engine.h 8.2 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <NvInfer.h>
#include <memory>
19
#include <string>
Y
Yan Chunwei 已提交
20
#include <unordered_map>
21
#include <vector>
N
nhzlx 已提交
22
#include "paddle/fluid/framework/tensor.h"
Y
Yan Chunwei 已提交
23 24
#include "paddle/fluid/inference/engine.h"
#include "paddle/fluid/inference/tensorrt/helper.h"
25
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"
N
nhzlx 已提交
26
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
27
#include "paddle/fluid/inference/utils/singleton.h"
Y
Yan Chunwei 已提交
28 29 30 31 32

namespace paddle {
namespace inference {
namespace tensorrt {

N
nhzlx 已提交
33
class TRTInt8Calibrator;
Y
Yan Chunwei 已提交
34 35 36 37 38 39
/*
 * TensorRT Engine.
 *
 * There are two alternative ways to use it, one is  to build from a paddle
 * protobuf model, another way is to manully construct the network.
 */
40 41 42
class TensorRTEngine {
  using DescType = ::paddle::framework::proto::BlockDesc;

Y
Yan Chunwei 已提交
43 44 45 46
 public:
  // Weight is model parameter.
  class Weight {
   public:
47
    Weight() = default;
48
    Weight(nvinfer1::DataType dtype, void* value, size_t num_elem) {
Y
Yan Chunwei 已提交
49 50 51 52
      w_.type = dtype;
      w_.values = value;
      w_.count = num_elem;
    }
53
    const nvinfer1::Weights& get() { return w_; }
Y
Yan Chunwei 已提交
54

55 56
    std::vector<int64_t> dims;

Y
Yan Chunwei 已提交
57 58 59 60
   private:
    nvinfer1::Weights w_;
  };

61
  TensorRTEngine(int max_batch, int max_workspace, bool enable_int8 = false,
N
nhzlx 已提交
62
                 TRTInt8Calibrator* calibrator = nullptr,
Y
Yan Chunwei 已提交
63 64 65
                 nvinfer1::ILogger& logger = NaiveLogger::Global())
      : max_batch_(max_batch),
        max_workspace_(max_workspace),
N
nhzlx 已提交
66
        enable_int8_(enable_int8),
N
nhzlx 已提交
67
        calibrator_(calibrator),
68
        logger_(logger) {}
Y
Yan Chunwei 已提交
69

70
  ~TensorRTEngine() {}
Y
Yan Chunwei 已提交
71 72

  // TODO(Superjomn) implement it later when graph segmentation is supported.
73
  void Build(const DescType& paddle_model);
Y
Yan Chunwei 已提交
74

75 76
  void Execute(int batch_size, std::vector<void*>* buffers,
               cudaStream_t stream);
Y
Yan Chunwei 已提交
77 78 79 80

  // Initialize the inference network, so that TensorRT layers can add to this
  // network.
  void InitNetwork() {
81
    infer_builder_.reset(createInferBuilder(&logger_));
Y
Yan Chunwei 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95
    infer_network_.reset(infer_builder_->createNetwork());
  }
  // After finishing adding ops, freeze this network and creates the executation
  // environment.
  void FreezeNetwork();

  // Add an input and set its name, data type and dimention.
  nvinfer1::ITensor* DeclareInput(const std::string& name,
                                  nvinfer1::DataType dtype,
                                  const nvinfer1::Dims& dim);
  // Set the offset-th output from a layer as the network's output, and set its
  // name.
  void DeclareOutput(const nvinfer1::ILayer* layer, int offset,
                     const std::string& name);
L
Luo Tao 已提交
96 97
  // Set the itensor_map_[name] as the network's output, and set its name.
  void DeclareOutput(const std::string& name);
N
nhzlx 已提交
98 99
  // Check if the ITensor has been declared
  bool HasDeclared(const std::string& name);
Y
Yan Chunwei 已提交
100

L
Luo Tao 已提交
101 102 103
  void SetITensor(const std::string& name, nvinfer1::ITensor* tensor);
  // Get an ITensor called name.
  nvinfer1::ITensor* GetITensor(const std::string& name);
Y
Yan Chunwei 已提交
104 105 106

  nvinfer1::ICudaEngine* engine() { return infer_engine_.get(); }
  nvinfer1::INetworkDefinition* network() { return infer_network_.get(); }
N
nhzlx 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134

  nvinfer1::IHostMemory* Serialize() {
    PADDLE_ENFORCE(infer_engine_ != nullptr,
                   "You should build engine first and then serialize");
    ihost_memory_.reset(infer_engine_->serialize());
    return ihost_memory_.get();
  }

  void Deserialize(const std::string& engine_serialized_data) {
    infer_ptr<nvinfer1::IRuntime> runtime(createInferRuntime(&logger_));
    infer_engine_.reset(
        runtime->deserializeCudaEngine(engine_serialized_data.c_str(),
                                       engine_serialized_data.size(), nullptr));
    PADDLE_ENFORCE(infer_engine_ != nullptr,
                   "build cuda engine failed when deserialize engine info.!");
    infer_context_.reset(infer_engine_->createExecutionContext());
  }

  void Deserialize(const nvinfer1::IHostMemory* engine_serialized_data) {
    infer_ptr<nvinfer1::IRuntime> runtime(createInferRuntime(&logger_));
    infer_engine_.reset(runtime->deserializeCudaEngine(
        engine_serialized_data->data(), engine_serialized_data->size(),
        nullptr));
    PADDLE_ENFORCE(infer_engine_ != nullptr,
                   "build cuda engine failed when deserialize engine info.!");
    infer_context_.reset(infer_engine_->createExecutionContext());
  }

135 136
  void SetRuntimeBatch(size_t batch_size);
  int GetRuntimeBatch();
N
nhzlx 已提交
137
  nvinfer1::IPluginLayer* AddPlugin(nvinfer1::ITensor* const* inputs,
138
                                    int num_inputs, plugin::PluginTensorRT*);
N
nhzlx 已提交
139 140 141 142 143 144 145 146

  // A pointer to CPU memory is needed of the TRT weight.
  // Before TRT runs, fluid loads weight into GPU storage.
  // so we need to copy the weights from GPU to CPU in our op converter.
  // We use a map to store these weights for the weight memory is not released
  // in advance, which affecting the construction of TRT Op.
  std::unordered_map<std::string /*name*/, std::unique_ptr<framework::Tensor>>
      weight_map;
Y
Yan Chunwei 已提交
147 148 149 150

 private:
  // the max batch size
  int max_batch_;
151 152
  // the runtime batch size
  static int runtime_batch_;
Y
Yan Chunwei 已提交
153 154
  // the max memory size the engine uses
  int max_workspace_;
155

N
nhzlx 已提交
156
  bool enable_int8_;
N
nhzlx 已提交
157 158 159
  TRTInt8Calibrator* calibrator_;
  // batch size of the current data, will be updated each Executation.
  int batch_size_{-1};
N
nhzlx 已提交
160

Y
Yan Chunwei 已提交
161 162 163 164
  nvinfer1::ILogger& logger_;

  // max data size for the buffers.
  std::unordered_map<std::string /*name*/, size_t /*max size*/> buffer_sizes_;
L
Luo Tao 已提交
165 166
  std::unordered_map<std::string /*name*/, nvinfer1::ITensor* /*ITensor*/>
      itensor_map_;
167

168
  std::vector<std::unique_ptr<plugin::PluginTensorRT>> owned_plugin_;
Y
Yan Chunwei 已提交
169 170 171 172

  // TensorRT related internal members
  template <typename T>
  struct Destroyer {
173 174 175 176 177
    void operator()(T* x) {
      if (x) {
        x->destroy();
      }
    }
Y
Yan Chunwei 已提交
178 179 180 181 182 183 184
  };
  template <typename T>
  using infer_ptr = std::unique_ptr<T, Destroyer<T>>;
  infer_ptr<nvinfer1::IBuilder> infer_builder_;
  infer_ptr<nvinfer1::INetworkDefinition> infer_network_;
  infer_ptr<nvinfer1::ICudaEngine> infer_engine_;
  infer_ptr<nvinfer1::IExecutionContext> infer_context_;
N
nhzlx 已提交
185
  infer_ptr<nvinfer1::IHostMemory> ihost_memory_;
Y
Yan Chunwei 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
};  // class TensorRTEngine

// Add an layer__ into engine__ with args ARGS.
// For example:
//
// Reference
// https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#charRNN_define_network
//
// will add a fully connected layer into the engine.
// TensorRT has too many layers, so that is not wise to add member functions for
// them, and an macro like this is more extensible when underlying TensorRT
// library add new layer supports.
#define TRT_ENGINE_ADD_LAYER(engine__, layer__, ARGS...) \
  engine__->network()->add##layer__(ARGS);

N
nhzlx 已提交
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
/*
 * Helper to control the TensorRT engine's creation and deletion.
 */
class TRTEngineManager {
 public:
  bool HasEngine(const std::string& name) const {
    if (engines_.count(name) == 0) return false;
    return engines_.at(name).get() != nullptr;
  }

  // Get an engine called `name`.
  TensorRTEngine* Get(const std::string& name) const {
    return engines_.at(name).get();
  }

  // Create or get an engine called `name`
  TensorRTEngine* Create(int max_batch, int max_workspace, bool enable_int8,
                         TRTInt8Calibrator* calibrator,
                         const std::string& engine_name) {
    std::unique_lock<std::mutex> lk(mut_);
    auto* p =
        new TensorRTEngine(max_batch, max_workspace, enable_int8, calibrator);
    engines_[engine_name].reset(p);
    return p;
  }

  void DeleteALL() {
    for (auto& item : engines_) {
      item.second.reset(nullptr);
    }
  }

 private:
  std::unordered_map<std::string, std::unique_ptr<TensorRTEngine>> engines_;
  std::mutex mut_;
};

Y
Yan Chunwei 已提交
238 239 240
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle