engine.h 34.9 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <NvInfer.h>
18

19
#include <cstdint>
20
#include <map>
Y
Yan Chunwei 已提交
21
#include <memory>
22
#include <mutex>  // NOLINT
23
#include <string>
Y
Yan Chunwei 已提交
24
#include <unordered_map>
25
#include <unordered_set>
26
#include <utility>
27
#include <vector>
28 29
#include "NvInferRuntimeCommon.h"
#include "paddle/fluid/framework/lod_tensor.h"
30
#include "paddle/fluid/framework/scope.h"
N
nhzlx 已提交
31
#include "paddle/fluid/framework/tensor.h"
32
#include "paddle/fluid/framework/tensor_util.h"
Z
Zhaolong Xing 已提交
33
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
Y
Yan Chunwei 已提交
34
#include "paddle/fluid/inference/tensorrt/helper.h"
35
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"
N
nhzlx 已提交
36
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
37
#include "paddle/fluid/inference/utils/singleton.h"
38
#include "paddle/fluid/platform/enforce.h"
39
#include "paddle/phi/common/data_type.h"
40
#include "paddle/phi/common/place.h"
41
#include "paddle/phi/core/flags.h"
42
#include "paddle/phi/core/stream.h"
43
#include "paddle/utils/any.h"
Y
Yan Chunwei 已提交
44

45
PHI_DECLARE_bool(trt_ibuilder_cache);
46

Y
Yan Chunwei 已提交
47 48 49 50
namespace paddle {
namespace inference {
namespace tensorrt {

W
Wilber 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
// The code is mainly from TensorRT, thanks to the project.
class TrtCudaGraph {
 public:
  TrtCudaGraph() = default;
  ~TrtCudaGraph() {
    if (cuda_graph_exec_) {
      cudaGraphExecDestroy(cuda_graph_exec_);
    }
  }

  void BeginCapture(cudaStream_t stream) {
    PADDLE_ENFORCE_GPU_SUCCESS(
        cudaStreamBeginCapture(stream, cudaStreamCaptureModeThreadLocal));
  }

  bool Launch(cudaStream_t stream) {
    return cudaGraphLaunch(cuda_graph_exec_, stream);
  }

  void EndCapture(cudaStream_t stream) {
    PADDLE_ENFORCE_GPU_SUCCESS(cudaStreamEndCapture(stream, &cuda_graph_));
    PADDLE_ENFORCE_GPU_SUCCESS(cudaGraphInstantiate(
        &cuda_graph_exec_, cuda_graph_, nullptr, nullptr, 0));
    PADDLE_ENFORCE_GPU_SUCCESS(cudaGraphDestroy(cuda_graph_));
  }

  void EndCaptureOnError(cudaStream_t stream) {
    // There are two possibilities why stream capture would fail:
    // (1) stream is in cudaErrorStreamCaptureInvalidated state.
    // (2) TRT reports a failure.
    // In case (1), the returning cuda_graph_ should be nullptr.
    // In case (2), the returning cuda_graph_ is not nullptr, but it should not
    // be used.
    const auto ret = cudaStreamEndCapture(stream, &cuda_graph_);
    if (ret == cudaErrorStreamCaptureInvalidated) {
      PADDLE_ENFORCE_EQ(cuda_graph_ == nullptr,
                        true,
                        platform::errors::PreconditionNotMet(
                            "CudaGraph capture stream failed."));
    } else {
      PADDLE_ENFORCE_GPU_SUCCESS(ret);
      PADDLE_ENFORCE_NOT_NULL(
          cuda_graph_,
          phi::errors::PreconditionNotMet("CudaGraph capture stream failed."));
      PADDLE_ENFORCE_GPU_SUCCESS(cudaGraphDestroy(cuda_graph_));
      cuda_graph_ = nullptr;
    }
    // Clean up any cuda error.
    cudaGetLastError();
    LOG(WARNING) << "The TRT CUDA graph capture on the stream has failed.";
  }

 private:
  DISABLE_COPY_AND_ASSIGN(TrtCudaGraph);
  cudaGraph_t cuda_graph_{};
  cudaGraphExec_t cuda_graph_exec_{};
};

W
wanghuancoder 已提交
109 110 111 112
namespace plugin {
class PluginTensorRT;
}  // namespace plugin

113 114 115 116 117 118 119 120 121 122
using FluidDT = framework::proto::VarType_Type;
using TRT_DT = nvinfer1::DataType;

namespace {  // NOLINT

TRT_DT FluidDataType2TRT(FluidDT type) {
  switch (type) {
    case FluidDT::VarType_Type_FP32:
      return TRT_DT::kFLOAT;
    case FluidDT::VarType_Type_INT32:
123
    case FluidDT::VarType_Type_INT64:
124
      return TRT_DT::kINT32;
W
wenbin 已提交
125 126
    case FluidDT::VarType_Type_FP16:
      return TRT_DT::kHALF;
127 128 129
#if IS_TRT_VERSION_GE(8400)
    case FluidDT::VarType_Type_BOOL:
      return TRT_DT::kBOOL;
G
gaoziyuan 已提交
130

131
#endif
132
    default:
133
      PADDLE_THROW(platform::errors::InvalidArgument(
G
gaoziyuan 已提交
134 135 136 137
          "unsupported datatype in TRT op converter, type: %s. "
          "Boolean type is supported as TRT input/output "
          "using TensorRT v8.4+.",
          VarType_Type_Name(type)));
138 139 140 141 142 143
  }
  return TRT_DT::kINT32;
}

// The T can be int32 or int64 type.
template <typename T>
144 145
nvinfer1::Dims Vec2TRT_Dims(const std::vector<T>& shape,
                            std::string input,
146
                            bool with_dynamic_shape = false) {
147
  PADDLE_ENFORCE_GE(shape.size(),
148
                    0UL,
149
                    platform::errors::InvalidArgument(
150
                        "TensorRT's tensor input requires at least 0 "
151
                        "dimensions, but input %s has %d dims.",
152 153
                        input,
                        shape.size()));
W
wenbin 已提交
154

155 156 157 158 159 160 161 162 163 164 165 166 167
  auto ShapeStr = [](const std::vector<T>& shape) {
    std::ostringstream os;
    os << "[";
    for (size_t i = 0; i < shape.size(); ++i) {
      if (i == shape.size() - 1) {
        os << shape[i];
      } else {
        os << shape[i] << ",";
      }
    }
    os << "]";
    return os.str();
  };
168 169
  if (!with_dynamic_shape) {
    if (shape.size() == 4UL) {
170 171 172 173
      if (shape[2] == -1 || shape[3] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
174 175
            input,
            ShapeStr(shape)));
176
      }
177
      return nvinfer1::Dims3(shape[1], shape[2], shape[3]);
W
wenbin 已提交
178 179 180 181 182
    } else if (shape.size() == 5UL) {
      if (shape[2] == -1 || shape[3] == -1 || shape[4] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
183 184
            input,
            ShapeStr(shape)));
W
wenbin 已提交
185 186
      }
      return nvinfer1::Dims4(shape[1], shape[2], shape[3], shape[4]);
187
    } else if (shape.size() == 3UL) {
188 189 190 191
      if (shape[1] == -1 || shape[2] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
192 193
            input,
            ShapeStr(shape)));
194
      }
195
      return nvinfer1::Dims2(shape[1], shape[2]);
196 197 198 199 200
    } else if (shape.size() == 2UL) {
      if (shape[1] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
201 202
            input,
            ShapeStr(shape)));
203 204 205 206 207
      }
      nvinfer1::Dims dims;
      dims.nbDims = 1;
      dims.d[0] = shape[1];
      return dims;
208
    }
209
    // static shape doesn't support 1D op so far.
210 211
    PADDLE_ENFORCE_NE(shape.size(),
                      1UL,
212 213 214
                      platform::errors::InvalidArgument(
                          "The input [%s] shape of trt subgraph is %s."
                          "it's not supported by trt so far",
215 216
                          input,
                          ShapeStr(shape)));
217 218 219 220 221 222 223

    nvinfer1::Dims dims;
    dims.nbDims = shape.size() - 1;
    for (size_t i = 1; i < shape.size(); i++) {
      dims.d[i - 1] = shape[i];
    }
    return dims;
224 225
  } else {
    if (shape.size() == 4UL) {
226
      return nvinfer1::Dims4(shape[0], shape[1], shape[2], shape[3]);
227 228 229
    } else if (shape.size() == 3UL) {
      return nvinfer1::Dims3(shape[0], shape[1], shape[2]);
    }
230 231 232 233 234 235
    nvinfer1::Dims dims;
    dims.nbDims = shape.size();
    for (size_t i = 0; i < shape.size(); i++) {
      dims.d[i] = shape[i];
    }
    return dims;
236 237
  }
}
238
}  // namespace
239

N
nhzlx 已提交
240
class TRTInt8Calibrator;
W
wanghuancoder 已提交
241

Y
Yan Chunwei 已提交
242 243 244
/*
 * TensorRT Engine.
 *
245
 * There are two alternative ways to use it, one is to build from a paddle
246
 * protobuf model, another way is to manually construct the network.
Y
Yan Chunwei 已提交
247
 */
248 249
class TensorRTEngine {
  using DescType = ::paddle::framework::proto::BlockDesc;
250
  using ShapeMapType = std::map<std::string, std::vector<int>>;
251
  using PredictorID = int;
252

Y
Yan Chunwei 已提交
253 254 255 256
 public:
  // Weight is model parameter.
  class Weight {
   public:
257
    Weight() = default;
258
    Weight(nvinfer1::DataType dtype, void* value, size_t num_elem) {
Y
Yan Chunwei 已提交
259 260 261 262
      w_.type = dtype;
      w_.values = value;
      w_.count = num_elem;
    }
263
    const nvinfer1::Weights& get() { return w_; }
Y
Yan Chunwei 已提交
264

265 266 267 268 269 270 271 272
    void SetDataType(nvinfer1::DataType type) { w_.type = type; }

    void SetDataType(phi::DataType type);

    void SetValues(const void* values) { w_.values = values; }

    void SetCount(int64_t num) { w_.count = num; }

273 274
    std::vector<int64_t> dims;

Y
Yan Chunwei 已提交
275 276 277 278
   private:
    nvinfer1::Weights w_;
  };

Z
Zhaolong Xing 已提交
279
  TensorRTEngine(
280
      int max_batch,
281
      int64_t max_workspace,
Z
Zhaolong Xing 已提交
282
      AnalysisConfig::Precision precision = AnalysisConfig::Precision::kFloat32,
283 284
      TRTInt8Calibrator* calibrator = nullptr,
      int device_id = 0,
285
      bool with_dynamic_shape = false,
286 287 288
      const ShapeMapType min_input_shape = {},
      const ShapeMapType max_input_shape = {},
      const ShapeMapType optim_input_shape = {},
289 290 291
      const ShapeMapType min_shape_tensor = {},
      const ShapeMapType max_shape_tensor = {},
      const ShapeMapType optim_shape_tensor = {},
292
      bool disable_trt_plugin_fp16 = false,
293
      phi::DataType model_precision = phi::DataType::FLOAT32,
Z
Zhaolong Xing 已提交
294
      nvinfer1::ILogger& logger = NaiveLogger::Global())
Y
Yan Chunwei 已提交
295 296
      : max_batch_(max_batch),
        max_workspace_(max_workspace),
Z
Zhaolong Xing 已提交
297
        precision_(precision),
N
nhzlx 已提交
298
        calibrator_(calibrator),
N
nhzlx 已提交
299
        device_id_(device_id),
300
        with_dynamic_shape_(with_dynamic_shape),
301 302 303
        min_input_shape_(min_input_shape),
        max_input_shape_(max_input_shape),
        optim_input_shape_(optim_input_shape),
304 305 306
        min_shape_tensor_(min_shape_tensor),
        max_shape_tensor_(max_shape_tensor),
        optim_shape_tensor_(optim_shape_tensor),
307
        disable_trt_plugin_fp16_(disable_trt_plugin_fp16),
308
        model_precision_(model_precision),
309
        logger_(logger) {
310
    dy::initLibNvInferPlugins(&logger, "");
311
  }
Y
Yan Chunwei 已提交
312

313 314 315 316 317 318 319 320 321
  ~TensorRTEngine() {
    for (auto& attr : attrs_) {
      if (attr_dels_.find(attr.first) != attr_dels_.end()) {
        attr_dels_[attr.first]();
      }
    }
    attrs_.clear();
    attr_dels_.clear();
  }
Y
Yan Chunwei 已提交
322

323
  // Add an input and set its name, data type and dimension.
Y
Yan Chunwei 已提交
324 325 326 327 328
  nvinfer1::ITensor* DeclareInput(const std::string& name,
                                  nvinfer1::DataType dtype,
                                  const nvinfer1::Dims& dim);
  // Set the offset-th output from a layer as the network's output, and set its
  // name.
329 330
  void DeclareOutput(const nvinfer1::ILayer* layer,
                     int offset,
Y
Yan Chunwei 已提交
331
                     const std::string& name);
L
Luo Tao 已提交
332 333
  // Set the itensor_map_[name] as the network's output, and set its name.
  void DeclareOutput(const std::string& name);
334 335 336
  // Set the itensor_map_[name] as the network's output, and set its name and
  // data type.
  void DeclareOutput(const std::string& name, nvinfer1::DataType dtype);
337
  void ClearTensorMap() { itensor_map_.clear(); }
Y
Yan Chunwei 已提交
338

339
  void DeleteITensor(const std::string& name, nvinfer1::ITensor* tensor);
L
Luo Tao 已提交
340 341
  void SetITensor(const std::string& name, nvinfer1::ITensor* tensor);
  // Get an ITensor called name.
342 343 344
  nvinfer1::ITensor* GetITensor(const std::string& name, bool scalar = false);
  nvinfer1::ITensor* ConvertWeight2ITensor(const std::string& name,
                                           bool scalar = false);
345
  std::unordered_map<std::string, nvinfer1::ITensor*>* GetITensorMap();
Y
Yan Chunwei 已提交
346 347

  nvinfer1::ICudaEngine* engine() { return infer_engine_.get(); }
348
  nvinfer1::IExecutionContext* context();
W
wenbin 已提交
349 350 351 352

  int GetProfileIndex() {
    if (max_profile_num_ > 1) {
      std::unique_lock<std::mutex> lock(mutex_);
353
      return profile_index_[predictor_id_per_thread];
W
wenbin 已提交
354 355 356 357 358 359 360 361 362 363 364
    } else {
      return 0;
    }
  }

  int GetBindingsOffset() {
    return (binding_num_ / max_profile_num_) * GetProfileIndex();
  }

  int GetNbBindings() { return binding_num_; }

365 366 367 368 369
  void ResetContext() {
    PADDLE_ENFORCE_NOT_NULL(
        infer_engine_,
        platform::errors::InvalidArgument(
            "You should build engine first and then set the context."));
370 371 372
    std::unique_lock<std::mutex> lock(mutex_);
    infer_context_[predictor_id_per_thread].reset(nullptr);
    infer_context_.erase(predictor_id_per_thread);
373
    cur_profile_num_ = 0;
374
  }
N
nhzlx 已提交
375 376

  nvinfer1::IHostMemory* Serialize() {
377 378 379 380
    PADDLE_ENFORCE_NOT_NULL(
        infer_engine_,
        platform::errors::InvalidArgument(
            "The TensorRT engine must be built first before serialization"));
Z
zlsh80826 已提交
381
#if IS_TRT_VERSION_LT(8000)
N
nhzlx 已提交
382
    ihost_memory_.reset(infer_engine_->serialize());
Z
zlsh80826 已提交
383 384 385 386 387 388
#else
    PADDLE_ENFORCE_NOT_NULL(
        ihost_memory_,
        platform::errors::InvalidArgument(
            "TensorRT >= 8.0 requires that buildSerializedNetwork is called"));
#endif
N
nhzlx 已提交
389 390 391
    return ihost_memory_.get();
  }

392
  void Deserialize(const std::string& engine_serialized_data);
N
nhzlx 已提交
393

394 395
  void SetRuntimeBatch(size_t batch_size);
  int GetRuntimeBatch();
396 397 398 399

  bool WithFp16() {
    bool enable_fp16 = (precision_ == AnalysisConfig::Precision::kHalf);
    bool support_fp16 = infer_builder_->platformHasFastFp16();
400 401 402
    // below is consistent with setFlag in engine.cc
    bool fall_back_fp16 = WithInt8() && !use_dla_;
    return (enable_fp16 || fall_back_fp16) && support_fp16;
403 404
  }

405 406 407 408 409 410
  bool WithInt8() {
    bool enable_int8 = (precision_ == AnalysisConfig::Precision::kInt8);
    bool support_int8 = infer_builder_->platformHasFastInt8();
    return enable_int8 && support_int8;
  }

N
nhzlx 已提交
411
  int GetDeviceId() { return device_id_; }
412

413
  nvinfer1::IPluginV2Layer* AddPlugin(nvinfer1::ITensor* const* inputs,
414 415
                                      int num_inputs,
                                      plugin::PluginTensorRT*);
416 417 418 419 420

  nvinfer1::IPluginV2Layer* AddPluginV2Ext(nvinfer1::ITensor* const* inputs,
                                           int num_inputs,
                                           plugin::PluginTensorRTV2Ext* plugin);

421 422 423 424
  nvinfer1::IPluginV2Layer* AddPluginV2IOExt(nvinfer1::ITensor* const* inputs,
                                             int num_inputs,
                                             nvinfer1::IPluginV2IOExt* plugin);

425 426 427
  void SetTensorDynamicRange(nvinfer1::ITensor* tensor, float range) {
    quant_dynamic_range_[tensor] = range;
  }
428

429 430
  // Get fp16 trt weight. If src weight is not fp16, we will cast.
  Weight GetFp16TrtWeight(const std::string& name,
431
                          const phi::DenseTensor& weight_tensor);
432

433 434
  // Get fp32 trt weight. If src weight is not fp32, we will cast.
  Weight GetFp32TrtWeight(const std::string& name,
435
                          const phi::DenseTensor& weight_tensor);
436 437 438

  // if the src weight type is fp16, then return fp16 trt weight, etc.
  Weight GetTrtWeight(const std::string& name,
439
                      const phi::DenseTensor& weight_tensor);
440

441 442 443 444 445 446 447 448
  float GetTensorDynamicRange(nvinfer1::ITensor* tensor) {
    return quant_dynamic_range_[tensor];
  }

  bool DynamicRangeIsSet(nvinfer1::ITensor* tensor) {
    return quant_dynamic_range_.count(tensor);
  }

N
nhzlx 已提交
449 450 451 452 453
  // A pointer to CPU memory is needed of the TRT weight.
  // Before TRT runs, fluid loads weight into GPU storage.
  // so we need to copy the weights from GPU to CPU in our op converter.
  // We use a map to store these weights for the weight memory is not released
  // in advance, which affecting the construction of TRT Op.
454
  std::unordered_map<std::string /*name*/, std::unique_ptr<phi::DenseTensor>>
N
nhzlx 已提交
455
      weight_map;
Y
Yan Chunwei 已提交
456

457 458 459
  // When setting weight_map, a self-increasing suffix is needed for the names
  // so as to avoid repeatedly setting weights with the same name.
  void SetWeights(std::string w_name,
460
                  std::unique_ptr<phi::DenseTensor> w_tensor) {
461 462
    static int suffix_counter = 0;
    std::string suffix = std::to_string(suffix_counter);
P
Pei Yang 已提交
463
    std::string splitter = "__";
464 465 466 467 468 469 470 471
    std::string name_with_suffix = w_name + splitter + suffix;
    PADDLE_ENFORCE_EQ(weight_map.count(name_with_suffix),
                      0,
                      platform::errors::AlreadyExists(
                          "The weight named %s is set into the weight map "
                          "twice in TRT OP converter.",
                          name_with_suffix));
    weight_map[name_with_suffix] = std::move(w_tensor);
472 473 474
    suffix_counter += 1;
  }

475
  void SetUseOSS(bool use_varseqlen) { use_varseqlen_ = use_varseqlen; }
476 477
  void SetUseDLA(bool use_dla) { use_dla_ = use_dla; }
  void SetDLACore(int dla_core) { dla_core_ = dla_core; }
478
  void SetWithErnie(bool with_ernie) { with_ernie_ = with_ernie; }
479 480 481
  void SetWithInterleaved(bool with_interleaved) {
    with_interleaved_ = with_interleaved;
  }
482 483 484 485 486 487
  void SetTransformerPosid(std::string tensorrt_transformer_posid) {
    tensorrt_transformer_posid_ = tensorrt_transformer_posid;
  }
  void SetTransformerMaskid(std::string tensorrt_transformer_maskid) {
    tensorrt_transformer_maskid_ = tensorrt_transformer_maskid;
  }
488 489 490 491 492 493
  void ClearWeights() {
    for (auto& weight_pair : weight_map) {
      weight_pair.second.reset(nullptr);
    }
  }

494 495 496 497 498 499 500
  // NOTE: The func bellow was modified to adapt the dynamic shape.
  // Initialize the inference network, so that TensorRT layers can add to this
  // network.
  void InitNetwork();
  // After finishing adding ops, freeze this network and creates the execution
  // environment.
  void FreezeNetwork();
501 502
  void Execute(int batch_size,
               std::vector<void*>* buffers,
503 504
               cudaStream_t stream = nullptr);

W
Wilber 已提交
505 506 507 508 509
  bool Enqueue(nvinfer1::IExecutionContext* context,
               std::vector<void*>* buffers,
               int batch,
               cudaStream_t stream);

510
  nvinfer1::INetworkDefinition* network() { return infer_network_.get(); }
511 512 513 514

  ShapeMapType min_input_shape() { return min_input_shape_; }
  ShapeMapType max_input_shape() { return max_input_shape_; }
  ShapeMapType optim_input_shape() { return optim_input_shape_; }
515 516 517
  ShapeMapType min_shape_tensor() { return min_shape_tensor_; }
  ShapeMapType max_shape_tensor() { return max_shape_tensor_; }
  ShapeMapType optim_shape_tensor() { return optim_shape_tensor_; }
518 519

  bool AdjustDynamicShapeRange(const ShapeMapType& runtime_input_shape,
520 521 522
                               const ShapeMapType& runtime_shape_tensor,
                               std::vector<std::string>* changed,
                               std::vector<std::string>* tensor_changed) {
523 524
    bool ret = false;
    changed->clear();
525
    tensor_changed->clear();
526 527 528 529 530
    for (const auto& it : runtime_input_shape) {
      auto name = it.first;
      auto input_shape = it.second;
      bool min_change = false;
      bool max_change = false;
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
      std::vector<int> bak_min_shape;
      std::vector<int> bak_max_shape;
      if (!min_input_shape_.count(name)) {
        min_input_shape_[name] = input_shape;
        max_input_shape_[name] = input_shape;
        optim_input_shape_[name] = input_shape;
        min_change = true;
        max_change = true;
        ret = true;
      } else {
        PADDLE_ENFORCE_EQ(min_input_shape_[name].size(),
                          input_shape.size(),
                          platform::errors::InvalidArgument(
                              "TRT dynamic_shape min_input_shape %s size not "
                              "equal, the min_input_shape[%s].size()=%d"
                              ", but the runtime_input_shape[%s].size()=%d.",
                              name,
                              name,
                              min_input_shape_[name].size(),
                              name,
                              input_shape.size()));

        bak_min_shape = min_input_shape_[name];
        bak_max_shape = max_input_shape_[name];
        for (size_t d = 0; d < input_shape.size(); ++d) {
          if (input_shape[d] < min_input_shape_[name][d]) {
            ret = true;
            min_change = true;
            min_input_shape_[name][d] = input_shape[d];
          }
          if (input_shape[d] > max_input_shape_[name][d]) {
            ret = true;
            max_change = true;
            max_input_shape_[name][d] = input_shape[d];
          }
566 567 568
        }
      }
      if (min_change)
569 570
        LOG(INFO) << "refactor tensor shape range: " << name
                  << ", min_shape from " << Vec2Str(bak_min_shape) << " to "
571 572
                  << Vec2Str(min_input_shape_[name]);
      if (max_change)
573 574
        LOG(INFO) << "refactor tensor shape range: " << name
                  << ", max_shape from " << Vec2Str(bak_max_shape) << " to "
575 576 577
                  << Vec2Str(max_input_shape_[name]);
      if (min_change || max_change) changed->push_back(name);
    }
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
    for (const auto& it : runtime_shape_tensor) {
      auto name = it.first;
      auto shape_tensor = it.second;
      bool min_change = false;
      bool max_change = false;
      std::vector<int> bak_min_shape;
      std::vector<int> bak_max_shape;
      if (!min_shape_tensor_.count(name)) {
        min_shape_tensor_[name] = shape_tensor;
        max_shape_tensor_[name] = shape_tensor;
        optim_shape_tensor_[name] = shape_tensor;
        min_change = true;
        max_change = true;
        ret = true;
      } else {
        PADDLE_ENFORCE_EQ(min_shape_tensor_[name].size(),
                          shape_tensor.size(),
                          platform::errors::InvalidArgument(
                              "TRT dynamic_shape min_shape_tensor %s size not "
                              "equal, the min_shape_tensor[%s].size()=%d"
                              ", but the runtime_shape_tensor[%s].size()=%d.",
                              name,
                              name,
                              min_shape_tensor_[name].size(),
                              name,
                              shape_tensor.size()));

        bak_min_shape = min_shape_tensor_[name];
        bak_max_shape = max_shape_tensor_[name];
        for (size_t d = 0; d < shape_tensor.size(); ++d) {
          if (shape_tensor[d] < min_shape_tensor_[name][d]) {
            ret = true;
            min_change = true;
            min_shape_tensor_[name][d] = shape_tensor[d];
          }
          if (shape_tensor[d] > max_shape_tensor_[name][d]) {
            ret = true;
            max_change = true;
            max_shape_tensor_[name][d] = shape_tensor[d];
          }
        }
      }
      if (min_change)
        LOG(INFO) << "refactor shape tensor range: " << name
                  << ", min_shape from " << Vec2Str(bak_min_shape) << " to "
                  << Vec2Str(min_shape_tensor_[name]);
      if (max_change)
        LOG(INFO) << "refactor shape tensor range: " << name
                  << ", max_shape from " << Vec2Str(bak_max_shape) << " to "
                  << Vec2Str(max_shape_tensor_[name]);
      if (min_change || max_change) tensor_changed->push_back(name);
    }
630 631 632
    return ret;
  }

633
  bool use_varseqlen() { return use_varseqlen_; }
634
  bool with_ernie() { return with_ernie_; }
635
  bool with_interleaved() { return with_interleaved_; }
636 637 638 639 640 641
  std::string tensorrt_transformer_posid() {
    return tensorrt_transformer_posid_;
  }
  std::string tensorrt_transformer_maskid() {
    return tensorrt_transformer_maskid_;
  }
642
  bool disable_trt_plugin_fp16() { return disable_trt_plugin_fp16_; }
643
  bool with_dynamic_shape() { return with_dynamic_shape_; }
644
  AnalysisConfig::Precision precision() { return precision_; }
645

646
#if IS_TRT_VERSION_GE(6000)
647
  nvinfer1::IPluginV2Layer* AddDynamicPlugin(
648 649
      nvinfer1::ITensor* const* inputs,
      int num_inputs,
650
      plugin::DynamicPluginTensorRT* plugin) {
651 652 653 654 655
    owned_pluginv2_.emplace_back(plugin);
    return network()->addPluginV2(inputs, num_inputs, *plugin);
  }
#endif

656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
  bool Has(const std::string& attr_name) const {
    return attrs_.count(attr_name) > 0;
  }

  void Erase(const std::string& attr_name) {
    if (!Has(attr_name)) {
      return;
    }
    if (attr_dels_.find(attr_name) != attr_dels_.end()) {
      attr_dels_[attr_name]();
      attr_dels_.erase(attr_name);
    }
    attrs_.erase(attr_name);
  }

  // Set a pointer to the attribute. Engine takes ownership of the attribute.
  template <typename AttrType>
  void Set(const std::string& attr_name, AttrType* attr) {
    if (attrs_.count(attr_name) == 0) {
      PADDLE_ENFORCE_EQ(
676 677
          attrs_.count(attr_name),
          0,
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
          platform::errors::AlreadyExists(
              "Attribute %s already set in trt engine.", attr_name));
    } else {
      VLOG(3) << "Setting the attribute " << attr_name << " for trt engine "
              << this;
    }
    attrs_[attr_name] = attr;
    attr_dels_[attr_name] = [attr, attr_name]() {
      VLOG(3) << "deleting " << attr_name;
      delete attr;
    };
  }

  // Set a pointer to the attribute. Engine doesn't take ownership. Caller
  // should delete the attribute.
  template <typename AttrType>
  void SetNotOwned(const std::string& attr_name, AttrType* attr) {
    PADDLE_ENFORCE_EQ(
696 697
        attrs_.count(attr_name),
        0,
698 699 700 701 702 703 704 705
        platform::errors::AlreadyExists(
            "Attribute %s already set in trt engine.", attr_name));
    attrs_[attr_name] = attr;
  }

  // Get a reference to the attributed previously set.
  template <typename AttrType>
  AttrType& Get(const std::string& attr_name) const {
706 707
    PADDLE_ENFORCE_NE(attrs_.find(attr_name),
                      attrs_.end(),
708 709 710
                      platform::errors::InvalidArgument(
                          "Attribute %s not found in trt engine.", attr_name));
    try {
711 712
      return *paddle::any_cast<AttrType*>(attrs_.at(attr_name));
    } catch (paddle::bad_any_cast&) {
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
      auto TypeToString = [](const std::type_info& info) -> std::string {
        if (std::type_index(info) == std::type_index(typeid(bool*))) {
          return "bool";
        } else if (std::type_index(info) == std::type_index(typeid(int*))) {
          return "int";
        } else if (std::type_index(info) ==
                   std::type_index(typeid(const int*))) {
          return "const int";
        } else if (std::type_index(info) ==
                   std::type_index(typeid(std::string*))) {
          return "std::string";
        }
        return info.name();
      };

      PADDLE_THROW(platform::errors::InvalidArgument(
729 730
          "Invalid type for attritube %s, expected: %s, actual: %s.",
          attr_name,
731 732 733 734 735
          TypeToString(typeid(AttrType*)),
          TypeToString(attrs_.at(attr_name).type())));
    }
  }

W
wenbin 已提交
736
  void SetProfileNum(int num) { max_profile_num_ = num; }
737 738 739 740

  void GetEngineInfo();

  void SetUseInspector(bool use_inspector) { use_inspector_ = use_inspector; }
741
  void SetScope(const framework::Scope& scope) { scope_ = &scope; }
742

743 744 745 746
  void SetContextMemorySharing(bool context_memory_sharing) {
    context_memory_sharing_ = context_memory_sharing;
  }

W
Wilber 已提交
747 748 749 750 751
  void SetAllNodesLowerToTrt(bool all_nodes_offload_to_trt) {
    // all nodes are in trt, so we can use cudaGraph to optimize runtime.
    startup_with_cudagraph_ = all_nodes_offload_to_trt;
  }

Y
Yan Chunwei 已提交
752
 private:
N
nhzlx 已提交
753 754 755 756
  // Each ICudaEngine object is bound to a specific GPU when it is instantiated,
  // ensure that the thread is associated with the correct device by calling
  // freshDeviceId().
  void freshDeviceId();
757 758
  // Used for convert weight into Itensor
  const framework::Scope* scope_;
N
nhzlx 已提交
759

Y
Yan Chunwei 已提交
760 761
  // the max batch size
  int max_batch_;
762 763
  // the runtime batch size
  static int runtime_batch_;
Y
Yan Chunwei 已提交
764
  // the max memory size the engine uses
765
  int64_t max_workspace_;
766

Z
Zhaolong Xing 已提交
767
  AnalysisConfig::Precision precision_;
N
nhzlx 已提交
768 769 770
  TRTInt8Calibrator* calibrator_;
  // batch size of the current data, will be updated each Executation.
  int batch_size_{-1};
N
nhzlx 已提交
771

772 773 774
  // use for engine context memory sharing
  bool context_memory_sharing_{false};

N
nhzlx 已提交
775
  int device_id_;
W
wenbin 已提交
776 777
  int max_profile_num_{1};
  int cur_profile_num_{0};
778
  std::unordered_map<PredictorID, int> profile_index_;
779
  bool with_dynamic_shape_{false};
780 781 782
  ShapeMapType min_input_shape_;
  ShapeMapType max_input_shape_;
  ShapeMapType optim_input_shape_;
783 784 785
  ShapeMapType min_shape_tensor_;
  ShapeMapType max_shape_tensor_;
  ShapeMapType optim_shape_tensor_;
786
  bool disable_trt_plugin_fp16_{false};
787
  phi::DataType model_precision_{phi::DataType::FLOAT32};
788
  bool use_varseqlen_{false};
789 790
  bool use_dla_{false};
  int dla_core_{0};
791
  bool with_ernie_{false};
792
  bool with_interleaved_{false};
793 794
  std::string tensorrt_transformer_posid_;
  std::string tensorrt_transformer_maskid_;
Y
Yan Chunwei 已提交
795 796 797
  nvinfer1::ILogger& logger_;

  // max data size for the buffers.
L
Luo Tao 已提交
798 799
  std::unordered_map<std::string /*name*/, nvinfer1::ITensor* /*ITensor*/>
      itensor_map_;
800

801
  std::vector<std::unique_ptr<plugin::PluginTensorRT>> owned_plugin_;
802
  std::vector<std::unique_ptr<plugin::PluginTensorRTV2Ext>> owned_plugin_v2ext_;
803
  std::vector<std::unique_ptr<nvinfer1::IPluginV2IOExt>> owned_plugin_v2ioext_;
Y
Yan Chunwei 已提交
804 805 806 807 808

  // TensorRT related internal members
  infer_ptr<nvinfer1::IBuilder> infer_builder_;
  infer_ptr<nvinfer1::INetworkDefinition> infer_network_;
  infer_ptr<nvinfer1::ICudaEngine> infer_engine_;
809
  std::unordered_map<PredictorID, infer_ptr<nvinfer1::IExecutionContext>>
810
      infer_context_;
N
nhzlx 已提交
811
  infer_ptr<nvinfer1::IHostMemory> ihost_memory_;
812
  std::unordered_map<nvinfer1::ITensor*, float> quant_dynamic_range_;
813

W
Wilber 已提交
814 815 816 817 818
  // cudagraph related
  TrtCudaGraph cuda_graph_;
  bool cudagraph_inited_{false};
  bool startup_with_cudagraph_{false};

819
  std::unordered_map<std::string, paddle::any> attrs_;
820
  std::unordered_map<std::string, std::function<void(void)>> attr_dels_;
821
#if IS_TRT_VERSION_GE(6000)
W
wenbin 已提交
822
  int binding_num_;
823
  infer_ptr<nvinfer1::IBuilderConfig> infer_builder_config_;
W
wenbin 已提交
824
  std::vector<nvinfer1::IOptimizationProfile*> optim_profiles_;
825
  std::vector<std::unique_ptr<plugin::DynamicPluginTensorRT>> owned_pluginv2_;
826
#endif
827
  std::mutex mutex_;
828
  bool use_inspector_;
829 830 831

 public:
  thread_local static int predictor_id_per_thread;
Y
Yan Chunwei 已提交
832 833
};  // class TensorRTEngine

834
// Add a layer__ into engine__ with args ARGS.
Y
Yan Chunwei 已提交
835 836 837 838 839 840 841 842 843
// For example:
//
// Reference
// https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#charRNN_define_network
//
// will add a fully connected layer into the engine.
// TensorRT has too many layers, so that is not wise to add member functions for
// them, and an macro like this is more extensible when underlying TensorRT
// library add new layer supports.
844
#define TRT_ENGINE_ADD_LAYER(engine__, layer__, ...) \
Z
zhoutianzi666 已提交
845
  engine__->network()->add##layer__(__VA_ARGS__)
Y
Yan Chunwei 已提交
846

847
class TRTEngineManager {
848 849 850
  using PredictorID = int;
  using AllocationPtr = phi::Allocator::AllocationPtr;

851
 public:
852 853 854 855 856 857 858 859 860
  TRTEngineManager() {
    // createInferBuilder loads trt kernels and take a few second
    // But as long as one IBuilder lives, trt kernel will not be unloaded
    // Hence, a persistent IBuilder to avoid TensorRT unload/reload kernels
    if (FLAGS_trt_ibuilder_cache) {
      holder_.reset(createInferBuilder(&NaiveLogger::Global()));
    }
  }

861 862 863 864 865
  bool Empty() const {
    std::lock_guard<std::mutex> lock(mutex_);
    return engines_.size() == 0;
  }

866
  bool Has(const std::string& name) const {
867
    std::lock_guard<std::mutex> lock(mutex_);
868 869 870 871 872
    if (engines_.count(name) == 0) return false;
    return engines_.at(name).get() != nullptr;
  }

  TensorRTEngine* Get(const std::string& name) const {
873
    std::lock_guard<std::mutex> lock(mutex_);
874 875 876
    return engines_.at(name).get();
  }

Z
Zhaolong Xing 已提交
877
  TensorRTEngine* Create(
878 879
      std::string name,
      int max_batch,
880
      int64_t max_workspace,
Z
Zhaolong Xing 已提交
881
      AnalysisConfig::Precision precision = AnalysisConfig::Precision::kFloat32,
882 883
      TRTInt8Calibrator* calibrator = nullptr,
      int device_id = 0,
884
      bool with_dynamic_shape = false,
885 886 887
      const std::map<std::string, std::vector<int>> min_input_shape = {},
      const std::map<std::string, std::vector<int>> max_input_shape = {},
      const std::map<std::string, std::vector<int>> optim_input_shape = {},
888 889 890
      const std::map<std::string, std::vector<int>> min_shape_tensor = {},
      const std::map<std::string, std::vector<int>> max_shape_tensor = {},
      const std::map<std::string, std::vector<int>> optim_shape_tensor = {},
891
      bool disable_trt_plugin_fp16 = false,
892
      phi::DataType model_precision = phi::DataType::FLOAT32,
Z
Zhaolong Xing 已提交
893
      nvinfer1::ILogger& logger = NaiveLogger::Global()) {
894 895 896 897 898
    auto* p = new TensorRTEngine(max_batch,
                                 max_workspace,
                                 precision,
                                 calibrator,
                                 device_id,
899
                                 with_dynamic_shape,
900 901 902
                                 min_input_shape,
                                 max_input_shape,
                                 optim_input_shape,
903 904 905
                                 min_shape_tensor,
                                 max_shape_tensor,
                                 optim_shape_tensor,
906
                                 disable_trt_plugin_fp16,
907
                                 model_precision,
908
                                 logger);
909
    std::lock_guard<std::mutex> lock(mutex_);
910 911 912 913 914
    engines_[name].reset(p);
    return p;
  }

  void DeleteAll() {
915
    std::lock_guard<std::mutex> lock(mutex_);
916 917 918
    for (auto& item : engines_) {
      item.second.reset(nullptr);
    }
919
    engines_.clear();
920 921
  }

W
Wilber 已提交
922
  void DeleteKey(const std::string& key) {
923
    std::lock_guard<std::mutex> lock(mutex_);
W
Wilber 已提交
924 925 926 927 928 929 930
    auto iter = engines_.find(key);
    if (iter != engines_.end()) {
      iter->second.reset(nullptr);
      engines_.erase(iter);
    }
  }

931
  void updateContextMemorySize(size_t mem_size, PredictorID predictor_id) {
Y
Yuanle Liu 已提交
932 933 934
    VLOG(3) << "TensorRT engine context memory size is "
            << mem_size / 1024.0 / 1024.0 << "MiB in predictor id "
            << predictor_id;
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
    bool size_updated{false};

    {
      std::lock_guard<std::mutex> lock(mutex_);
      if (max_ctx_mem_size_ < mem_size) {
        max_ctx_mem_size_ = mem_size;
        size_updated = true;
      }
    }

    if (size_updated) {
      releaseContextMemory(predictor_id);
    }
  }

  void* getContextMemory(PredictorID predictor_id,
                         const phi::GPUPlace& place,
                         const phi::Stream& stream) {
    std::lock_guard<std::mutex> lock(mutex_);
    static auto alignment = getAlignmentSize(place);
    if (context_memorys_.count(predictor_id) == 0) {
      auto context_memory =
          memory::Alloc(place, max_ctx_mem_size_ + alignment, stream);
      context_memorys_[predictor_id] = std::move(context_memory);
    }
    return getAlignedMemory(context_memorys_[predictor_id]->ptr(), alignment);
  }

  void releaseContextMemory(PredictorID predictor_id) {
    std::lock_guard<std::mutex> lock(mutex_);
    if (context_memorys_.count(predictor_id)) {
      context_memorys_[predictor_id].reset(nullptr);
      context_memorys_.erase(predictor_id);
    }
  }

971
 private:
972 973 974 975 976 977 978 979 980 981 982 983
  size_t getAlignmentSize(const phi::GPUPlace& place) {
    const auto& prop = platform::GetDeviceProperties(place.GetDeviceId());
    return prop.textureAlignment;
  }

  void* getAlignedMemory(void* addr, size_t alignment) {
    return reinterpret_cast<void*>(uintptr_t(addr) & (~(alignment - 1)));
  }

  mutable std::mutex mutex_;
  size_t max_ctx_mem_size_{0};
  std::unordered_map<PredictorID, AllocationPtr> context_memorys_;
984
  std::unordered_map<std::string, std::unique_ptr<TensorRTEngine>> engines_;
985
  infer_ptr<nvinfer1::IBuilder> holder_;
986 987
};

Y
Yan Chunwei 已提交
988 989 990
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle