 1)
self.assertEqual(nw.shape[0], 1)
self.assertEqual(len(nw.shape), 0)
nw = w[:, :, :-1]
self.assertEqual((784, 100, 99), nw.shape)
......
......@@ -192,9 +192,9 @@ class TestOutputsMustExistsInputs(unittest.TestCase):
with fluid.program_guard(main_program, startup_program):
def func(x):
s = paddle.zeros([1])
i = paddle.ones([1])
max_len = paddle.shape(x)[0]
s = paddle.zeros([])
i = paddle.ones([])
max_len = paddle.shape(x)
def cond(i, s, x):
return i < max_len
......
......@@ -627,6 +627,140 @@ class TestSundryAPI(unittest.TestCase):
self.assertEqual(zero_dim_var.shape, [])
self.assertEqual(zero_dim_var.item(), 0.5)
def test_getitem(self):
# case1: When all axis have a scalar indice, output should be a 0-d Tensor;
x = paddle.arange(2 * 3 * 4 * 5).reshape((2, 3, 4, 5))
x.stop_gradient = False
out = x[1, 2, 3, 4]
out.retain_grads()
out.backward()
self.assertEqual(out.shape, [])
np.testing.assert_allclose(out, np.array(119))
self.assertEqual(out.grad.shape, [])
np.testing.assert_allclose(out.grad, 1.0)
self.assertEqual(x.grad.shape, [2, 3, 4, 5])
x_grad_expected = np.zeros((2, 3, 4, 5))
x_grad_expected[1, 2, 3, 4] = 1.0
np.testing.assert_allclose(x.grad, x_grad_expected)
# case2: When one axis has a 0-d Tensor indice, the output should be same as int indice.
x = paddle.arange(2 * 3 * 4 * 5).reshape((2, 3, 4, 5))
out1 = x[1, 2]
out2 = x[
paddle.full([], 1, dtype='int32'), paddle.full([], 2, dtype='int32')
]
np.testing.assert_allclose(out1, out2)
# case3: When all axis have a scalar indice (i.e. case1) and has None indice,
# ndim of output should be same with numbers of None.
x = paddle.arange(2 * 3 * 4 * 5).reshape((2, 3, 4, 5))
out1 = x[1, 2, None, 3, 4]
self.assertEqual(out1.shape, [1])
np.testing.assert_allclose(out1, np.array([119]))
out2 = x[1, None, 2, None, 3, 4]
self.assertEqual(out2.shape, [1, 1])
np.testing.assert_allclose(out2, np.array([[119]]))
# case4: 1-D Tensor will be treated as vector, no axis decrease will happen.
x = paddle.ones((2, 3, 4))
indice = paddle.ones([1], dtype='int32')
out1 = x[indice]
self.assertEqual(out1.shape, [1, 3, 4])
np.testing.assert_allclose(out1, np.ones((1, 3, 4)))
out2 = x[indice, indice]
self.assertEqual(out2.shape, [1, 4])
np.testing.assert_allclose(out2, np.ones((1, 4)))
def test_setitem(self):
# case1: all axis have a scalar indice
x = paddle.arange(2 * 3 * 4 * 5).reshape((2, 3, 4, 5))
x.stop_gradient = False
out = x * 2
out[1, 2, 3, 4] = 10
out.backward()
self.assertEqual(out.shape, x.shape)
np.testing.assert_allclose(out[1, 2, 3, 4], np.array(10))
self.assertEqual(x.grad.shape, [2, 3, 4, 5])
x_grad_expected = np.ones((2, 3, 4, 5)) * 2
x_grad_expected[1, 2, 3, 4] = 0
np.testing.assert_allclose(x.grad, x_grad_expected)
# case2: 0-D Tensor indice in some axis
# NOTE(zoooo0820): Now, int/slice with 0-D Tensor will still be
# treated as combined indexing, which is not support backward.
# There should have more test cases such as out[1, indice, :] = 0.5 when this
# problem is fixed.
x = paddle.randn((2, 3, 4, 5))
x.stop_gradient = False
indice = paddle.full([], 1, dtype='int32')
out = x * 1
out[indice, indice] = 0.5
out.backward()
self.assertEqual(out.shape, x.shape)
np.testing.assert_allclose(out[1, 1], np.ones((4, 5)) * 0.5)
x_grad_expected = np.ones((2, 3, 4, 5))
x_grad_expected[1, 1] = 0
np.testing.assert_allclose(x.grad, x_grad_expected)
# case3:0-D Tensor indice in some axis, value is a Tensor
# and there is broadcast
x = paddle.randn((2, 3, 4, 5))
x.stop_gradient = False
v = paddle.ones((4, 5), dtype='float32') * 5
v.stop_gradient = False
indice = paddle.full([], 1, dtype='int32')
out = x * 1
out[indice] = v
out.backward()
self.assertEqual(out.shape, x.shape)
np.testing.assert_allclose(out[1], np.ones((3, 4, 5)) * 5)
x_grad_expected = np.ones((2, 3, 4, 5))
x_grad_expected[1] = 0
np.testing.assert_allclose(x.grad, x_grad_expected)
value_grad_expected = np.ones((4, 5)) * 3
np.testing.assert_allclose(v.grad, value_grad_expected)
# case4: value is a 0-D tensor and there is broadcast
x = paddle.randn((2, 3, 4, 5))
x.stop_gradient = False
v = paddle.ones([], dtype='float32') * 5
v.stop_gradient = False
out = x * 1
indice = paddle.full([], 0, dtype='int32')
out[indice] = v
out.backward()
self.assertEqual(out.shape, x.shape)
self.assertEqual(v.grad.shape, [])
np.testing.assert_allclose(out[0], np.ones((3, 4, 5)) * 5)
x_grad_expected = np.ones((2, 3, 4, 5))
x_grad_expected[0] = 0
np.testing.assert_allclose(x.grad, x_grad_expected)
value_grad_expected = np.ones(()) * 3 * 4 * 5
np.testing.assert_allclose(v.grad, value_grad_expected)
# case5: indice / value is 0-D Tensor, and there is no broadcast
x = paddle.randn((2, 3, 4, 5))
x.stop_gradient = False
v = paddle.ones([], dtype='float32') * 2
v.stop_gradient = False
out = x * 1
indice = paddle.full([], 0, dtype='int32')
out[indice, indice, indice, indice] = v
out.backward()
self.assertEqual(out.shape, x.shape)
self.assertEqual(v.grad.shape, [])
np.testing.assert_allclose(out[0, 0, 0, 0], np.ones(()) * 2)
x_grad_expected = np.ones((2, 3, 4, 5))
x_grad_expected[0, 0, 0, 0] = 0
np.testing.assert_allclose(x.grad, x_grad_expected)
value_grad_expected = np.ones(())
np.testing.assert_allclose(v.grad, value_grad_expected)
def test_expand(self):
# case1
x = paddle.full([], 1, 'float32')
......@@ -2163,6 +2297,118 @@ class TestSundryAPIStatic(unittest.TestCase):
self.assertEqual(res[0].shape, ())
self.assertEqual(res[0], 0.5)
@prog_scope()
def test_getitem(self):
# case1: When all axis have a scalar indice, output should be a 0-d Tensor;
x = paddle.arange(2 * 3 * 4 * 5).reshape((2, 3, 4, 5))
x.stop_gradient = False
out = x[1, 2, 3, 4]
paddle.static.append_backward(out.sum())
prog = paddle.static.default_main_program()
res = self.exe.run(prog, fetch_list=[out, x.grad_name, out.grad_name])
self.assertEqual(res[0].shape, ())
np.testing.assert_allclose(res[0], np.array(119))
self.assertEqual(res[2].shape, ())
np.testing.assert_allclose(res[2], 1.0)
self.assertEqual(res[1].shape, (2, 3, 4, 5))
x_grad_expected = np.zeros((2, 3, 4, 5))
x_grad_expected[1, 2, 3, 4] = 1.0
np.testing.assert_allclose(res[1], x_grad_expected)
# case2: When one axis has a 0-d Tensor indice, the output should be same as int indice.
x2 = paddle.arange(2 * 3 * 4 * 5).reshape((2, 3, 4, 5))
out1 = x2[1, 2]
out2 = x2[
paddle.full([], 1, dtype='int32'), paddle.full([], 2, dtype='int32')
]
res = self.exe.run(prog, fetch_list=[out1, out2])
np.testing.assert_allclose(res[0], res[1])
# case3: When all axis have a scalar indice (i.e. case1) and has None indice,
# ndim of output should be same with numbers of None.
x3 = paddle.arange(2 * 3 * 4 * 5).reshape((2, 3, 4, 5))
out3 = x3[1, 2, None, 3, 4]
out4 = x3[1, None, 2, None, 3, 4]
res = self.exe.run(prog, fetch_list=[out3, out4])
self.assertEqual(res[0].shape, (1,))
np.testing.assert_allclose(res[0], np.array([119]))
self.assertEqual(res[1].shape, (1, 1))
np.testing.assert_allclose(res[1], np.array([[119]]))
# case4: 1-D Tensor will be treated as vector, no axis decrease will happen.
x4 = paddle.ones((2, 3, 4))
indice = paddle.ones([1], dtype='int32')
out5 = x4[indice]
out6 = x4[indice, indice]
res = self.exe.run(prog, fetch_list=[out5, out6])
self.assertEqual(res[0].shape, (1, 3, 4))
np.testing.assert_allclose(res[0], np.ones((1, 3, 4)))
self.assertEqual(res[1].shape, (1, 4))
np.testing.assert_allclose(res[1], np.ones((1, 4)))
@prog_scope()
def test_setitem(self):
# NOTE(zoooo0820): __setitem__ has gradient problem in static graph.
# To solve this, we may not support __setitem__ in static graph.
# These unit tests will delete soon.
# case1: all axis have a scalar indice
x = paddle.arange(2 * 3 * 4 * 5).reshape((2, 3, 4, 5))
x.stop_gradient = False
out = x * 2
out[1, 2, 3, 4] = 10
paddle.static.append_backward(out.sum())
prog = paddle.static.default_main_program()
res = self.exe.run(prog, fetch_list=[out, x.grad_name])
self.assertEqual(out.shape, x.shape)
np.testing.assert_allclose(res[0][1, 2, 3, 4], np.array(10))
self.assertEqual(res[1].shape, (2, 3, 4, 5))
x_grad_expected = np.ones((2, 3, 4, 5)) * 2
x_grad_expected[1, 2, 3, 4] = 0
np.testing.assert_allclose(res[1], x_grad_expected)
# case2: 0-D Tensor indice in some axis
# NOTE(zoooo0820): Now, int/slice with 0-D Tensor will still be
# treated as combined indexing, which is not support backward.
# There should have more test cases such as out[1, indice, :] = 0.5 when this
# problem is fixed.
x = paddle.randn((2, 3, 4, 5))
x.stop_gradient = False
indice = paddle.full([], 1, dtype='int32')
out = x * 1
out[indice, indice] = 0.5
paddle.static.append_backward(out.sum())
prog = paddle.static.default_main_program()
res = self.exe.run(prog, fetch_list=[out, x.grad_name])
self.assertEqual(out.shape, x.shape)
np.testing.assert_allclose(res[0][1, 1], np.ones((4, 5)) * 0.5)
x_grad_expected = np.ones((2, 3, 4, 5))
x_grad_expected[1, 1] = 0
np.testing.assert_allclose(res[1], x_grad_expected)
# case3:0-D Tensor indice in some axis, value is a Tensor
# and there is broadcast
x = paddle.randn((2, 3, 4, 5))
x.stop_gradient = False
v = paddle.ones((4, 5), dtype='float32') * 5
v.stop_gradient = False
indice = paddle.full([], 1, dtype='int32')
out = x * 1
out[indice] = v
paddle.static.append_backward(out.sum())
prog = paddle.static.default_main_program()
res = self.exe.run(prog, fetch_list=[out, x.grad_name, v.grad_name])
self.assertEqual(out.shape, x.shape)
np.testing.assert_allclose(res[0][1], np.ones((3, 4, 5)) * 5)
x_grad_expected = np.ones((2, 3, 4, 5))
x_grad_expected[1] = 0
np.testing.assert_allclose(res[1], x_grad_expected)
@prog_scope()
def test_expand(self):
x = paddle.full([], 1, 'float32')
......
......@@ -282,7 +282,7 @@ def is_integer_or_scalar_tensor(ele):
if isinstance(ele, int):
return True
elif isinstance(ele, Variable):
if len(ele.shape) == 1 and ele.shape[0] == 1:
if len(ele.shape) == 0:
return True
return False
......@@ -573,15 +573,6 @@ def _getitem_impl_(var, item):
out = reverse(out, axis=reverse_axes)
# Deal with cases when all axes are decreased.
# After slice, the shape of out is [1], which should have been [], but Paddle doesn't support scalar.
# In order to ensure the correctness of the final shape of out, one dimension of out needs to be decreased.
# For example:
# # x.shape: (2,3,4)
# out = x[0, 1, 1, None] # out.shape : (1)
if len(decrease_axes) == len(var.shape):
none_axes = none_axes[1:]
if len(none_axes) > 0:
# Deal with cases that decrease_axes is not empty
# For example:
......@@ -592,13 +583,6 @@ def _getitem_impl_(var, item):
new_axis = axis - l
none_axes[idx] = new_axis
# Deal with cases when all axes are decreased.
# After slice, the shape of out is [1], which should have been [], but Paddle doesn't support scalar.
# In order to ensure the correctness of the final shape of out, one dimension of out needs to be decreased.
# For example:
# # x.shape: (2,3,4)
# out = x[0, 1, 1, None] # out.shape : (1)
from ..tensor import unsqueeze
out = unsqueeze(out, axis=none_axes)
......
......@@ -125,9 +125,7 @@ def minimize_lbfgs(
is_converge = paddle.full(shape=[1], fill_value=False, dtype='bool')
num_func_calls = paddle.full(shape=[1], fill_value=1, dtype='int64')
history_size = paddle.full(
shape=[1], fill_value=history_size, dtype='int64'
)
history_size = paddle.full(shape=[], fill_value=history_size, dtype='int64')
head = paddle.full(shape=[1], fill_value=1, dtype='int64')
tail = paddle.full(shape=[1], fill_value=0, dtype='int64')
......@@ -177,7 +175,7 @@ def minimize_lbfgs(
q = paddle.assign(g1)
# In a array circle, the index may out of range, so must use mod.
i = paddle.full(
shape=[1], fill_value=(head - 1).mod(history_size), dtype='int64'
shape=[], fill_value=(head - 1).mod(history_size), dtype='int64'
)
def cond(i, q):
......@@ -193,7 +191,7 @@ def minimize_lbfgs(
r = paddle.matmul(H0, q)
i = paddle.full(shape=[1], fill_value=tail + 1, dtype='int64')
i = paddle.full(shape=[], fill_value=tail + 1, dtype='int64')
def cond(i, r):
return i != head
......
......@@ -51,11 +51,11 @@ def to_static_variable(x):
Translate a Python Tensor to PaddlePaddle static graph Tensor
'''
if isinstance(x, bool):
return paddle.full(shape=[1], dtype='bool', fill_value=x)
return paddle.full(shape=[], dtype='bool', fill_value=x)
if isinstance(x, float):
return paddle.full(shape=[1], dtype='float64', fill_value=x)
return paddle.full(shape=[], dtype='float64', fill_value=x)
if isinstance(x, int):
return paddle.full(shape=[1], dtype='int64', fill_value=x)
return paddle.full(shape=[], dtype='int64', fill_value=x)
if isinstance(x, UndefinedVar) or x is None:
"""
for early return case, we need a variable to represent None, current we use data_layer_not_check.
......
......@@ -271,7 +271,7 @@ def _rnn_static_graph(
mask = paddle.reverse(mask, axis=[0]) if sequence_length else None
with paddle.fluid.framework.device_guard("cpu"):
start_i = paddle.zeros([1], dtype="int64")
start_i = paddle.zeros([], dtype="int64")
end = max_seq_len
end = paddle.cast(end, "int64")
......
......@@ -3160,19 +3160,19 @@ def tile(x, repeat_times, name=None):
)
if isinstance(repeat_times, Variable):
assert (
len(repeat_times.shape) == 1
), 'repeat_times must be an 1-D Tensor.'
repeat_times.numel() == 1
), 'repeat_times must be a Tensor with one element.'
else:
for elem in repeat_times:
if isinstance(elem, Variable):
assert (
len(elem.shape) == 1
), 'Elements in repeat_times must be 1-D Tensors or integers.'
elem.numel() == 1
), 'Elements in repeat_times must be Tensor with one element or integers.'
else:
type_tuple = (int, np.int32, np.int64)
assert isinstance(
elem, type_tuple
), 'Elements in repeat_times must be 1-D Tensors or integers.'
), 'Elements in repeat_times must be Tensor with one element or integers.'
check_variable_and_dtype(
x,
......@@ -3416,18 +3416,18 @@ def expand(x, shape, name=None):
return _C_ops.expand(x, shape)
else:
if isinstance(shape, Variable):
assert len(shape.shape) == 1, 'shape must be an 1-D Tensor.'
assert shape.numel() == 1, 'shape must be a Tensor with one element'
else:
for elem in shape:
if isinstance(elem, Variable):
assert (
len(elem.shape) == 1
), 'Elements in shape must be 1-D Tensors or integers.'
elem.numel() == 1
), 'Elements in shape must be Tensor with one element or integers.'
else:
type_tuple = (int, np.int32, np.int64)
assert isinstance(
elem, type_tuple
), 'Elements in shape must be 1-D Tensors or integers.'
), 'Elements in shape must be Tensor with one element or integers.'
check_variable_and_dtype(
x,
......
......@@ -364,7 +364,7 @@ class TestListWithCondGradInferVarType(unittest.TestCase):
x = paddle.to_tensor([2, 3, 4], dtype='float32')
index = paddle.to_tensor([1])
res = net(x, index)
self.assertEqual(res[0], 48.0)
self.assertEqual(res, 48.0)
if __name__ == '__main__':
......
......@@ -1432,7 +1432,7 @@ class XPUTestSetValueOp(XPUOpTestWrapper):
a.stop_gradient = False
b = a[:]
c = b
b[paddle.to_tensor(0)] = 1.0
b[paddle.zeros([], dtype='int32')] = 1.0
self.assertTrue(id(b) == id(c))
np.testing.assert_array_equal(b.numpy(), c.numpy())
......
......@@ -166,7 +166,7 @@ class XPUTestSliceOp_decs_dim(XPUOpTestWrapper):
self.starts = [0, 1, 2, 3]
self.ends = [1, 2, 3, 4]
self.axes = [0, 1, 2, 3]
self.decrease_axis = [0, 1, 2, 3]
self.decrease_axis = [0, 1, 2]
self.infer_flags = [1, 1, 1]
self.out = self.input[0, 1, 2, 3:4]
......@@ -188,7 +188,7 @@ class XPUTestSliceOp_decs_dim(XPUOpTestWrapper):
self.axes = [0, 1, 2, 3]
self.decrease_axis = [0, 1, 2, 3]
self.infer_flags = [1, 1, 1]
self.out = self.input[0, 1, 2, 3:4]
self.out = self.input[0, 1, 2, 3]
support_types = get_xpu_op_support_types('slice')
......
......@@ -344,6 +344,140 @@ class TestSundryAPI(unittest.TestCase):
paddle.disable_static()
self.x = paddle.rand([])
def test_getitem(self):
# case1: When all axis have a scalar indice, output should be a 0-d Tensor;
x = paddle.arange(2 * 3 * 4 * 5).reshape((2, 3, 4, 5))
x.stop_gradient = False
out = x[1, 2, 3, 4]
out.retain_grads()
out.backward()
self.assertEqual(out.shape, [])
np.testing.assert_allclose(out, np.array(119))
self.assertEqual(out.grad.shape, [])
np.testing.assert_allclose(out.grad, 1.0)
self.assertEqual(x.grad.shape, [2, 3, 4, 5])
x_grad_expected = np.zeros((2, 3, 4, 5))
x_grad_expected[1, 2, 3, 4] = 1.0
np.testing.assert_allclose(x.grad, x_grad_expected)
# case2: When one axis has a 0-d Tensor indice, the output should be same as int indice.
x = paddle.arange(2 * 3 * 4 * 5).reshape((2, 3, 4, 5))
out1 = x[1, 2]
out2 = x[
paddle.full([], 1, dtype='int32'), paddle.full([], 2, dtype='int32')
]
np.testing.assert_allclose(out1, out2)
# case3: When all axis have a scalar indice (i.e. case1) and has None indice,
# ndim of output should be same with numbers of None.
x = paddle.arange(2 * 3 * 4 * 5).reshape((2, 3, 4, 5))
out1 = x[1, 2, None, 3, 4]
self.assertEqual(out1.shape, [1])
np.testing.assert_allclose(out1, np.array([119]))
out2 = x[1, None, 2, None, 3, 4]
self.assertEqual(out2.shape, [1, 1])
np.testing.assert_allclose(out2, np.array([[119]]))
# case4: 1-D Tensor will be treated as vector, no axis decrease will happen.
x = paddle.ones((2, 3, 4))
indice = paddle.ones([1], dtype='int32')
out1 = x[indice]
self.assertEqual(out1.shape, [1, 3, 4])
np.testing.assert_allclose(out1, np.ones((1, 3, 4)))
out2 = x[indice, indice]
self.assertEqual(out2.shape, [1, 4])
np.testing.assert_allclose(out2, np.ones((1, 4)))
def test_setitem(self):
# case1: all axis have a scalar indice
x = paddle.arange(2 * 3 * 4 * 5).reshape((2, 3, 4, 5))
x.stop_gradient = False
out = x * 2
out[1, 2, 3, 4] = 10
out.backward()
self.assertEqual(out.shape, x.shape)
np.testing.assert_allclose(out[1, 2, 3, 4], np.array(10))
self.assertEqual(x.grad.shape, [2, 3, 4, 5])
x_grad_expected = np.ones((2, 3, 4, 5)) * 2
x_grad_expected[1, 2, 3, 4] = 0
np.testing.assert_allclose(x.grad, x_grad_expected)
# case2: 0-D Tensor indice in some axis
# NOTE(zoooo0820): Now, int/slice with 0-D Tensor will still be
# treated as combined indexing, which is not support backward.
# There should have more test cases such as out[1, indice, :] = 0.5 when this
# problem is fixed.
x = paddle.randn((2, 3, 4, 5))
x.stop_gradient = False
indice = paddle.full([], 1, dtype='int32')
out = x * 1
out[indice, indice] = 0.5
out.backward()
self.assertEqual(out.shape, x.shape)
np.testing.assert_allclose(out[1, 1], np.ones((4, 5)) * 0.5)
x_grad_expected = np.ones((2, 3, 4, 5))
x_grad_expected[1, 1] = 0
np.testing.assert_allclose(x.grad, x_grad_expected)
# case3:0-D Tensor indice in some axis, value is a Tensor
# and there is broadcast
x = paddle.randn((2, 3, 4, 5))
x.stop_gradient = False
v = paddle.ones((4, 5), dtype='float32') * 5
v.stop_gradient = False
indice = paddle.full([], 1, dtype='int32')
out = x * 1
out[indice] = v
out.backward()
self.assertEqual(out.shape, x.shape)
np.testing.assert_allclose(out[1], np.ones((3, 4, 5)) * 5)
x_grad_expected = np.ones((2, 3, 4, 5))
x_grad_expected[1] = 0
np.testing.assert_allclose(x.grad, x_grad_expected)
value_grad_expected = np.ones((4, 5)) * 3
np.testing.assert_allclose(v.grad, value_grad_expected)
# case4: value is a 0-D tensor and there is broadcast
x = paddle.randn((2, 3, 4, 5))
x.stop_gradient = False
v = paddle.ones([], dtype='float32') * 5
v.stop_gradient = False
out = x * 1
indice = paddle.full([], 0, dtype='int32')
out[indice] = v
out.backward()
self.assertEqual(out.shape, x.shape)
self.assertEqual(v.grad.shape, [])
np.testing.assert_allclose(out[0], np.ones((3, 4, 5)) * 5)
x_grad_expected = np.ones((2, 3, 4, 5))
x_grad_expected[0] = 0
np.testing.assert_allclose(x.grad, x_grad_expected)
value_grad_expected = np.ones(()) * 3 * 4 * 5
np.testing.assert_allclose(v.grad, value_grad_expected)
# case5: indice / value is 0-D Tensor, and there is no broadcast
x = paddle.randn((2, 3, 4, 5))
x.stop_gradient = False
v = paddle.ones([], dtype='float32') * 2
v.stop_gradient = False
out = x * 1
indice = paddle.full([], 0, dtype='int32')
out[indice, indice, indice, indice] = v
out.backward()
self.assertEqual(out.shape, x.shape)
self.assertEqual(v.grad.shape, [])
np.testing.assert_allclose(out[0, 0, 0, 0], np.ones(()) * 2)
x_grad_expected = np.ones((2, 3, 4, 5))
x_grad_expected[0, 0, 0, 0] = 0
np.testing.assert_allclose(x.grad, x_grad_expected)
value_grad_expected = np.ones(())
np.testing.assert_allclose(v.grad, value_grad_expected)
def test_expand(self):
# case1
x = paddle.full([], 1, 'float32')
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册