Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
339c34e6
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
339c34e6
编写于
12月 30, 2021
作者:
W
wenbin
提交者:
GitHub
12月 30, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
dynamic shape clone (#38520)
* dynamic shape clone supported
上级
ebc72ac2
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
248 addition
and
54 deletion
+248
-54
paddle/fluid/framework/CMakeLists.txt
paddle/fluid/framework/CMakeLists.txt
+4
-0
paddle/fluid/framework/naive_executor.cc
paddle/fluid/framework/naive_executor.cc
+36
-0
paddle/fluid/framework/naive_executor.h
paddle/fluid/framework/naive_executor.h
+2
-0
paddle/fluid/inference/analysis/passes/ir_params_sync_among_devices_pass.cc
...ence/analysis/passes/ir_params_sync_among_devices_pass.cc
+11
-2
paddle/fluid/inference/api/analysis_predictor.cc
paddle/fluid/inference/api/analysis_predictor.cc
+1
-0
paddle/fluid/inference/api/analysis_predictor.h
paddle/fluid/inference/api/analysis_predictor.h
+1
-0
paddle/fluid/inference/tensorrt/engine.cc
paddle/fluid/inference/tensorrt/engine.cc
+40
-28
paddle/fluid/inference/tensorrt/engine.h
paddle/fluid/inference/tensorrt/engine.h
+35
-1
paddle/fluid/inference/tests/api/trt_dynamic_shape_test.cc
paddle/fluid/inference/tests/api/trt_dynamic_shape_test.cc
+82
-0
paddle/fluid/operators/tensorrt/tensorrt_engine_op.h
paddle/fluid/operators/tensorrt/tensorrt_engine_op.h
+36
-23
未找到文件。
paddle/fluid/framework/CMakeLists.txt
浏览文件 @
339c34e6
...
...
@@ -275,7 +275,11 @@ cc_library(lod_rank_table SRCS lod_rank_table.cc DEPS lod_tensor)
cc_library
(
feed_fetch_method SRCS feed_fetch_method.cc DEPS lod_tensor scope glog
)
cc_library
(
variable_helper SRCS variable_helper.cc DEPS lod_tensor
)
if
(
TENSORRT_FOUND
)
cc_library
(
naive_executor SRCS naive_executor.cc DEPS op_registry denormal device_context scope framework_proto glog lod_rank_table feed_fetch_method graph_to_program_pass variable_helper tensorrt_engine_op
)
else
()
cc_library
(
naive_executor SRCS naive_executor.cc DEPS op_registry denormal device_context scope framework_proto glog lod_rank_table feed_fetch_method graph_to_program_pass variable_helper
)
endif
(
TENSORRT_FOUND
)
cc_library
(
executor_gc_helper SRCS executor_gc_helper.cc DEPS scope proto_desc operator garbage_collector op_registry while_op_helper recurrent_op_helper conditional_block_op_helper
)
if
(
WITH_DISTRIBUTE
)
...
...
paddle/fluid/framework/naive_executor.cc
浏览文件 @
339c34e6
...
...
@@ -20,6 +20,9 @@
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
#if PADDLE_WITH_TENSORRT
#include "paddle/fluid/operators/tensorrt/tensorrt_engine_op.h"
#endif
namespace
paddle
{
namespace
framework
{
...
...
@@ -132,5 +135,38 @@ NaiveExecutor::~NaiveExecutor() {
#endif
}
void
NaiveExecutor
::
ResetTrtOps
(
int
num
)
{
#if PADDLE_WITH_TENSORRT
for
(
auto
&
op
:
ops_
)
{
if
(
op
->
Type
()
==
"tensorrt_engine"
)
{
operators
::
TensorRTEngineOp
*
trtop
=
dynamic_cast
<
operators
::
TensorRTEngineOp
*>
(
op
.
get
());
if
(
!
trtop
)
return
;
std
::
string
engine_key
=
trtop
->
Attr
<
std
::
string
>
(
"engine_key"
);
int
engine_predictor_id
=
trtop
->
Attr
<
int
>
(
"predictor_id"
);
std
::
string
engine_name
=
engine_key
+
std
::
to_string
(
engine_predictor_id
);
operators
::
TensorRTEngine
*
trt_engine
=
paddle
::
inference
::
Singleton
<
inference
::
tensorrt
::
TRTEngineManager
>::
Global
()
.
Get
(
engine_name
);
if
(
trt_engine
->
with_dynamic_shape
())
{
LOG
(
INFO
)
<<
"rebuild trt engine, this may cost a lot of time!"
;
trt_engine
->
ResetContext
();
trt_engine
->
ClearTensorMap
();
trt_engine
->
SetProfileNum
(
num
);
auto
*
anc
=
scope_
->
parent
();
while
(
anc
&&
anc
->
parent
())
{
anc
=
anc
->
parent
();
}
if
(
anc
==
nullptr
)
{
anc
=
scope_
;
}
trtop
->
PrepareTRTEngine
(
*
anc
,
trt_engine
);
}
}
}
#endif
}
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/naive_executor.h
浏览文件 @
339c34e6
...
...
@@ -63,6 +63,8 @@ class NaiveExecutor {
void
CleanFeedFetchOps
();
void
ResetTrtOps
(
int
num
);
protected:
void
CreateOps
(
const
ProgramDesc
&
desc
,
int
block_id
,
bool
with_feed_fetch_ops
);
...
...
paddle/fluid/inference/analysis/passes/ir_params_sync_among_devices_pass.cc
浏览文件 @
339c34e6
...
...
@@ -56,8 +56,17 @@ void IrParamsSyncAmongDevicesPass::RunImpl(Argument *argument) {
// Because there exists the case that new parameter variables are not added to
// the program in the analysis pass.
bool
reserve_cpu_weights
=
false
;
if
(
argument
->
tensorrt_allow_build_at_runtime_valid
()
&&
argument
->
tensorrt_allow_build_at_runtime
())
{
bool
with_dynamic_shape
=
false
;
if
(
argument
->
Has
(
"max_input_shape"
)
&&
argument
->
Has
(
"min_input_shape"
)
&&
argument
->
Has
(
"optim_input_shape"
))
{
with_dynamic_shape
=
(
argument
->
max_input_shape
().
size
()
>
0
&&
argument
->
min_input_shape
().
size
()
>
0
&&
argument
->
optim_input_shape
().
size
()
>
0
);
}
with_dynamic_shape
=
with_dynamic_shape
||
(
argument
->
Has
(
"tensorrt_tuned_dynamic_shape"
)
&&
argument
->
tensorrt_tuned_dynamic_shape
());
if
(
with_dynamic_shape
)
{
reserve_cpu_weights
=
true
;
}
for
(
auto
&
var_name
:
all_vars
)
{
...
...
paddle/fluid/inference/api/analysis_predictor.cc
浏览文件 @
339c34e6
...
...
@@ -1344,6 +1344,7 @@ std::unique_ptr<PaddlePredictor> AnalysisPredictor::Clone() {
std
::
lock_guard
<
std
::
mutex
>
lk
(
clone_mutex_
);
auto
*
x
=
new
AnalysisPredictor
(
config_
);
x
->
Init
(
scope_
,
inference_program_
);
x
->
executor_
->
ResetTrtOps
(
++
x
->
clone_num_
);
return
std
::
unique_ptr
<
PaddlePredictor
>
(
x
);
}
...
...
paddle/fluid/inference/api/analysis_predictor.h
浏览文件 @
339c34e6
...
...
@@ -435,6 +435,7 @@ class AnalysisPredictor : public PaddlePredictor {
bool
status_is_cloned_
{
false
};
std
::
map
<
std
::
string
,
std
::
vector
<
std
::
vector
<
int32_t
>>>
shape_info_
;
int
clone_num_
{
1
};
};
}
// namespace paddle
paddle/fluid/inference/tensorrt/engine.cc
浏览文件 @
339c34e6
...
...
@@ -42,7 +42,10 @@ void TensorRTEngine::InitNetwork() {
}
infer_builder_config_
.
reset
(
infer_builder_
->
createBuilderConfig
());
optim_profile_
=
infer_builder_
->
createOptimizationProfile
();
// optim_profile_ = infer_builder_->createOptimizationProfile();
optim_profiles_
.
resize
(
max_profile_num_
);
for
(
int
i
=
0
;
i
<
max_profile_num_
;
i
++
)
optim_profiles_
[
i
]
=
infer_builder_
->
createOptimizationProfile
();
}
void
TensorRTEngine
::
Execute
(
int
batch_size
,
std
::
vector
<
void
*>
*
buffers
,
...
...
@@ -199,35 +202,38 @@ void TensorRTEngine::FreezeNetwork() {
if
(
with_dynamic_shape_
)
{
#if IS_TRT_VERSION_GE(6000)
LOG
(
INFO
)
<<
"Run Paddle-TRT Dynamic Shape mode."
;
for
(
auto
&
input
:
min_input_shape_
)
{
for
(
int
i
=
0
;
i
<
max_profile_num_
;
i
++
)
{
for
(
auto
&
input
:
min_input_shape_
)
{
#if IS_TRT_VERSION_LT(7000)
// trt6 will check all_of input > 0
if
(
!
(
std
::
all_of
(
input
.
second
.
begin
(),
input
.
second
.
end
(),
[](
int
x
)
{
return
x
>
0
;
})
&&
std
::
all_of
(
max_input_shape_
[
input
.
first
].
begin
(),
max_input_shape_
[
input
.
first
].
end
(),
[](
int
x
)
{
return
x
>
0
;
})
&&
std
::
all_of
(
optim_input_shape_
[
input
.
first
].
begin
(),
optim_input_shape_
[
input
.
first
].
end
(),
[](
int
x
)
{
return
x
>
0
;
})))
{
continue
;
}
// trt6 will check all_of input > 0
if
(
!
(
std
::
all_of
(
input
.
second
.
begin
(),
input
.
second
.
end
(),
[](
int
x
)
{
return
x
>
0
;
})
&&
std
::
all_of
(
max_input_shape_
[
input
.
first
].
begin
(),
max_input_shape_
[
input
.
first
].
end
(),
[](
int
x
)
{
return
x
>
0
;
})
&&
std
::
all_of
(
optim_input_shape_
[
input
.
first
].
begin
(),
optim_input_shape_
[
input
.
first
].
end
(),
[](
int
x
)
{
return
x
>
0
;
})))
{
continue
;
}
#endif
VLOG
(
4
)
<<
"TRT dynamic_shape set "
<<
input
.
first
<<
" min: "
<<
Vec2Str
(
input
.
second
)
<<
", max: "
<<
Vec2Str
(
max_input_shape_
[
input
.
first
])
<<
", opt: "
<<
Vec2Str
(
optim_input_shape_
[
input
.
first
]);
optim_profile_
->
setDimensions
(
input
.
first
.
c_str
(),
nvinfer1
::
OptProfileSelector
::
kMIN
,
Vec2TRT_Dims
(
input
.
second
,
input
.
first
,
true
));
optim_profile_
->
setDimensions
(
input
.
first
.
c_str
(),
nvinfer1
::
OptProfileSelector
::
kMAX
,
Vec2TRT_Dims
(
max_input_shape_
[
input
.
first
],
input
.
first
,
true
));
optim_profile_
->
setDimensions
(
input
.
first
.
c_str
(),
nvinfer1
::
OptProfileSelector
::
kOPT
,
Vec2TRT_Dims
(
optim_input_shape_
[
input
.
first
],
input
.
first
,
true
));
VLOG
(
4
)
<<
"TRT dynamic_shape set "
<<
input
.
first
<<
" min: "
<<
Vec2Str
(
input
.
second
)
<<
", max: "
<<
Vec2Str
(
max_input_shape_
[
input
.
first
])
<<
", opt: "
<<
Vec2Str
(
optim_input_shape_
[
input
.
first
]);
optim_profiles_
[
i
]
->
setDimensions
(
input
.
first
.
c_str
(),
nvinfer1
::
OptProfileSelector
::
kMIN
,
Vec2TRT_Dims
(
input
.
second
,
input
.
first
,
true
));
optim_profiles_
[
i
]
->
setDimensions
(
input
.
first
.
c_str
(),
nvinfer1
::
OptProfileSelector
::
kMAX
,
Vec2TRT_Dims
(
max_input_shape_
[
input
.
first
],
input
.
first
,
true
));
optim_profiles_
[
i
]
->
setDimensions
(
input
.
first
.
c_str
(),
nvinfer1
::
OptProfileSelector
::
kOPT
,
Vec2TRT_Dims
(
optim_input_shape_
[
input
.
first
],
input
.
first
,
true
));
}
infer_builder_config_
->
addOptimizationProfile
(
optim_profiles_
[
i
]);
}
infer_builder_config_
->
addOptimizationProfile
(
optim_profile_
);
if
(
WithFp16
()
&&
disable_trt_plugin_fp16
())
{
LOG
(
INFO
)
<<
"NOTE: In order to achieve higher accuracy, you have "
"disabled the fp16 mode of TRT Plugin,
\n
"
...
...
@@ -237,7 +243,6 @@ void TensorRTEngine::FreezeNetwork() {
}
#endif
}
#if IS_TRT_VERSION_GE(8200)
infer_builder_config_
->
setProfilingVerbosity
(
nvinfer1
::
ProfilingVerbosity
::
kDETAILED
);
...
...
@@ -260,6 +265,13 @@ void TensorRTEngine::FreezeNetwork() {
"Build TensorRT cuda engine failed! Please recheck "
"you configurations related to paddle-TensorRT."
));
binding_num_
=
infer_engine_
->
getNbBindings
();
// reset status for dynamic shape clone
if
(
max_profile_num_
>
1
)
{
infer_context_
.
clear
();
cur_profile_num_
=
0
;
}
GetEngineInfo
();
}
...
...
paddle/fluid/inference/tensorrt/engine.h
浏览文件 @
339c34e6
...
...
@@ -253,10 +253,38 @@ class TensorRTEngine {
infer_engine_
,
platform
::
errors
::
InvalidArgument
(
"You should build engine first and then set the context."
));
// We may see trt warning: Profile 0 has been chosen by another
// IExecutionContext...
// It's ok. We will set it later.
infer_context_
[
tid
].
reset
(
infer_engine_
->
createExecutionContext
());
if
(
with_dynamic_shape_
)
{
// need new profile if it's not the first
if
(
cur_profile_num_
>
0
)
{
infer_context_
[
tid
]
->
setOptimizationProfile
(
cur_profile_num_
);
}
profile_index_
[
tid
]
=
cur_profile_num_
;
++
cur_profile_num_
;
}
}
return
infer_context_
[
tid
].
get
();
}
int
GetProfileIndex
()
{
if
(
max_profile_num_
>
1
)
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
const
std
::
thread
::
id
tid
=
std
::
this_thread
::
get_id
();
return
profile_index_
[
tid
];
}
else
{
return
0
;
}
}
int
GetBindingsOffset
()
{
return
(
binding_num_
/
max_profile_num_
)
*
GetProfileIndex
();
}
int
GetNbBindings
()
{
return
binding_num_
;
}
void
ResetContext
()
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
const
std
::
thread
::
id
tid
=
std
::
this_thread
::
get_id
();
...
...
@@ -322,6 +350,7 @@ class TensorRTEngine {
"generating serialization file and doing inference are "
"consistent."
));
binding_num_
=
infer_engine_
->
getNbBindings
();
GetEngineInfo
();
}
...
...
@@ -540,6 +569,7 @@ class TensorRTEngine {
}
}
void
SetProfileNum
(
int
num
)
{
max_profile_num_
=
num
;
}
void
GetEngineInfo
()
{
#if IS_TRT_VERSION_GE(8200)
std
::
unique_ptr
<
nvinfer1
::
IEngineInspector
>
infer_inspector
(
...
...
@@ -571,6 +601,9 @@ class TensorRTEngine {
int
batch_size_
{
-
1
};
int
device_id_
;
int
max_profile_num_
{
1
};
int
cur_profile_num_
{
0
};
std
::
unordered_map
<
std
::
thread
::
id
,
int
>
profile_index_
;
ShapeMapType
min_input_shape_
;
ShapeMapType
max_input_shape_
;
ShapeMapType
optim_input_shape_
;
...
...
@@ -614,8 +647,9 @@ class TensorRTEngine {
// For dynamic shape
bool
with_dynamic_shape_
{
false
};
#if IS_TRT_VERSION_GE(6000)
int
binding_num_
;
infer_ptr
<
nvinfer1
::
IBuilderConfig
>
infer_builder_config_
;
nvinfer1
::
IOptimizationProfile
*
optim_profile
_
;
std
::
vector
<
nvinfer1
::
IOptimizationProfile
*>
optim_profiles
_
;
std
::
vector
<
std
::
unique_ptr
<
plugin
::
DynamicPluginTensorRT
>>
owned_pluginv2_
;
#endif
std
::
mutex
mutex_
;
...
...
paddle/fluid/inference/tests/api/trt_dynamic_shape_test.cc
浏览文件 @
339c34e6
...
...
@@ -207,6 +207,87 @@ void TestTunedDynamic() {
check_func
(
test_predictor
.
get
());
}
void
TestDynamicClone
(
bool
with_dynamic
=
true
,
bool
delete_cache
=
true
,
bool
delete_conv_bn
=
false
)
{
std
::
string
model_dir
=
FLAGS_infer_model
+
"/conv_bn_swish_split_gelu/conv_bn_swish_split_gelu"
;
std
::
string
opt_cache_dir
=
model_dir
+
"/my_cache"
;
if
(
delete_cache
)
{
delete_cache_files
(
opt_cache_dir
);
}
AnalysisConfig
config
;
config
.
EnableUseGpu
(
100
,
0
);
std
::
string
buffer_prog
,
buffer_param
;
ReadBinaryFile
(
model_dir
+
"/model"
,
&
buffer_prog
);
ReadBinaryFile
(
model_dir
+
"/params"
,
&
buffer_param
);
config
.
SetModelBuffer
(
&
buffer_prog
[
0
],
buffer_prog
.
size
(),
&
buffer_param
[
0
],
buffer_param
.
size
());
config
.
SetOptimCacheDir
(
opt_cache_dir
);
config
.
SwitchUseFeedFetchOps
(
false
);
// Set the input's min, max, opt shape
config
.
EnableTensorRtEngine
(
1
<<
30
,
1
,
1
,
AnalysisConfig
::
Precision
::
kFloat32
,
false
,
false
);
if
(
delete_conv_bn
)
{
config
.
pass_builder
()
->
DeletePass
(
"conv_bn_fuse_pass"
);
}
if
(
with_dynamic
)
{
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
min_input_shape
=
{
{
"image"
,
{
1
,
1
,
3
,
3
}}};
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
max_input_shape
=
{
{
"image"
,
{
1
,
1
,
10
,
10
}}};
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
opt_input_shape
=
{
{
"image"
,
{
1
,
1
,
3
,
3
}}};
config
.
SetTRTDynamicShapeInfo
(
min_input_shape
,
max_input_shape
,
opt_input_shape
);
}
auto
predictor
=
CreatePaddlePredictor
(
config
);
auto
input_names
=
predictor
->
GetInputNames
();
int
channels
=
1
;
int
height
=
3
;
int
width
=
3
;
int
input_num
=
channels
*
height
*
width
*
1
;
float
*
input
=
new
float
[
input_num
];
memset
(
input
,
0
,
input_num
*
sizeof
(
float
));
auto
input_t
=
predictor
->
GetInputTensor
(
input_names
[
0
]);
input_t
->
Reshape
({
1
,
channels
,
height
,
width
});
input_t
->
copy_from_cpu
(
input
);
ASSERT_TRUE
(
predictor
->
ZeroCopyRun
());
std
::
vector
<
float
>
out_data
;
auto
output_names
=
predictor
->
GetOutputNames
();
auto
output_t
=
predictor
->
GetOutputTensor
(
output_names
[
0
]);
std
::
vector
<
int
>
output_shape
=
output_t
->
shape
();
int
out_num
=
std
::
accumulate
(
output_shape
.
begin
(),
output_shape
.
end
(),
1
,
std
::
multiplies
<
int
>
());
out_data
.
resize
(
out_num
);
output_t
->
copy_to_cpu
(
out_data
.
data
());
auto
predictor2
=
predictor
->
Clone
();
auto
input_t2
=
predictor2
->
GetInputTensor
(
input_names
[
0
]);
input_t2
->
Reshape
({
1
,
channels
,
height
,
width
});
input_t2
->
copy_from_cpu
(
input
);
ASSERT_TRUE
(
predictor2
->
ZeroCopyRun
());
std
::
vector
<
float
>
out_data2
;
auto
output_t2
=
predictor2
->
GetOutputTensor
(
output_names
[
0
]);
std
::
vector
<
int
>
output_shape2
=
output_t2
->
shape
();
int
out_num2
=
std
::
accumulate
(
output_shape2
.
begin
(),
output_shape2
.
end
(),
1
,
std
::
multiplies
<
int
>
());
out_data2
.
resize
(
out_num2
);
output_t2
->
copy_to_cpu
(
out_data2
.
data
());
ASSERT_TRUE
(
out_data2
.
size
()
==
out_data
.
size
());
for
(
size_t
i
=
0
;
i
<
out_data
.
size
();
i
++
)
{
EXPECT_NEAR
(
out_data2
[
i
],
out_data
[
i
],
1e-5
);
}
}
TEST
(
AnalysisPredictor
,
trt_dynamic
)
{
TestDynamic
(
true
);
}
TEST
(
AnalysisPredictor
,
trt_static
)
{
TestDynamic
(
false
);
}
TEST
(
AnalysisPredictor
,
trt_memory_serialize
)
{
...
...
@@ -218,6 +299,7 @@ TEST(AnalysisPredictor, trt_memory_serialize) {
TEST
(
AnalysisPredictor
,
trt_dynamic2
)
{
TestDynamic2
();
}
TEST
(
AnalysisPredictor
,
trt_tuned_dynamic
)
{
TestTunedDynamic
();
}
TEST
(
AnalysisPredictor
,
trt_dynamic_clone
)
{
TestDynamicClone
();
}
}
// namespace inference
}
// namespace paddle
paddle/fluid/operators/tensorrt/tensorrt_engine_op.h
浏览文件 @
339c34e6
...
...
@@ -250,6 +250,23 @@ class TensorRTEngineOp : public framework::OperatorBase {
}
}
void
PrepareTRTEngine
(
const
framework
::
Scope
&
scope
,
TensorRTEngine
*
engine
)
const
{
LOG
(
INFO
)
<<
"Prepare TRT engine (Optimize model structure, Select OP "
"kernel etc). This process may cost a lot of time."
;
framework
::
proto
::
BlockDesc
block_proto
;
block_proto
.
ParseFromString
(
Attr
<
std
::
string
>
(
"subgraph"
));
framework
::
BlockDesc
block_desc
(
nullptr
,
&
block_proto
);
std
::
vector
<
std
::
string
>
inputs
=
Inputs
(
"Xs"
);
std
::
vector
<
std
::
string
>
outputs
=
Attr
<
std
::
vector
<
std
::
string
>>
(
"output_name_mapping"
);
inference
::
Singleton
<
inference
::
tensorrt
::
OpConverter
>::
Global
()
.
ConvertBlockToTRTEngine
(
&
block_desc
,
scope
,
inputs
,
param_names_
,
outputs
,
engine
);
}
protected:
void
RunNativeImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
{
...
...
@@ -414,8 +431,19 @@ class TensorRTEngineOp : public framework::OperatorBase {
int
num_inputs
=
0
;
num_inputs
+=
runtime_input_names_
.
size
();
const
int
num_bindings
=
num_inputs
+
Outputs
(
"Ys"
).
size
();
std
::
vector
<
void
*>
buffers
(
num_bindings
);
// const int num_bindings = num_inputs + Outputs("Ys").size();
// std::vector<void *> buffers(num_bindings);
// This method returns the total over all profiles.
const
int
num_bindings
=
engine
->
GetNbBindings
();
std
::
vector
<
void
*>
buffers
(
num_bindings
,
nullptr
);
int
binding_offset
=
0
;
nvinfer1
::
IExecutionContext
*
trt_context
=
nullptr
;
if
(
engine
->
with_dynamic_shape
())
{
// Initilize context and get offset by profile index
trt_context
=
engine
->
context
();
binding_offset
=
engine
->
GetBindingsOffset
();
}
// Bind input tensor to TRT.
for
(
const
auto
&
x
:
runtime_input_names_
)
{
...
...
@@ -430,7 +458,10 @@ class TensorRTEngineOp : public framework::OperatorBase {
t
.
ShareDataWith
(
out
);
}
auto
t_shape
=
framework
::
vectorize
<
int64_t
>
(
t
.
dims
());
const
int
bind_index
=
engine
->
engine
()
->
getBindingIndex
(
x
.
c_str
());
// const int bind_index = engine->engine()->getBindingIndex(x.c_str());
// Get index of profile 0 first, then plus binding offset
const
int
bind_index
=
engine
->
engine
()
->
getBindingIndex
(
x
.
c_str
())
+
binding_offset
;
PADDLE_ENFORCE_LT
(
bind_index
,
num_bindings
,
platform
::
errors
::
InvalidArgument
(
...
...
@@ -474,7 +505,6 @@ class TensorRTEngineOp : public framework::OperatorBase {
}
}
else
{
#if IS_TRT_VERSION_GE(6000)
auto
*
trt_context
=
engine
->
context
();
trt_context
->
setBindingDimensions
(
bind_index
,
inference
::
tensorrt
::
Vec2TRT_Dims
(
t_shape
,
x
,
true
));
#endif
...
...
@@ -500,7 +530,8 @@ class TensorRTEngineOp : public framework::OperatorBase {
VLOG
(
4
)
<<
"TensorRT Engine Op Outputs:"
;
for
(
const
auto
&
y
:
Outputs
(
"Ys"
))
{
const
int
bind_index
=
engine
->
engine
()
->
getBindingIndex
(
output_maps
[
output_index
].
c_str
());
engine
->
engine
()
->
getBindingIndex
(
output_maps
[
output_index
].
c_str
())
+
binding_offset
;
std
::
vector
<
int
>
ddim
;
if
(
!
engine
->
with_dynamic_shape
())
{
...
...
@@ -511,7 +542,6 @@ class TensorRTEngineOp : public framework::OperatorBase {
}
}
else
{
#if IS_TRT_VERSION_GE(6000)
auto
*
trt_context
=
engine
->
context
();
auto
dims
=
trt_context
->
getBindingDimensions
(
bind_index
);
int
nb_dims
=
dims
.
nbDims
;
for
(;
nb_dims
>
0
;
nb_dims
--
)
{
...
...
@@ -583,23 +613,6 @@ class TensorRTEngineOp : public framework::OperatorBase {
}
return
trt_engine_
;
}
void
PrepareTRTEngine
(
const
framework
::
Scope
&
scope
,
TensorRTEngine
*
engine
)
const
{
LOG
(
INFO
)
<<
"Prepare TRT engine (Optimize model structure, Select OP "
"kernel etc). This process may cost a lot of time."
;
framework
::
proto
::
BlockDesc
block_proto
;
block_proto
.
ParseFromString
(
Attr
<
std
::
string
>
(
"subgraph"
));
framework
::
BlockDesc
block_desc
(
nullptr
,
&
block_proto
);
std
::
vector
<
std
::
string
>
inputs
=
Inputs
(
"Xs"
);
std
::
vector
<
std
::
string
>
outputs
=
Attr
<
std
::
vector
<
std
::
string
>>
(
"output_name_mapping"
);
inference
::
Singleton
<
inference
::
tensorrt
::
OpConverter
>::
Global
()
.
ConvertBlockToTRTEngine
(
&
block_desc
,
scope
,
inputs
,
param_names_
,
outputs
,
engine
);
}
};
}
// namespace operators
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录