engine.h 6.1 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <NvInfer.h>
#include <memory>
19
#include <string>
Y
Yan Chunwei 已提交
20
#include <unordered_map>
21
#include <vector>
N
nhzlx 已提交
22
#include "paddle/fluid/framework/tensor.h"
Y
Yan Chunwei 已提交
23 24
#include "paddle/fluid/inference/engine.h"
#include "paddle/fluid/inference/tensorrt/helper.h"
25
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"
N
nhzlx 已提交
26
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
27
#include "paddle/fluid/inference/utils/singleton.h"
Y
Yan Chunwei 已提交
28 29 30 31 32

namespace paddle {
namespace inference {
namespace tensorrt {

N
nhzlx 已提交
33
class TRTInt8Calibrator;
Y
Yan Chunwei 已提交
34 35 36 37 38 39 40 41 42 43 44
/*
 * TensorRT Engine.
 *
 * There are two alternative ways to use it, one is  to build from a paddle
 * protobuf model, another way is to manully construct the network.
 */
class TensorRTEngine : public EngineBase {
 public:
  // Weight is model parameter.
  class Weight {
   public:
45
    Weight() = default;
46
    Weight(nvinfer1::DataType dtype, void* value, size_t num_elem) {
Y
Yan Chunwei 已提交
47 48 49 50
      w_.type = dtype;
      w_.values = value;
      w_.count = num_elem;
    }
51
    const nvinfer1::Weights& get() { return w_; }
Y
Yan Chunwei 已提交
52

53 54
    std::vector<int64_t> dims;

Y
Yan Chunwei 已提交
55 56 57 58
   private:
    nvinfer1::Weights w_;
  };

N
nhzlx 已提交
59
  TensorRTEngine(int max_batch, int max_workspace, cudaStream_t stream,
N
nhzlx 已提交
60
                 bool enable_int8 = false,
N
nhzlx 已提交
61
                 TRTInt8Calibrator* calibrator = nullptr,
Y
Yan Chunwei 已提交
62 63 64
                 nvinfer1::ILogger& logger = NaiveLogger::Global())
      : max_batch_(max_batch),
        max_workspace_(max_workspace),
N
nhzlx 已提交
65
        stream_(stream),
N
nhzlx 已提交
66
        enable_int8_(enable_int8),
N
nhzlx 已提交
67
        calibrator_(calibrator),
68
        logger_(logger) {}
Y
Yan Chunwei 已提交
69 70 71 72

  virtual ~TensorRTEngine();

  // TODO(Superjomn) implement it later when graph segmentation is supported.
73
  void Build(const DescType& paddle_model) override;
Y
Yan Chunwei 已提交
74

75
  void Execute(int batch_size) override;
N
nhzlx 已提交
76
  void Execute(int batch_size, std::vector<void*>& buffers);
Y
Yan Chunwei 已提交
77 78 79 80

  // Initialize the inference network, so that TensorRT layers can add to this
  // network.
  void InitNetwork() {
81
    infer_builder_.reset(createInferBuilder(&logger_));
Y
Yan Chunwei 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95
    infer_network_.reset(infer_builder_->createNetwork());
  }
  // After finishing adding ops, freeze this network and creates the executation
  // environment.
  void FreezeNetwork();

  // Add an input and set its name, data type and dimention.
  nvinfer1::ITensor* DeclareInput(const std::string& name,
                                  nvinfer1::DataType dtype,
                                  const nvinfer1::Dims& dim);
  // Set the offset-th output from a layer as the network's output, and set its
  // name.
  void DeclareOutput(const nvinfer1::ILayer* layer, int offset,
                     const std::string& name);
L
Luo Tao 已提交
96 97
  // Set the itensor_map_[name] as the network's output, and set its name.
  void DeclareOutput(const std::string& name);
N
nhzlx 已提交
98 99
  // Check if the ITensor has been declared
  bool HasDeclared(const std::string& name);
Y
Yan Chunwei 已提交
100

N
nhzlx 已提交
101
  cudaStream_t stream() { return stream_; }
Y
Yan Chunwei 已提交
102

L
Luo Tao 已提交
103 104 105
  void SetITensor(const std::string& name, nvinfer1::ITensor* tensor);
  // Get an ITensor called name.
  nvinfer1::ITensor* GetITensor(const std::string& name);
Y
Yan Chunwei 已提交
106 107 108

  nvinfer1::ICudaEngine* engine() { return infer_engine_.get(); }
  nvinfer1::INetworkDefinition* network() { return infer_network_.get(); }
109 110
  void SetRuntimeBatch(size_t batch_size);
  int GetRuntimeBatch();
N
nhzlx 已提交
111
  nvinfer1::IPluginLayer* AddPlugin(nvinfer1::ITensor* const* inputs,
112
                                    int num_inputs, plugin::PluginTensorRT*);
N
nhzlx 已提交
113 114 115 116 117 118 119 120

  // A pointer to CPU memory is needed of the TRT weight.
  // Before TRT runs, fluid loads weight into GPU storage.
  // so we need to copy the weights from GPU to CPU in our op converter.
  // We use a map to store these weights for the weight memory is not released
  // in advance, which affecting the construction of TRT Op.
  std::unordered_map<std::string /*name*/, std::unique_ptr<framework::Tensor>>
      weight_map;
Y
Yan Chunwei 已提交
121 122 123 124

 private:
  // the max batch size
  int max_batch_;
125 126
  // the runtime batch size
  static int runtime_batch_;
Y
Yan Chunwei 已提交
127 128
  // the max memory size the engine uses
  int max_workspace_;
129

130
  cudaStream_t stream_;
N
nhzlx 已提交
131

N
nhzlx 已提交
132
  bool enable_int8_;
N
nhzlx 已提交
133 134 135
  TRTInt8Calibrator* calibrator_;
  // batch size of the current data, will be updated each Executation.
  int batch_size_{-1};
N
nhzlx 已提交
136

Y
Yan Chunwei 已提交
137 138
  nvinfer1::ILogger& logger_;

Y
Yan Chunwei 已提交
139
  std::vector<Buffer> buffers_;
Y
Yan Chunwei 已提交
140 141
  // max data size for the buffers.
  std::unordered_map<std::string /*name*/, size_t /*max size*/> buffer_sizes_;
L
Luo Tao 已提交
142 143
  std::unordered_map<std::string /*name*/, nvinfer1::ITensor* /*ITensor*/>
      itensor_map_;
144

145
  std::vector<std::unique_ptr<plugin::PluginTensorRT>> owned_plugin_;
Y
Yan Chunwei 已提交
146 147 148 149

  // TensorRT related internal members
  template <typename T>
  struct Destroyer {
150 151 152 153 154
    void operator()(T* x) {
      if (x) {
        x->destroy();
      }
    }
Y
Yan Chunwei 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
  };
  template <typename T>
  using infer_ptr = std::unique_ptr<T, Destroyer<T>>;
  infer_ptr<nvinfer1::IBuilder> infer_builder_;
  infer_ptr<nvinfer1::INetworkDefinition> infer_network_;
  infer_ptr<nvinfer1::ICudaEngine> infer_engine_;
  infer_ptr<nvinfer1::IExecutionContext> infer_context_;
};  // class TensorRTEngine

// Add an layer__ into engine__ with args ARGS.
// For example:
//   TRT_ENGINE_ADD_LAYER(xxx, FullyConnected, input, dim, weights, bias)
//
// Reference
// https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#charRNN_define_network
//
// will add a fully connected layer into the engine.
// TensorRT has too many layers, so that is not wise to add member functions for
// them, and an macro like this is more extensible when underlying TensorRT
// library add new layer supports.
#define TRT_ENGINE_ADD_LAYER(engine__, layer__, ARGS...) \
  engine__->network()->add##layer__(ARGS);

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle