engine.h 32.4 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <NvInfer.h>
18

19
#include <cstdint>
20
#include <map>
Y
Yan Chunwei 已提交
21
#include <memory>
22
#include <mutex>  // NOLINT
23
#include <string>
Y
Yan Chunwei 已提交
24
#include <unordered_map>
25
#include <unordered_set>
26
#include <utility>
27
#include <vector>
28 29
#include "NvInferRuntimeCommon.h"
#include "paddle/fluid/framework/lod_tensor.h"
30
#include "paddle/fluid/framework/scope.h"
N
nhzlx 已提交
31
#include "paddle/fluid/framework/tensor.h"
32
#include "paddle/fluid/framework/tensor_util.h"
Z
Zhaolong Xing 已提交
33
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
Y
Yan Chunwei 已提交
34 35
#include "paddle/fluid/inference/engine.h"
#include "paddle/fluid/inference/tensorrt/helper.h"
36
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"
N
nhzlx 已提交
37
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
38
#include "paddle/fluid/inference/utils/singleton.h"
39
#include "paddle/fluid/platform/enforce.h"
40
#include "paddle/phi/common/data_type.h"
41 42
#include "paddle/phi/common/place.h"
#include "paddle/phi/core/stream.h"
43
#include "paddle/utils/any.h"
Y
Yan Chunwei 已提交
44

45 46
DECLARE_bool(trt_ibuilder_cache);

Y
Yan Chunwei 已提交
47 48 49 50
namespace paddle {
namespace inference {
namespace tensorrt {

W
wanghuancoder 已提交
51 52 53 54
namespace plugin {
class PluginTensorRT;
}  // namespace plugin

55 56 57 58 59 60 61 62 63 64
using FluidDT = framework::proto::VarType_Type;
using TRT_DT = nvinfer1::DataType;

namespace {  // NOLINT

TRT_DT FluidDataType2TRT(FluidDT type) {
  switch (type) {
    case FluidDT::VarType_Type_FP32:
      return TRT_DT::kFLOAT;
    case FluidDT::VarType_Type_INT32:
65
    case FluidDT::VarType_Type_INT64:
66
      return TRT_DT::kINT32;
W
wenbin 已提交
67 68
    case FluidDT::VarType_Type_FP16:
      return TRT_DT::kHALF;
69 70 71
#if IS_TRT_VERSION_GE(8400)
    case FluidDT::VarType_Type_BOOL:
      return TRT_DT::kBOOL;
G
gaoziyuan 已提交
72

73
#endif
74
    default:
75
      PADDLE_THROW(platform::errors::InvalidArgument(
G
gaoziyuan 已提交
76 77 78 79
          "unsupported datatype in TRT op converter, type: %s. "
          "Boolean type is supported as TRT input/output "
          "using TensorRT v8.4+.",
          VarType_Type_Name(type)));
80 81 82 83 84 85
  }
  return TRT_DT::kINT32;
}

// The T can be int32 or int64 type.
template <typename T>
86 87
nvinfer1::Dims Vec2TRT_Dims(const std::vector<T>& shape,
                            std::string input,
88
                            bool with_dynamic_shape = false) {
89 90
  PADDLE_ENFORCE_GT(shape.size(),
                    0UL,
91
                    platform::errors::InvalidArgument(
92
                        "TensorRT's tensor input requires at least 1 "
93
                        "dimensions, but input %s has %d dims.",
94 95
                        input,
                        shape.size()));
W
wenbin 已提交
96

97 98 99 100 101 102 103 104 105 106 107 108 109
  auto ShapeStr = [](const std::vector<T>& shape) {
    std::ostringstream os;
    os << "[";
    for (size_t i = 0; i < shape.size(); ++i) {
      if (i == shape.size() - 1) {
        os << shape[i];
      } else {
        os << shape[i] << ",";
      }
    }
    os << "]";
    return os.str();
  };
110 111
  if (!with_dynamic_shape) {
    if (shape.size() == 4UL) {
112 113 114 115
      if (shape[2] == -1 || shape[3] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
116 117
            input,
            ShapeStr(shape)));
118
      }
119
      return nvinfer1::Dims3(shape[1], shape[2], shape[3]);
W
wenbin 已提交
120 121 122 123 124
    } else if (shape.size() == 5UL) {
      if (shape[2] == -1 || shape[3] == -1 || shape[4] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
125 126
            input,
            ShapeStr(shape)));
W
wenbin 已提交
127 128
      }
      return nvinfer1::Dims4(shape[1], shape[2], shape[3], shape[4]);
129
    } else if (shape.size() == 3UL) {
130 131 132 133
      if (shape[1] == -1 || shape[2] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
134 135
            input,
            ShapeStr(shape)));
136
      }
137
      return nvinfer1::Dims2(shape[1], shape[2]);
138 139 140 141 142
    } else if (shape.size() == 2UL) {
      if (shape[1] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
143 144
            input,
            ShapeStr(shape)));
145 146 147 148 149
      }
      nvinfer1::Dims dims;
      dims.nbDims = 1;
      dims.d[0] = shape[1];
      return dims;
150
    }
151
    // static shape doesn't support 1D op so far.
152 153
    PADDLE_ENFORCE_NE(shape.size(),
                      1UL,
154 155 156
                      platform::errors::InvalidArgument(
                          "The input [%s] shape of trt subgraph is %s."
                          "it's not supported by trt so far",
157 158
                          input,
                          ShapeStr(shape)));
159 160 161 162 163 164 165

    nvinfer1::Dims dims;
    dims.nbDims = shape.size() - 1;
    for (size_t i = 1; i < shape.size(); i++) {
      dims.d[i - 1] = shape[i];
    }
    return dims;
166 167
  } else {
    if (shape.size() == 4UL) {
168
      return nvinfer1::Dims4(shape[0], shape[1], shape[2], shape[3]);
169 170 171
    } else if (shape.size() == 3UL) {
      return nvinfer1::Dims3(shape[0], shape[1], shape[2]);
    }
172 173 174 175 176 177
    nvinfer1::Dims dims;
    dims.nbDims = shape.size();
    for (size_t i = 0; i < shape.size(); i++) {
      dims.d[i] = shape[i];
    }
    return dims;
178 179
  }
}
180
}  // namespace
181

N
nhzlx 已提交
182
class TRTInt8Calibrator;
W
wanghuancoder 已提交
183

Y
Yan Chunwei 已提交
184 185 186
/*
 * TensorRT Engine.
 *
187
 * There are two alternative ways to use it, one is to build from a paddle
188
 * protobuf model, another way is to manually construct the network.
Y
Yan Chunwei 已提交
189
 */
190 191
class TensorRTEngine {
  using DescType = ::paddle::framework::proto::BlockDesc;
192
  using ShapeMapType = std::map<std::string, std::vector<int>>;
193
  using PredictorID = int;
194

Y
Yan Chunwei 已提交
195 196 197 198
 public:
  // Weight is model parameter.
  class Weight {
   public:
199
    Weight() = default;
200
    Weight(nvinfer1::DataType dtype, void* value, size_t num_elem) {
Y
Yan Chunwei 已提交
201 202 203 204
      w_.type = dtype;
      w_.values = value;
      w_.count = num_elem;
    }
205
    const nvinfer1::Weights& get() { return w_; }
Y
Yan Chunwei 已提交
206

207 208 209 210 211 212 213 214
    void SetDataType(nvinfer1::DataType type) { w_.type = type; }

    void SetDataType(phi::DataType type);

    void SetValues(const void* values) { w_.values = values; }

    void SetCount(int64_t num) { w_.count = num; }

215 216
    std::vector<int64_t> dims;

Y
Yan Chunwei 已提交
217 218 219 220
   private:
    nvinfer1::Weights w_;
  };

Z
Zhaolong Xing 已提交
221
  TensorRTEngine(
222
      int max_batch,
223
      int64_t max_workspace,
Z
Zhaolong Xing 已提交
224
      AnalysisConfig::Precision precision = AnalysisConfig::Precision::kFloat32,
225 226
      TRTInt8Calibrator* calibrator = nullptr,
      int device_id = 0,
227
      bool with_dynamic_shape = false,
228 229 230
      const ShapeMapType min_input_shape = {},
      const ShapeMapType max_input_shape = {},
      const ShapeMapType optim_input_shape = {},
231 232 233
      const ShapeMapType min_shape_tensor = {},
      const ShapeMapType max_shape_tensor = {},
      const ShapeMapType optim_shape_tensor = {},
234
      bool disable_trt_plugin_fp16 = false,
235
      phi::DataType model_precision = phi::DataType::FLOAT32,
Z
Zhaolong Xing 已提交
236
      nvinfer1::ILogger& logger = NaiveLogger::Global())
Y
Yan Chunwei 已提交
237 238
      : max_batch_(max_batch),
        max_workspace_(max_workspace),
Z
Zhaolong Xing 已提交
239
        precision_(precision),
N
nhzlx 已提交
240
        calibrator_(calibrator),
N
nhzlx 已提交
241
        device_id_(device_id),
242
        with_dynamic_shape_(with_dynamic_shape),
243 244 245
        min_input_shape_(min_input_shape),
        max_input_shape_(max_input_shape),
        optim_input_shape_(optim_input_shape),
246 247 248
        min_shape_tensor_(min_shape_tensor),
        max_shape_tensor_(max_shape_tensor),
        optim_shape_tensor_(optim_shape_tensor),
249
        disable_trt_plugin_fp16_(disable_trt_plugin_fp16),
250
        model_precision_(model_precision),
251
        logger_(logger) {
252
    dy::initLibNvInferPlugins(&logger, "");
253
  }
Y
Yan Chunwei 已提交
254

255 256 257 258 259 260 261 262 263
  ~TensorRTEngine() {
    for (auto& attr : attrs_) {
      if (attr_dels_.find(attr.first) != attr_dels_.end()) {
        attr_dels_[attr.first]();
      }
    }
    attrs_.clear();
    attr_dels_.clear();
  }
Y
Yan Chunwei 已提交
264

265
  // Add an input and set its name, data type and dimension.
Y
Yan Chunwei 已提交
266 267 268 269 270
  nvinfer1::ITensor* DeclareInput(const std::string& name,
                                  nvinfer1::DataType dtype,
                                  const nvinfer1::Dims& dim);
  // Set the offset-th output from a layer as the network's output, and set its
  // name.
271 272
  void DeclareOutput(const nvinfer1::ILayer* layer,
                     int offset,
Y
Yan Chunwei 已提交
273
                     const std::string& name);
L
Luo Tao 已提交
274 275
  // Set the itensor_map_[name] as the network's output, and set its name.
  void DeclareOutput(const std::string& name);
276 277 278
  // Set the itensor_map_[name] as the network's output, and set its name and
  // data type.
  void DeclareOutput(const std::string& name, nvinfer1::DataType dtype);
279
  void ClearTensorMap() { itensor_map_.clear(); }
Y
Yan Chunwei 已提交
280

281
  void DeleteITensor(const std::string& name, nvinfer1::ITensor* tensor);
L
Luo Tao 已提交
282 283
  void SetITensor(const std::string& name, nvinfer1::ITensor* tensor);
  // Get an ITensor called name.
284 285 286
  nvinfer1::ITensor* GetITensor(const std::string& name, bool scalar = false);
  nvinfer1::ITensor* ConvertWeight2ITensor(const std::string& name,
                                           bool scalar = false);
287
  std::unordered_map<std::string, nvinfer1::ITensor*>* GetITensorMap();
Y
Yan Chunwei 已提交
288 289

  nvinfer1::ICudaEngine* engine() { return infer_engine_.get(); }
290
  nvinfer1::IExecutionContext* context();
W
wenbin 已提交
291 292 293 294

  int GetProfileIndex() {
    if (max_profile_num_ > 1) {
      std::unique_lock<std::mutex> lock(mutex_);
295
      return profile_index_[predictor_id_per_thread];
W
wenbin 已提交
296 297 298 299 300 301 302 303 304 305 306
    } else {
      return 0;
    }
  }

  int GetBindingsOffset() {
    return (binding_num_ / max_profile_num_) * GetProfileIndex();
  }

  int GetNbBindings() { return binding_num_; }

307 308 309 310 311
  void ResetContext() {
    PADDLE_ENFORCE_NOT_NULL(
        infer_engine_,
        platform::errors::InvalidArgument(
            "You should build engine first and then set the context."));
312 313 314
    std::unique_lock<std::mutex> lock(mutex_);
    infer_context_[predictor_id_per_thread].reset(nullptr);
    infer_context_.erase(predictor_id_per_thread);
315
    cur_profile_num_ = 0;
316
  }
N
nhzlx 已提交
317 318

  nvinfer1::IHostMemory* Serialize() {
319 320 321 322
    PADDLE_ENFORCE_NOT_NULL(
        infer_engine_,
        platform::errors::InvalidArgument(
            "The TensorRT engine must be built first before serialization"));
Z
zlsh80826 已提交
323
#if IS_TRT_VERSION_LT(8000)
N
nhzlx 已提交
324
    ihost_memory_.reset(infer_engine_->serialize());
Z
zlsh80826 已提交
325 326 327 328 329 330
#else
    PADDLE_ENFORCE_NOT_NULL(
        ihost_memory_,
        platform::errors::InvalidArgument(
            "TensorRT >= 8.0 requires that buildSerializedNetwork is called"));
#endif
N
nhzlx 已提交
331 332 333
    return ihost_memory_.get();
  }

334
  void Deserialize(const std::string& engine_serialized_data);
N
nhzlx 已提交
335

336 337
  void SetRuntimeBatch(size_t batch_size);
  int GetRuntimeBatch();
338 339 340 341

  bool WithFp16() {
    bool enable_fp16 = (precision_ == AnalysisConfig::Precision::kHalf);
    bool support_fp16 = infer_builder_->platformHasFastFp16();
342 343 344
    // below is consistent with setFlag in engine.cc
    bool fall_back_fp16 = WithInt8() && !use_dla_;
    return (enable_fp16 || fall_back_fp16) && support_fp16;
345 346
  }

347 348 349 350 351 352
  bool WithInt8() {
    bool enable_int8 = (precision_ == AnalysisConfig::Precision::kInt8);
    bool support_int8 = infer_builder_->platformHasFastInt8();
    return enable_int8 && support_int8;
  }

N
nhzlx 已提交
353
  int GetDeviceId() { return device_id_; }
354

355
  nvinfer1::IPluginV2Layer* AddPlugin(nvinfer1::ITensor* const* inputs,
356 357
                                      int num_inputs,
                                      plugin::PluginTensorRT*);
358 359 360 361 362

  nvinfer1::IPluginV2Layer* AddPluginV2Ext(nvinfer1::ITensor* const* inputs,
                                           int num_inputs,
                                           plugin::PluginTensorRTV2Ext* plugin);

363 364 365 366
  nvinfer1::IPluginV2Layer* AddPluginV2IOExt(nvinfer1::ITensor* const* inputs,
                                             int num_inputs,
                                             nvinfer1::IPluginV2IOExt* plugin);

367 368 369
  void SetTensorDynamicRange(nvinfer1::ITensor* tensor, float range) {
    quant_dynamic_range_[tensor] = range;
  }
370

371 372
  // Get fp16 trt weight. If src weight is not fp16, we will cast.
  Weight GetFp16TrtWeight(const std::string& name,
373
                          const phi::DenseTensor& weight_tensor);
374

375 376
  // Get fp32 trt weight. If src weight is not fp32, we will cast.
  Weight GetFp32TrtWeight(const std::string& name,
377
                          const phi::DenseTensor& weight_tensor);
378 379 380

  // if the src weight type is fp16, then return fp16 trt weight, etc.
  Weight GetTrtWeight(const std::string& name,
381
                      const phi::DenseTensor& weight_tensor);
382

383 384 385 386 387 388 389 390
  float GetTensorDynamicRange(nvinfer1::ITensor* tensor) {
    return quant_dynamic_range_[tensor];
  }

  bool DynamicRangeIsSet(nvinfer1::ITensor* tensor) {
    return quant_dynamic_range_.count(tensor);
  }

N
nhzlx 已提交
391 392 393 394 395
  // A pointer to CPU memory is needed of the TRT weight.
  // Before TRT runs, fluid loads weight into GPU storage.
  // so we need to copy the weights from GPU to CPU in our op converter.
  // We use a map to store these weights for the weight memory is not released
  // in advance, which affecting the construction of TRT Op.
396
  std::unordered_map<std::string /*name*/, std::unique_ptr<phi::DenseTensor>>
N
nhzlx 已提交
397
      weight_map;
Y
Yan Chunwei 已提交
398

399 400 401
  // When setting weight_map, a self-increasing suffix is needed for the names
  // so as to avoid repeatedly setting weights with the same name.
  void SetWeights(std::string w_name,
402
                  std::unique_ptr<phi::DenseTensor> w_tensor) {
403 404
    static int suffix_counter = 0;
    std::string suffix = std::to_string(suffix_counter);
P
Pei Yang 已提交
405
    std::string splitter = "__";
406 407 408 409 410 411 412 413
    std::string name_with_suffix = w_name + splitter + suffix;
    PADDLE_ENFORCE_EQ(weight_map.count(name_with_suffix),
                      0,
                      platform::errors::AlreadyExists(
                          "The weight named %s is set into the weight map "
                          "twice in TRT OP converter.",
                          name_with_suffix));
    weight_map[name_with_suffix] = std::move(w_tensor);
414 415 416
    suffix_counter += 1;
  }

417
  void SetUseOSS(bool use_varseqlen) { use_varseqlen_ = use_varseqlen; }
418 419
  void SetUseDLA(bool use_dla) { use_dla_ = use_dla; }
  void SetDLACore(int dla_core) { dla_core_ = dla_core; }
420
  void SetWithErnie(bool with_ernie) { with_ernie_ = with_ernie; }
421 422 423
  void SetWithInterleaved(bool with_interleaved) {
    with_interleaved_ = with_interleaved;
  }
424 425 426 427 428 429
  void SetTransformerPosid(std::string tensorrt_transformer_posid) {
    tensorrt_transformer_posid_ = tensorrt_transformer_posid;
  }
  void SetTransformerMaskid(std::string tensorrt_transformer_maskid) {
    tensorrt_transformer_maskid_ = tensorrt_transformer_maskid;
  }
430 431 432 433 434 435
  void ClearWeights() {
    for (auto& weight_pair : weight_map) {
      weight_pair.second.reset(nullptr);
    }
  }

436 437 438 439 440 441 442
  // NOTE: The func bellow was modified to adapt the dynamic shape.
  // Initialize the inference network, so that TensorRT layers can add to this
  // network.
  void InitNetwork();
  // After finishing adding ops, freeze this network and creates the execution
  // environment.
  void FreezeNetwork();
443 444
  void Execute(int batch_size,
               std::vector<void*>* buffers,
445 446
               cudaStream_t stream = nullptr);

447
  nvinfer1::INetworkDefinition* network() { return infer_network_.get(); }
448 449 450 451

  ShapeMapType min_input_shape() { return min_input_shape_; }
  ShapeMapType max_input_shape() { return max_input_shape_; }
  ShapeMapType optim_input_shape() { return optim_input_shape_; }
452 453 454
  ShapeMapType min_shape_tensor() { return min_shape_tensor_; }
  ShapeMapType max_shape_tensor() { return max_shape_tensor_; }
  ShapeMapType optim_shape_tensor() { return optim_shape_tensor_; }
455 456

  bool AdjustDynamicShapeRange(const ShapeMapType& runtime_input_shape,
457 458 459
                               const ShapeMapType& runtime_shape_tensor,
                               std::vector<std::string>* changed,
                               std::vector<std::string>* tensor_changed) {
460 461
    bool ret = false;
    changed->clear();
462
    tensor_changed->clear();
463 464 465 466 467
    for (const auto& it : runtime_input_shape) {
      auto name = it.first;
      auto input_shape = it.second;
      bool min_change = false;
      bool max_change = false;
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
      std::vector<int> bak_min_shape;
      std::vector<int> bak_max_shape;
      if (!min_input_shape_.count(name)) {
        min_input_shape_[name] = input_shape;
        max_input_shape_[name] = input_shape;
        optim_input_shape_[name] = input_shape;
        min_change = true;
        max_change = true;
        ret = true;
      } else {
        PADDLE_ENFORCE_EQ(min_input_shape_[name].size(),
                          input_shape.size(),
                          platform::errors::InvalidArgument(
                              "TRT dynamic_shape min_input_shape %s size not "
                              "equal, the min_input_shape[%s].size()=%d"
                              ", but the runtime_input_shape[%s].size()=%d.",
                              name,
                              name,
                              min_input_shape_[name].size(),
                              name,
                              input_shape.size()));

        bak_min_shape = min_input_shape_[name];
        bak_max_shape = max_input_shape_[name];
        for (size_t d = 0; d < input_shape.size(); ++d) {
          if (input_shape[d] < min_input_shape_[name][d]) {
            ret = true;
            min_change = true;
            min_input_shape_[name][d] = input_shape[d];
          }
          if (input_shape[d] > max_input_shape_[name][d]) {
            ret = true;
            max_change = true;
            max_input_shape_[name][d] = input_shape[d];
          }
503 504 505
        }
      }
      if (min_change)
506 507
        LOG(INFO) << "refactor tensor shape range: " << name
                  << ", min_shape from " << Vec2Str(bak_min_shape) << " to "
508 509
                  << Vec2Str(min_input_shape_[name]);
      if (max_change)
510 511
        LOG(INFO) << "refactor tensor shape range: " << name
                  << ", max_shape from " << Vec2Str(bak_max_shape) << " to "
512 513 514
                  << Vec2Str(max_input_shape_[name]);
      if (min_change || max_change) changed->push_back(name);
    }
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
    for (const auto& it : runtime_shape_tensor) {
      auto name = it.first;
      auto shape_tensor = it.second;
      bool min_change = false;
      bool max_change = false;
      std::vector<int> bak_min_shape;
      std::vector<int> bak_max_shape;
      if (!min_shape_tensor_.count(name)) {
        min_shape_tensor_[name] = shape_tensor;
        max_shape_tensor_[name] = shape_tensor;
        optim_shape_tensor_[name] = shape_tensor;
        min_change = true;
        max_change = true;
        ret = true;
      } else {
        PADDLE_ENFORCE_EQ(min_shape_tensor_[name].size(),
                          shape_tensor.size(),
                          platform::errors::InvalidArgument(
                              "TRT dynamic_shape min_shape_tensor %s size not "
                              "equal, the min_shape_tensor[%s].size()=%d"
                              ", but the runtime_shape_tensor[%s].size()=%d.",
                              name,
                              name,
                              min_shape_tensor_[name].size(),
                              name,
                              shape_tensor.size()));

        bak_min_shape = min_shape_tensor_[name];
        bak_max_shape = max_shape_tensor_[name];
        for (size_t d = 0; d < shape_tensor.size(); ++d) {
          if (shape_tensor[d] < min_shape_tensor_[name][d]) {
            ret = true;
            min_change = true;
            min_shape_tensor_[name][d] = shape_tensor[d];
          }
          if (shape_tensor[d] > max_shape_tensor_[name][d]) {
            ret = true;
            max_change = true;
            max_shape_tensor_[name][d] = shape_tensor[d];
          }
        }
      }
      if (min_change)
        LOG(INFO) << "refactor shape tensor range: " << name
                  << ", min_shape from " << Vec2Str(bak_min_shape) << " to "
                  << Vec2Str(min_shape_tensor_[name]);
      if (max_change)
        LOG(INFO) << "refactor shape tensor range: " << name
                  << ", max_shape from " << Vec2Str(bak_max_shape) << " to "
                  << Vec2Str(max_shape_tensor_[name]);
      if (min_change || max_change) tensor_changed->push_back(name);
    }
567 568 569
    return ret;
  }

570
  bool use_varseqlen() { return use_varseqlen_; }
571
  bool with_ernie() { return with_ernie_; }
572
  bool with_interleaved() { return with_interleaved_; }
573 574 575 576 577 578
  std::string tensorrt_transformer_posid() {
    return tensorrt_transformer_posid_;
  }
  std::string tensorrt_transformer_maskid() {
    return tensorrt_transformer_maskid_;
  }
579
  bool disable_trt_plugin_fp16() { return disable_trt_plugin_fp16_; }
580
  bool with_dynamic_shape() { return with_dynamic_shape_; }
581
  AnalysisConfig::Precision precision() { return precision_; }
582

583
#if IS_TRT_VERSION_GE(6000)
584
  nvinfer1::IPluginV2Layer* AddDynamicPlugin(
585 586
      nvinfer1::ITensor* const* inputs,
      int num_inputs,
587
      plugin::DynamicPluginTensorRT* plugin) {
588 589 590 591 592
    owned_pluginv2_.emplace_back(plugin);
    return network()->addPluginV2(inputs, num_inputs, *plugin);
  }
#endif

593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
  bool Has(const std::string& attr_name) const {
    return attrs_.count(attr_name) > 0;
  }

  void Erase(const std::string& attr_name) {
    if (!Has(attr_name)) {
      return;
    }
    if (attr_dels_.find(attr_name) != attr_dels_.end()) {
      attr_dels_[attr_name]();
      attr_dels_.erase(attr_name);
    }
    attrs_.erase(attr_name);
  }

  // Set a pointer to the attribute. Engine takes ownership of the attribute.
  template <typename AttrType>
  void Set(const std::string& attr_name, AttrType* attr) {
    if (attrs_.count(attr_name) == 0) {
      PADDLE_ENFORCE_EQ(
613 614
          attrs_.count(attr_name),
          0,
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
          platform::errors::AlreadyExists(
              "Attribute %s already set in trt engine.", attr_name));
    } else {
      VLOG(3) << "Setting the attribute " << attr_name << " for trt engine "
              << this;
    }
    attrs_[attr_name] = attr;
    attr_dels_[attr_name] = [attr, attr_name]() {
      VLOG(3) << "deleting " << attr_name;
      delete attr;
    };
  }

  // Set a pointer to the attribute. Engine doesn't take ownership. Caller
  // should delete the attribute.
  template <typename AttrType>
  void SetNotOwned(const std::string& attr_name, AttrType* attr) {
    PADDLE_ENFORCE_EQ(
633 634
        attrs_.count(attr_name),
        0,
635 636 637 638 639 640 641 642
        platform::errors::AlreadyExists(
            "Attribute %s already set in trt engine.", attr_name));
    attrs_[attr_name] = attr;
  }

  // Get a reference to the attributed previously set.
  template <typename AttrType>
  AttrType& Get(const std::string& attr_name) const {
643 644
    PADDLE_ENFORCE_NE(attrs_.find(attr_name),
                      attrs_.end(),
645 646 647
                      platform::errors::InvalidArgument(
                          "Attribute %s not found in trt engine.", attr_name));
    try {
648 649
      return *paddle::any_cast<AttrType*>(attrs_.at(attr_name));
    } catch (paddle::bad_any_cast&) {
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
      auto TypeToString = [](const std::type_info& info) -> std::string {
        if (std::type_index(info) == std::type_index(typeid(bool*))) {
          return "bool";
        } else if (std::type_index(info) == std::type_index(typeid(int*))) {
          return "int";
        } else if (std::type_index(info) ==
                   std::type_index(typeid(const int*))) {
          return "const int";
        } else if (std::type_index(info) ==
                   std::type_index(typeid(std::string*))) {
          return "std::string";
        }
        return info.name();
      };

      PADDLE_THROW(platform::errors::InvalidArgument(
666 667
          "Invalid type for attritube %s, expected: %s, actual: %s.",
          attr_name,
668 669 670 671 672
          TypeToString(typeid(AttrType*)),
          TypeToString(attrs_.at(attr_name).type())));
    }
  }

W
wenbin 已提交
673
  void SetProfileNum(int num) { max_profile_num_ = num; }
674 675 676 677

  void GetEngineInfo();

  void SetUseInspector(bool use_inspector) { use_inspector_ = use_inspector; }
678
  void SetScope(const framework::Scope& scope) { scope_ = &scope; }
679

680 681 682 683
  void SetContextMemorySharing(bool context_memory_sharing) {
    context_memory_sharing_ = context_memory_sharing;
  }

Y
Yan Chunwei 已提交
684
 private:
N
nhzlx 已提交
685 686 687 688
  // Each ICudaEngine object is bound to a specific GPU when it is instantiated,
  // ensure that the thread is associated with the correct device by calling
  // freshDeviceId().
  void freshDeviceId();
689 690
  // Used for convert weight into Itensor
  const framework::Scope* scope_;
N
nhzlx 已提交
691

Y
Yan Chunwei 已提交
692 693
  // the max batch size
  int max_batch_;
694 695
  // the runtime batch size
  static int runtime_batch_;
Y
Yan Chunwei 已提交
696
  // the max memory size the engine uses
697
  int64_t max_workspace_;
698

Z
Zhaolong Xing 已提交
699
  AnalysisConfig::Precision precision_;
N
nhzlx 已提交
700 701 702
  TRTInt8Calibrator* calibrator_;
  // batch size of the current data, will be updated each Executation.
  int batch_size_{-1};
N
nhzlx 已提交
703

704 705 706
  // use for engine context memory sharing
  bool context_memory_sharing_{false};

N
nhzlx 已提交
707
  int device_id_;
W
wenbin 已提交
708 709
  int max_profile_num_{1};
  int cur_profile_num_{0};
710
  std::unordered_map<PredictorID, int> profile_index_;
711
  bool with_dynamic_shape_{false};
712 713 714
  ShapeMapType min_input_shape_;
  ShapeMapType max_input_shape_;
  ShapeMapType optim_input_shape_;
715 716 717
  ShapeMapType min_shape_tensor_;
  ShapeMapType max_shape_tensor_;
  ShapeMapType optim_shape_tensor_;
718
  bool disable_trt_plugin_fp16_{false};
719
  phi::DataType model_precision_{phi::DataType::FLOAT32};
720
  bool use_varseqlen_{false};
721 722
  bool use_dla_{false};
  int dla_core_{0};
723
  bool with_ernie_{false};
724
  bool with_interleaved_{false};
725 726
  std::string tensorrt_transformer_posid_;
  std::string tensorrt_transformer_maskid_;
Y
Yan Chunwei 已提交
727 728 729
  nvinfer1::ILogger& logger_;

  // max data size for the buffers.
L
Luo Tao 已提交
730 731
  std::unordered_map<std::string /*name*/, nvinfer1::ITensor* /*ITensor*/>
      itensor_map_;
732

733
  std::vector<std::unique_ptr<plugin::PluginTensorRT>> owned_plugin_;
734
  std::vector<std::unique_ptr<plugin::PluginTensorRTV2Ext>> owned_plugin_v2ext_;
735
  std::vector<std::unique_ptr<nvinfer1::IPluginV2IOExt>> owned_plugin_v2ioext_;
Y
Yan Chunwei 已提交
736 737 738 739 740

  // TensorRT related internal members
  infer_ptr<nvinfer1::IBuilder> infer_builder_;
  infer_ptr<nvinfer1::INetworkDefinition> infer_network_;
  infer_ptr<nvinfer1::ICudaEngine> infer_engine_;
741
  std::unordered_map<PredictorID, infer_ptr<nvinfer1::IExecutionContext>>
742
      infer_context_;
N
nhzlx 已提交
743
  infer_ptr<nvinfer1::IHostMemory> ihost_memory_;
744
  std::unordered_map<nvinfer1::ITensor*, float> quant_dynamic_range_;
745

746
  std::unordered_map<std::string, paddle::any> attrs_;
747
  std::unordered_map<std::string, std::function<void(void)>> attr_dels_;
748
#if IS_TRT_VERSION_GE(6000)
W
wenbin 已提交
749
  int binding_num_;
750
  infer_ptr<nvinfer1::IBuilderConfig> infer_builder_config_;
W
wenbin 已提交
751
  std::vector<nvinfer1::IOptimizationProfile*> optim_profiles_;
752
  std::vector<std::unique_ptr<plugin::DynamicPluginTensorRT>> owned_pluginv2_;
753
#endif
754
  std::mutex mutex_;
755
  bool use_inspector_;
756 757 758

 public:
  thread_local static int predictor_id_per_thread;
Y
Yan Chunwei 已提交
759 760
};  // class TensorRTEngine

761
// Add a layer__ into engine__ with args ARGS.
Y
Yan Chunwei 已提交
762 763 764 765 766 767 768 769 770
// For example:
//
// Reference
// https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#charRNN_define_network
//
// will add a fully connected layer into the engine.
// TensorRT has too many layers, so that is not wise to add member functions for
// them, and an macro like this is more extensible when underlying TensorRT
// library add new layer supports.
771
#define TRT_ENGINE_ADD_LAYER(engine__, layer__, ...) \
Z
zhoutianzi666 已提交
772
  engine__->network()->add##layer__(__VA_ARGS__)
Y
Yan Chunwei 已提交
773

774
class TRTEngineManager {
775 776 777
  using PredictorID = int;
  using AllocationPtr = phi::Allocator::AllocationPtr;

778
 public:
779 780 781 782 783 784 785 786 787
  TRTEngineManager() {
    // createInferBuilder loads trt kernels and take a few second
    // But as long as one IBuilder lives, trt kernel will not be unloaded
    // Hence, a persistent IBuilder to avoid TensorRT unload/reload kernels
    if (FLAGS_trt_ibuilder_cache) {
      holder_.reset(createInferBuilder(&NaiveLogger::Global()));
    }
  }

788 789 790 791 792
  bool Empty() const {
    std::lock_guard<std::mutex> lock(mutex_);
    return engines_.size() == 0;
  }

793
  bool Has(const std::string& name) const {
794
    std::lock_guard<std::mutex> lock(mutex_);
795 796 797 798 799
    if (engines_.count(name) == 0) return false;
    return engines_.at(name).get() != nullptr;
  }

  TensorRTEngine* Get(const std::string& name) const {
800
    std::lock_guard<std::mutex> lock(mutex_);
801 802 803
    return engines_.at(name).get();
  }

Z
Zhaolong Xing 已提交
804
  TensorRTEngine* Create(
805 806
      std::string name,
      int max_batch,
807
      int64_t max_workspace,
Z
Zhaolong Xing 已提交
808
      AnalysisConfig::Precision precision = AnalysisConfig::Precision::kFloat32,
809 810
      TRTInt8Calibrator* calibrator = nullptr,
      int device_id = 0,
811
      bool with_dynamic_shape = false,
812 813 814
      const std::map<std::string, std::vector<int>> min_input_shape = {},
      const std::map<std::string, std::vector<int>> max_input_shape = {},
      const std::map<std::string, std::vector<int>> optim_input_shape = {},
815 816 817
      const std::map<std::string, std::vector<int>> min_shape_tensor = {},
      const std::map<std::string, std::vector<int>> max_shape_tensor = {},
      const std::map<std::string, std::vector<int>> optim_shape_tensor = {},
818
      bool disable_trt_plugin_fp16 = false,
819
      phi::DataType model_precision = phi::DataType::FLOAT32,
Z
Zhaolong Xing 已提交
820
      nvinfer1::ILogger& logger = NaiveLogger::Global()) {
821 822 823 824 825
    auto* p = new TensorRTEngine(max_batch,
                                 max_workspace,
                                 precision,
                                 calibrator,
                                 device_id,
826
                                 with_dynamic_shape,
827 828 829
                                 min_input_shape,
                                 max_input_shape,
                                 optim_input_shape,
830 831 832
                                 min_shape_tensor,
                                 max_shape_tensor,
                                 optim_shape_tensor,
833
                                 disable_trt_plugin_fp16,
834
                                 model_precision,
835
                                 logger);
836
    std::lock_guard<std::mutex> lock(mutex_);
837 838 839 840 841
    engines_[name].reset(p);
    return p;
  }

  void DeleteAll() {
842
    std::lock_guard<std::mutex> lock(mutex_);
843 844 845
    for (auto& item : engines_) {
      item.second.reset(nullptr);
    }
846
    engines_.clear();
847 848
  }

W
Wilber 已提交
849
  void DeleteKey(const std::string& key) {
850
    std::lock_guard<std::mutex> lock(mutex_);
W
Wilber 已提交
851 852 853 854 855 856 857
    auto iter = engines_.find(key);
    if (iter != engines_.end()) {
      iter->second.reset(nullptr);
      engines_.erase(iter);
    }
  }

858
  void updateContextMemorySize(size_t mem_size, PredictorID predictor_id) {
Y
Yuanle Liu 已提交
859 860 861
    VLOG(3) << "TensorRT engine context memory size is "
            << mem_size / 1024.0 / 1024.0 << "MiB in predictor id "
            << predictor_id;
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
    bool size_updated{false};

    {
      std::lock_guard<std::mutex> lock(mutex_);
      if (max_ctx_mem_size_ < mem_size) {
        max_ctx_mem_size_ = mem_size;
        size_updated = true;
      }
    }

    if (size_updated) {
      releaseContextMemory(predictor_id);
    }
  }

  void* getContextMemory(PredictorID predictor_id,
                         const phi::GPUPlace& place,
                         const phi::Stream& stream) {
    std::lock_guard<std::mutex> lock(mutex_);
    static auto alignment = getAlignmentSize(place);
    if (context_memorys_.count(predictor_id) == 0) {
      auto context_memory =
          memory::Alloc(place, max_ctx_mem_size_ + alignment, stream);
      context_memorys_[predictor_id] = std::move(context_memory);
    }
    return getAlignedMemory(context_memorys_[predictor_id]->ptr(), alignment);
  }

  void releaseContextMemory(PredictorID predictor_id) {
    std::lock_guard<std::mutex> lock(mutex_);
    if (context_memorys_.count(predictor_id)) {
      context_memorys_[predictor_id].reset(nullptr);
      context_memorys_.erase(predictor_id);
    }
  }

898
 private:
899 900 901 902 903 904 905 906 907 908 909 910
  size_t getAlignmentSize(const phi::GPUPlace& place) {
    const auto& prop = platform::GetDeviceProperties(place.GetDeviceId());
    return prop.textureAlignment;
  }

  void* getAlignedMemory(void* addr, size_t alignment) {
    return reinterpret_cast<void*>(uintptr_t(addr) & (~(alignment - 1)));
  }

  mutable std::mutex mutex_;
  size_t max_ctx_mem_size_{0};
  std::unordered_map<PredictorID, AllocationPtr> context_memorys_;
911
  std::unordered_map<std::string, std::unique_ptr<TensorRTEngine>> engines_;
912
  infer_ptr<nvinfer1::IBuilder> holder_;
913 914
};

Y
Yan Chunwei 已提交
915 916 917
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle