Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
fd373579
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
fd373579
编写于
12月 10, 2022
作者:
Z
zhoutianzi666
提交者:
GitHub
12月 10, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Paddle-TRT] add cast between int64 tensor and Paddle-TRT (#45547)
* Add cast between int64 tensor and Paddle-TRT * Add Unit testing.
上级
2935ce07
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
326 addition
and
16 deletion
+326
-16
paddle/fluid/inference/analysis/ir_passes/tensorrt_subgraph_pass.cc
...id/inference/analysis/ir_passes/tensorrt_subgraph_pass.cc
+47
-6
paddle/fluid/inference/tensorrt/engine.h
paddle/fluid/inference/tensorrt/engine.h
+3
-3
paddle/fluid/operators/tensorrt/tensorrt_engine_op.h
paddle/fluid/operators/tensorrt/tensorrt_engine_op.h
+34
-5
paddle/fluid/operators/tensorrt/tensorrt_engine_op_test.cc
paddle/fluid/operators/tensorrt/tensorrt_engine_op_test.cc
+3
-2
python/paddle/fluid/tests/unittests/ir/inference/test_trt_int64.py
...ddle/fluid/tests/unittests/ir/inference/test_trt_int64.py
+239
-0
未找到文件。
paddle/fluid/inference/analysis/ir_passes/tensorrt_subgraph_pass.cc
浏览文件 @
fd373579
...
...
@@ -253,6 +253,7 @@ void TensorRtSubgraphPass::CreateTensorRTOp(
// problem, so we filter them out.
std
::
vector
<
std
::
string
>
params_not_shared
;
auto
*
scope
=
param_scope
();
// The node->inputs contains input tensors and parameters.
for
(
auto
*
x
:
node
->
inputs
)
{
input_names
.
insert
(
x
->
Name
());
...
...
@@ -264,6 +265,21 @@ void TensorRtSubgraphPass::CreateTensorRTOp(
x
->
outputs
.
size
()
<=
1
)
{
params_not_shared
.
push_back
(
x
->
Name
());
}
// When TRT Engine's input is INT64, we need do some extra work.
// So we reserved a name for later use when casting INT64 -> INT32.
// We must check whether scope has had the same name var!
if
(
x
->
Var
()
->
GetDataType
()
==
framework
::
proto
::
VarType
::
INT64
)
{
std
::
string
tmp_name
=
x
->
Name
()
+
"_cast_to_INT32"
;
LOG
(
WARNING
)
<<
"tensorrt_subgraph's input named "
<<
tmp_name
<<
" having int64 dtype in pdmodel description, we will cast them to "
"int32 dtype to feed them into paddle-trt."
;
PADDLE_ENFORCE_EQ
(
scope
->
FindVar
(
tmp_name
),
nullptr
,
platform
::
errors
::
InvalidArgument
(
"The var name %s has exists in scope."
,
tmp_name
));
scope
->
Var
(
tmp_name
);
}
}
auto
model_precision
=
...
...
@@ -273,13 +289,18 @@ void TensorRtSubgraphPass::CreateTensorRTOp(
std
::
set
<
std
::
string
>
output_names
;
std
::
set
<
std
::
string
>
output_names_with_id
;
std
::
map
<
std
::
string
,
int
>
origin_name_output_
dims
;
std
::
map
<
std
::
string
,
int
>
origin_name_output_
rank
;
std
::
unordered_set
<
Node
*>
trt_outputs
;
// record the origin output data type
std
::
vector
<
int
>
origin_outputs_dtype
;
std
::
map
<
std
::
string
,
int
>
map_origin_outputs_dtype
;
for
(
auto
*
x
:
node
->
outputs
)
{
output_names
.
insert
(
x
->
Name
());
output_names_with_id
.
insert
(
x
->
Name
()
+
std
::
to_string
(
x
->
id
()));
origin_name_output_
dims
[
x
->
Name
()]
=
x
->
Var
()
->
GetShape
().
size
();
origin_name_output_
rank
[
x
->
Name
()]
=
x
->
Var
()
->
GetShape
().
size
();
trt_outputs
.
insert
(
x
);
map_origin_outputs_dtype
[
x
->
Name
()]
=
static_cast
<
int
>
(
x
->
Var
()
->
GetDataType
());
}
OutputProcess
(
...
...
@@ -353,14 +374,34 @@ void TensorRtSubgraphPass::CreateTensorRTOp(
// output_mapping help us copy the data from the renamed ITensor
// to Tensor.
std
::
vector
<
std
::
string
>
output_mapping
;
std
::
vector
<
int
>
renamed_output_
dims
;
std
::
vector
<
int
>
renamed_output_
rank
;
for
(
auto
name
:
output_names
)
{
PADDLE_ENFORCE_NE
(
output_name_map
.
count
(
name
),
0
,
platform
::
errors
::
PreconditionNotMet
(
"The output_name_map should have %s"
,
name
));
output_mapping
.
push_back
(
output_name_map
[
name
]);
renamed_output_dims
.
push_back
(
origin_name_output_dims
[
name
]);
renamed_output_rank
.
push_back
(
origin_name_output_rank
[
name
]);
origin_outputs_dtype
.
push_back
(
map_origin_outputs_dtype
[
name
]);
// When TRT Engine's output is INT64, we need do some extra work.
// So we reserved a name for later use when casting INT32 -> INT64.
// We must check whether scope has had the same name var!
if
(
static_cast
<
framework
::
proto
::
VarType_Type
>
(
map_origin_outputs_dtype
[
name
])
==
framework
::
proto
::
VarType
::
INT64
)
{
std
::
string
tmp_name
=
name
+
"_cast_to_INT64"
;
LOG
(
WARNING
)
<<
"tensorrt_subgraph's output named "
<<
tmp_name
<<
" having int64 dtype in pdmodel description, but in fact "
"it is int32 "
"dtype after executing this tensorrt_subgraph, so we "
"need cast them into int64."
;
PADDLE_ENFORCE_EQ
(
scope
->
FindVar
(
tmp_name
),
nullptr
,
platform
::
errors
::
InvalidArgument
(
"The var name %s has exists in scope."
,
tmp_name
));
scope
->
Var
(
tmp_name
);
}
}
PADDLE_ENFORCE_EQ
(
output_mapping
.
empty
(),
false
,
...
...
@@ -381,11 +422,12 @@ void TensorRtSubgraphPass::CreateTensorRTOp(
op_desc
->
SetBlockAttr
(
"sub_block"
,
new_block
);
op_desc
->
SetAttr
(
"subgraph"
,
block_desc
.
Proto
()
->
SerializeAsString
());
op_desc
->
SetAttr
(
"origin_outputs_dtype"
,
origin_outputs_dtype
);
op_desc
->
SetAttr
(
"max_batch_size"
,
max_batch_size
);
op_desc
->
SetAttr
(
"workspace_size"
,
Get
<
int64_t
>
(
"workspace_size"
));
op_desc
->
SetAttr
(
"gpu_id"
,
Get
<
int
>
(
"gpu_device_id"
));
op_desc
->
SetAttr
(
"output_name_mapping"
,
output_mapping
);
op_desc
->
SetAttr
(
"origin_output_
dims"
,
renamed_output_dims
);
op_desc
->
SetAttr
(
"origin_output_
rank"
,
renamed_output_rank
);
op_desc
->
SetAttr
(
"parameters"
,
params
);
op_desc
->
SetAttr
(
"allow_build_at_runtime"
,
allow_build_at_runtime
);
op_desc
->
SetAttr
(
"shape_range_info_path"
,
shape_range_info_path
);
...
...
@@ -548,7 +590,6 @@ void TensorRtSubgraphPass::CreateTensorRTOp(
LOG
(
INFO
)
<<
"Prepare TRT engine (Optimize model structure, Select OP "
"kernel etc). This process may cost a lot of time."
;
auto
*
scope
=
param_scope
();
framework
::
BlockDesc
block_desc_temp
(
nullptr
,
block_desc
.
Proto
());
std
::
unordered_set
<
std
::
string
>
param_set
(
params
.
begin
(),
params
.
end
());
inference
::
Singleton
<
inference
::
tensorrt
::
OpConverter
>::
Global
()
...
...
paddle/fluid/inference/tensorrt/engine.h
浏览文件 @
fd373579
...
...
@@ -60,6 +60,7 @@ TRT_DT FluidDataType2TRT(FluidDT type) {
case
FluidDT
::
VarType_Type_FP32
:
return
TRT_DT
::
kFLOAT
;
case
FluidDT
::
VarType_Type_INT32
:
case
FluidDT
::
VarType_Type_INT64
:
return
TRT_DT
::
kINT32
;
case
FluidDT
::
VarType_Type_FP16
:
return
TRT_DT
::
kHALF
;
...
...
@@ -68,10 +69,9 @@ TRT_DT FluidDataType2TRT(FluidDT type) {
return
TRT_DT
::
kBOOL
;
#endif
default:
return
TRT_DT
::
kINT32
;
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"unknown fluid datatype in TRT op converter"
));
}
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"unknown fluid datatype in TRT op converter"
));
return
TRT_DT
::
kINT32
;
}
...
...
paddle/fluid/operators/tensorrt/tensorrt_engine_op.h
浏览文件 @
fd373579
...
...
@@ -21,13 +21,13 @@
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/common/place.h"
#ifdef PADDLE_WITH_CUDA
#include <memory>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
#include "paddle/phi/kernels/cast_kernel.h"
#include "paddle/fluid/framework/data_device_transform.h"
#include "paddle/fluid/framework/executor.h"
...
...
@@ -596,7 +596,14 @@ class TensorRTEngineOp : public framework::OperatorBase {
if
(
type
==
framework
::
proto
::
VarType
::
FP32
)
{
buffers
[
bind_index
]
=
static_cast
<
void
*>
(
t
.
data
<
float
>
());
}
else
if
(
type
==
framework
::
proto
::
VarType
::
INT64
)
{
buffers
[
bind_index
]
=
static_cast
<
void
*>
(
t
.
data
<
int64_t
>
());
auto
int32_tensor
=
scope
.
FindVar
(
x
+
"_cast_to_INT32"
)
->
GetMutable
<
phi
::
DenseTensor
>
();
*
int32_tensor
=
phi
::
Cast
<
int64_t
>
(
reinterpret_cast
<
const
phi
::
GPUContext
&>
(
dev_ctx
),
t
,
phi
::
DataType
::
INT32
);
buffers
[
bind_index
]
=
static_cast
<
void
*>
(
int32_tensor
->
data
<
int32_t
>
());
}
else
if
(
type
==
framework
::
proto
::
VarType
::
INT32
)
{
buffers
[
bind_index
]
=
static_cast
<
void
*>
(
t
.
data
<
int32_t
>
());
}
else
if
(
type
==
framework
::
proto
::
VarType
::
FP16
)
{
...
...
@@ -614,8 +621,8 @@ class TensorRTEngineOp : public framework::OperatorBase {
// Bind output tensor to TRT.
int
output_index
=
0
;
std
::
vector
<
int
>
origin_output_
dims
=
Attr
<
std
::
vector
<
int
>>
(
"origin_output_
dims
"
);
std
::
vector
<
int
>
origin_output_
rank
=
Attr
<
std
::
vector
<
int
>>
(
"origin_output_
rank
"
);
VLOG
(
4
)
<<
"TensorRT Engine Op Outputs:"
;
for
(
const
auto
&
y
:
Outputs
(
"Ys"
))
{
const
int
bind_index
=
...
...
@@ -636,7 +643,7 @@ class TensorRTEngineOp : public framework::OperatorBase {
for
(;
nb_dims
>
0
;
nb_dims
--
)
{
// some 'x 1' of shape is normal, no need to remove it
if
(
dims
.
d
[
nb_dims
-
1
]
!=
1
||
nb_dims
==
origin_output_
dims
[
output_index
])
nb_dims
==
origin_output_
rank
[
output_index
])
break
;
}
for
(
int
i
=
0
;
i
<
nb_dims
;
i
++
)
ddim
.
push_back
(
dims
.
d
[
i
]);
...
...
@@ -694,6 +701,28 @@ class TensorRTEngineOp : public framework::OperatorBase {
}
// Execute the engine.
engine
->
Execute
(
runtime_batch
,
&
buffers
,
stream
);
std
::
vector
<
int
>
origin_outputs_dtype
=
Attr
<
std
::
vector
<
int
>>
(
"origin_outputs_dtype"
);
for
(
size_t
i
=
0
;
i
<
Outputs
(
"Ys"
).
size
();
i
++
)
{
auto
type
=
static_cast
<
framework
::
proto
::
VarType_Type
>
(
origin_outputs_dtype
[
i
]);
if
(
type
==
framework
::
proto
::
VarType
::
INT64
)
{
auto
y
=
Outputs
(
"Ys"
)[
i
];
auto
*
fluid_v
=
scope
.
FindVar
(
y
);
auto
*
fluid_t
=
fluid_v
->
GetMutable
<
phi
::
DenseTensor
>
();
auto
int32_tensor
=
scope
.
FindVar
(
y
+
"_cast_to_INT64"
)
->
GetMutable
<
phi
::
DenseTensor
>
();
int32_tensor
->
Resize
(
fluid_t
->
dims
());
dev_ctx
.
Alloc
<
int32_t
>
(
int32_tensor
);
framework
::
TensorCopy
(
*
fluid_t
,
dev_place
,
dev_ctx
,
int32_tensor
);
*
fluid_t
=
phi
::
Cast
<
int32_t
>
(
reinterpret_cast
<
const
phi
::
GPUContext
&>
(
dev_ctx
),
*
int32_tensor
,
phi
::
DataType
::
INT64
);
}
}
}
TensorRTEngine
*
GetEngine
(
const
framework
::
Scope
&
scope
,
...
...
paddle/fluid/operators/tensorrt/tensorrt_engine_op_test.cc
浏览文件 @
fd373579
...
...
@@ -104,6 +104,7 @@ void DynamicShapeTest(bool allow_build_at_runtime) {
engine_op_desc
.
SetType
(
"tensorrt_engine"
);
engine_op_desc
.
SetInput
(
"Xs"
,
std
::
vector
<
std
::
string
>
({
"x"
}));
engine_op_desc
.
SetOutput
(
"Ys"
,
std
::
vector
<
std
::
string
>
({
"z0"
}));
engine_op_desc
.
SetAttr
(
"origin_outputs_dtype"
,
std
::
vector
<
int
>
{
5
});
engine_op_desc
.
SetBlockAttr
(
"sub_block"
,
&
block_desc
);
engine_op_desc
.
SetAttr
(
"max_batch_size"
,
static_cast
<
int
>
(
2
));
...
...
@@ -119,7 +120,7 @@ void DynamicShapeTest(bool allow_build_at_runtime) {
engine_op_desc
.
SetAttr
(
"use_calib_mode"
,
static_cast
<
bool
>
(
false
));
engine_op_desc
.
SetAttr
(
"output_name_mapping"
,
std
::
vector
<
std
::
string
>
({
"z0"
}));
engine_op_desc
.
SetAttr
(
"origin_output_
dims
"
,
std
::
vector
<
int
>
({
2
}));
engine_op_desc
.
SetAttr
(
"origin_output_
rank
"
,
std
::
vector
<
int
>
({
2
}));
engine_op_desc
.
SetAttr
(
"subgraph"
,
std
::
string
(
block_
->
SerializeAsString
()));
engine_op_desc
.
SetAttr
(
"engine_serialized_data"
,
std
::
string
(
""
));
int
device_id
=
0
;
...
...
@@ -274,7 +275,7 @@ void Execute(int batch_size, int input_dim, int output_dim, int nlayers = 1) {
engine_op_desc
.
SetAttr
(
"use_calib_mode"
,
static_cast
<
bool
>
(
false
));
engine_op_desc
.
SetAttr
(
"output_name_mapping"
,
std
::
vector
<
std
::
string
>
({
"z3"
}));
engine_op_desc
.
SetAttr
(
"origin_output_
dims
"
,
std
::
vector
<
int
>
({
2
}));
engine_op_desc
.
SetAttr
(
"origin_output_
rank
"
,
std
::
vector
<
int
>
({
2
}));
engine_op_desc
.
SetAttr
(
"subgraph"
,
std
::
string
(
block_
->
SerializeAsString
()));
engine_op_desc
.
SetAttr
(
"engine_serialized_data"
,
std
::
string
(
""
));
int
device_id
=
0
;
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_int64.py
0 → 100644
浏览文件 @
fd373579
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
from
functools
import
partial
from
typing
import
Any
,
Dict
,
List
import
numpy
as
np
from
program_config
import
ProgramConfig
,
TensorConfig
from
trt_layer_auto_scan_test
import
TrtLayerAutoScanTest
import
paddle.inference
as
paddle_infer
class
TrtInt64Test1
(
TrtLayerAutoScanTest
):
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
inputs
=
program_config
.
inputs
weights
=
program_config
.
weights
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
out_shape
=
list
(
inputs
[
'input_data'
].
shape
)
for
x
in
range
(
len
(
attrs
[
0
][
"axes"
])):
start
=
0
end
=
0
if
attrs
[
0
][
"starts"
][
x
]
<
0
:
start
=
(
attrs
[
0
][
"starts"
][
x
]
+
inputs
[
'input_data'
].
shape
[
attrs
[
0
][
"axes"
][
x
]]
)
else
:
start
=
attrs
[
0
][
"starts"
][
x
]
if
attrs
[
0
][
"ends"
][
x
]
<
0
:
end
=
(
attrs
[
0
][
"ends"
][
x
]
+
inputs
[
'input_data'
].
shape
[
attrs
[
0
][
"axes"
][
x
]]
)
else
:
end
=
attrs
[
0
][
"ends"
][
x
]
start
=
max
(
0
,
start
)
end
=
max
(
0
,
end
)
out_shape
[
attrs
[
0
][
"axes"
][
x
]]
=
end
-
start
if
start
>=
end
:
return
False
for
x
in
attrs
[
0
][
"decrease_axis"
]:
if
x
<
0
:
return
False
if
out_shape
[
x
]
!=
1
:
return
False
return
True
def
sample_program_configs
(
self
):
def
generate_input1
(
attrs
:
List
[
Dict
[
str
,
Any
]]):
return
(
10
*
np
.
random
.
random
([
6
,
6
,
64
,
64
])).
astype
(
np
.
int64
)
for
axes
in
[[
0
,
1
],
[
1
,
3
],
[
2
,
3
]]:
for
starts
in
[[
0
,
1
]]:
for
ends
in
[[
2
,
2
],
[
5
,
5
],
[
1
,
-
1
]]:
for
decrease_axis
in
[[],
[
1
],
[
2
],
[
-
1
],
[
-
100
]]:
for
infer_flags
in
[[
-
1
]]:
dics
=
[
{
"axes"
:
axes
,
"starts"
:
starts
,
"ends"
:
ends
,
"decrease_axis"
:
decrease_axis
,
"infer_flags"
:
infer_flags
,
}
]
ops_config
=
[
{
"op_type"
:
"slice"
,
"op_inputs"
:
{
"Input"
:
[
"input_data"
]},
"op_outputs"
:
{
"Out"
:
[
"slice_output_data"
]
},
"op_attrs"
:
dics
[
0
],
}
]
ops
=
self
.
generate_op_config
(
ops_config
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
{},
inputs
=
{
"input_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_input1
,
dics
)
)
},
outputs
=
[
"slice_output_data"
],
)
yield
program_config
def
sample_predictor_configs
(
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
def
generate_dynamic_shape
(
attrs
):
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
3
,
32
,
32
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
8
,
8
,
64
,
64
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
6
,
6
,
64
,
64
]}
def
generate_trt_nodes_num
(
attrs
,
dynamic_shape
):
return
1
,
2
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
# for dynamic_shape
generate_dynamic_shape
(
attrs
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
1e-3
def
test
(
self
):
self
.
run_test
()
class
TrtInt64Test2
(
TrtLayerAutoScanTest
):
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
return
True
def
sample_program_configs
(
self
):
def
generate_input
(
shape
,
op_type
):
return
np
.
random
.
randint
(
low
=
1
,
high
=
10000
,
size
=
shape
,
dtype
=
np
.
int64
)
for
shape
in
[[
2
,
32
,
16
],
[
1
,
8
,
16
,
32
]]:
for
op_type
in
[
"elementwise_add"
,
"elementwise_mul"
,
"elementwise_sub"
,
]:
for
axis
in
[
0
,
-
1
]:
self
.
dims
=
len
(
shape
)
dics
=
[{
"axis"
:
axis
}]
ops_config
=
[
{
"op_type"
:
op_type
,
"op_inputs"
:
{
"X"
:
[
"input_data1"
],
"Y"
:
[
"input_data2"
],
},
"op_outputs"
:
{
"Out"
:
[
"output_data"
]},
"op_attrs"
:
dics
[
0
],
}
]
ops
=
self
.
generate_op_config
(
ops_config
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
{},
inputs
=
{
"input_data1"
:
TensorConfig
(
data_gen
=
partial
(
generate_input
,
shape
,
op_type
)
),
"input_data2"
:
TensorConfig
(
data_gen
=
partial
(
generate_input
,
shape
,
op_type
)
),
},
outputs
=
[
"output_data"
],
)
yield
program_config
def
sample_predictor_configs
(
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
def
generate_dynamic_shape
(
attrs
):
if
self
.
dims
==
3
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data1"
:
[
1
,
4
,
4
],
"input_data2"
:
[
1
,
4
,
4
],
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data1"
:
[
128
,
128
,
256
],
"input_data2"
:
[
128
,
128
,
256
],
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data1"
:
[
2
,
32
,
16
],
"input_data2"
:
[
2
,
32
,
16
],
}
elif
self
.
dims
==
4
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data1"
:
[
1
,
4
,
4
,
4
],
"input_data2"
:
[
1
,
4
,
4
,
4
],
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data1"
:
[
8
,
128
,
64
,
128
],
"input_data2"
:
[
8
,
128
,
64
,
128
],
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data1"
:
[
2
,
64
,
32
,
32
],
"input_data2"
:
[
2
,
64
,
32
,
32
],
}
def
generate_trt_nodes_num
(
attrs
,
dynamic_shape
):
return
1
,
3
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
# for dynamic_shape
generate_dynamic_shape
(
attrs
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
(
1
,
3
),
(
1e-5
,
1e-5
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
(
1
,
3
),
(
1e-3
,
1e-3
)
def
add_skip_trt_case
(
self
):
pass
def
test
(
self
):
self
.
add_skip_trt_case
()
self
.
run_test
()
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录