nn.py 453.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
21
import warnings
S
sneaxiy 已提交
22
import six
P
peizhilin 已提交
23
import os
S
sneaxiy 已提交
24
import inspect
Y
Yu Yang 已提交
25
from ..layer_helper import LayerHelper
26
from ..initializer import Normal, Constant, NumpyArrayInitializer
L
lujun 已提交
27
from ..framework import Variable, OpProtoHolder, in_dygraph_mode
L
lujun 已提交
28
from ..dygraph import base
Y
yangyaming 已提交
29
from ..param_attr import ParamAttr
S
sneaxiy 已提交
30
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
31
from .tensor import concat, assign, fill_constant
32
from . import utils
F
fengjiayi 已提交
33
from .. import unique_name
34
from functools import reduce
35
from .. import core
L
lujun 已提交
36
from ..dygraph import layers
Y
Yu Yang 已提交
37 38

__all__ = [
X
Xin Pan 已提交
39 40 41 42 43 44 45 46 47 48
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
49
    'bpr_loss',
X
Xin Pan 已提交
50 51 52 53 54 55 56 57 58 59
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
60 61
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
62
    'batch_norm',
H
heqiaozhi 已提交
63
    'data_norm',
X
Xin Pan 已提交
64 65 66 67 68 69
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
70
    'sequence_unpad',
X
Xin Pan 已提交
71 72 73 74 75 76
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
Z
zhoukunsheng 已提交
77 78
    'reduce_all',
    'reduce_any',
X
Xin Pan 已提交
79 80
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
81
    'sequence_slice',
X
Xin Pan 已提交
82 83 84 85 86 87 88 89 90 91 92 93
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
94
    'sampled_softmax_with_cross_entropy',
X
Xin Pan 已提交
95 96 97 98 99
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
100
    'group_norm',
D
dengkaipeng 已提交
101
    'spectral_norm',
X
Xin Pan 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
115
    'roi_align',
X
Xin Pan 已提交
116 117 118 119
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
120
    'resize_nearest',
X
Xin Pan 已提交
121 122 123 124 125 126
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
127
    'selu',
X
Xin Pan 已提交
128 129 130
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
131
    'margin_rank_loss',
X
Xin Pan 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
Z
zhoukunsheng 已提交
148
    'unique',
X
Xin Pan 已提交
149 150 151 152 153 154 155 156 157 158
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
Z
zhoukunsheng 已提交
159 160
    'elementwise_mod',
    'elementwise_floordiv',
X
Xin Pan 已提交
161 162 163 164 165 166 167
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
Z
zhoukunsheng 已提交
168
    'rank',
Z
zhoukunsheng 已提交
169
    'size',
X
Xin Pan 已提交
170 171 172 173 174 175 176 177 178 179
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
180
    'space_to_depth',
W
whs 已提交
181
    'affine_grid',
S
sneaxiy 已提交
182
    'sequence_reverse',
183
    'affine_channel',
B
barrierye 已提交
184
    'similarity_focus',
M
minqiyang 已提交
185
    'hash',
D
dengkaipeng 已提交
186
    'grid_sampler',
G
gmcather 已提交
187 188
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
189
    'bilinear_tensor_product',
C
chengduo 已提交
190 191
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
192
    'lstm',
S
shippingwang 已提交
193
    'shuffle_channel',
194
    'temporal_shift',
S
sneaxiy 已提交
195
    'py_func',
196
    'psroi_pool',
H
heqiaozhi 已提交
197
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
198
    'huber_loss',
D
dengkaipeng 已提交
199
    'kldiv_loss',
Z
zhaozhehao 已提交
200
    'tree_conv',
C
ceci3 已提交
201
    'npair_loss',
R
ruri 已提交
202
    'pixel_shuffle',
203
    'fsp_matrix',
H
heqiaozhi 已提交
204
    'continuous_value_model',
Z
zhoukunsheng 已提交
205
    'where',
Z
zhoukunsheng 已提交
206
    'sign',
207
    'deformable_conv',
208
    'unfold',
C
cjt222 已提交
209
    'deformable_roi_pooling',
Y
Yu Yang 已提交
210 211
]

J
jerrywgz 已提交
212 213
kIgnoreIndex = -100

Y
Yu Yang 已提交
214 215 216 217 218 219 220

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
221
       is_test=False,
222
       name=None):
Y
Yu Yang 已提交
223
    """
224
    **Fully Connected Layer**
Y
Yu Yang 已提交
225

226
    This function creates a fully connected layer in the network. It can take
227
    one or multiple tensors as its inputs(input can be a list of Variable, see
A
Aurelius84 已提交
228
    Args in detail). It creates a variable called weights for each input tensor,
229 230 231 232
    which represents a fully connected weight matrix from each input unit to
    each output unit. The fully connected layer multiplies each input tensor
    with its corresponding weight to produce an output Tensor with shape [M, `size`],
    where M is batch size. If multiple input tensors are given, the results of
A
Aurelius84 已提交
233
    multiple output tensors with shape [M, `size`] will be summed up. If bias_attr
234 235
    is not None, a bias variable will be created and added to the output.
    Finally, if activation is not None, it will be applied to the output as well.
C
caoying03 已提交
236

237
    When the input is single tensor:
C
caoying03 已提交
238

239 240 241 242 243
    .. math::

        Out = Act({XW + b})

    When the input are multiple tensors:
244 245 246

    .. math::

247
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
248 249 250

    In the above equation:

251 252 253
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
254
    * :math:`b`: The bias parameter created by this layer (if needed).
255
    * :math:`Act`: The activation function.
C
caoying03 已提交
256
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
257

258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
    See below for an example.

    .. code-block:: text

        Given:
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
276
    Args:
R
ranqiu 已提交
277 278 279 280 281 282 283 284 285 286
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
287
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
288 289 290 291
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
292 293
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
294
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
295
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
296
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
297

298
    Returns:
F
fengjiayi 已提交
299
        Variable: The transformation result.
300 301

    Raises:
C
caoying03 已提交
302
        ValueError: If rank of the input tensor is less than 2.
303 304 305 306

    Examples:
        .. code-block:: python

307
          import paddle.fluid as fluid
308
          # when input is single tensor
F
fengjiayi 已提交
309
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
310
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
311 312 313 314 315

          # when input are multiple tensors
          data_1 = fluid.layers.data(name="data_1", shape=[32, 32], dtype="float32")
          data_2 = fluid.layers.data(name="data_2", shape=[24, 36], dtype="float32")
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
316
    """
C
caoying03 已提交
317
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
318 319 320 321

    dtype = helper.input_dtype()

    mul_results = []
322 323
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
324 325 326
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
327

Y
Yu Yang 已提交
328
        w = helper.create_parameter(
329
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
330
        tmp = helper.create_variable_for_type_inference(dtype)
331
        helper.append_op(
332 333 334
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
335
            outputs={"Out": tmp},
M
mozga-intel 已提交
336 337
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
338 339 340 341
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
342
    else:
X
Xin Pan 已提交
343
        pre_bias = helper.create_variable_for_type_inference(dtype)
344
        helper.append_op(
345 346 347
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
348
            attrs={"use_mkldnn": False})
349 350 351 352
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
353 354


355 356 357
def embedding(input,
              size,
              is_sparse=False,
358
              is_distributed=False,
359 360 361
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
362
    """
363 364
    **Embedding Layer**

365
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
366 367
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
368 369 370

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
371 372

    Args:
373 374 375 376 377
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
378
        is_distributed(bool): Whether to run lookup table from remote parameter server.
379 380
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
381
            with zeros whenever lookup encounters it in :attr:`input`. If
382
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
383 384
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
385
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
386

387 388 389
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
390

391 392
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
393

B
bdzhuxiaoning 已提交
394 395 396
          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.embedding(input=data, size=[128, 64])    
Y
Yu Yang 已提交
397 398 399
    """

    helper = LayerHelper('embedding', **locals())
400
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
401 402
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
403 404
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
405
    tmp = helper.create_variable_for_type_inference(dtype)
406 407
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
408 409 410 411 412
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
413 414 415
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
416
            'remote_prefetch': remote_prefetch,
417 418
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
419 420 421
    return tmp


W
wopeizl 已提交
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
438

W
wopeizl 已提交
439 440 441 442 443 444 445 446 447 448 449
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
450

W
wopeizl 已提交
451 452 453 454
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
455

W
wopeizl 已提交
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python
492
            
493
            import paddle.fluid as fluid
494 495
            emb_dim = 256
            vocab_size = 10000
W
wopeizl 已提交
496
            hidden_dim = 512
497 498 499 500 501 502
            
            data = fluid.layers.data(name='x', shape=[1],
                         dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)

            forward_proj = fluid.layers.fc(input=emb, size=hidden_dim * 4,
W
wopeizl 已提交
503
                                           bias_attr=False)
504

W
wopeizl 已提交
505 506 507
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
L
lujun 已提交
508
    assert in_dygraph_mode(
509
    ) is not True, "please use lstm instead of dynamic_lstm in dygraph mode!"
W
wopeizl 已提交
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
553 554


P
phlrain 已提交
555 556 557 558 559 560
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
561
         dropout_prob=0.0,
P
phlrain 已提交
562 563 564 565 566
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
567
    """
P
phlrain 已提交
568
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
569 570

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
571
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
572 573
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
574
    .. math::
M
minqiyang 已提交
575 576 577 578 579 580 581

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
582
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
583 584 585 586

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
587 588

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
589 590 591 592 593 594
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
595 596 597
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
598
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
599

M
minqiyang 已提交
600
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
601 602 603 604 605
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
606
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
607 608 609 610 611
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
612
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
613 614
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
615 616
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
617 618 619 620 621 622
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
623
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
624

L
liuhongyu 已提交
625 626

    Returns:
M
minqiyang 已提交
627 628
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
629
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
630

H
haowang101779990 已提交
631 632 633 634
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
635
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
636 637
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
638
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
639 640 641 642


    Examples:
        .. code-block:: python
643
            
644 645 646
            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

647 648 649 650 651
            emb_dim = 256
            vocab_size = 10000
            data = fluid.layers.data(name='x', shape=[-1, 100, 1],
                         dtype='int32')
            emb = fluid.layers.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)
L
liuhongyu 已提交
652 653 654 655 656 657
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
658 659 660 661 662
            init_h = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
            init_c = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
            rnn_out, last_h, last_c = layers.lstm( emb, init_h, init_c, \
                    max_len, hidden_size, num_layers, \
                    dropout_prob=dropout_prob)
L
liuhongyu 已提交
663 664 665 666
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
667 668 669
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
729 730 731 732 733 734 735 736 737 738
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
X
xuezhong 已提交
739
                  proj_activation='tanh',
740
                  dtype='float32',
X
xuezhong 已提交
741 742 743 744 745
                  name=None,
                  h_0=None,
                  c_0=None,
                  cell_clip=None,
                  proj_clip=None):
Y
Yibing Liu 已提交
746 747 748
    """
    **Dynamic LSTMP Layer**

749 750 751 752 753 754
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
755 756 757 758 759

    The formula is as follows:

    .. math::

760
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
761

762
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
763

764
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
765

766
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
767

768
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
769

770
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
771

772
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
773

Y
Yibing Liu 已提交
774 775 776 777 778 779
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
翟飞跃 已提交
780
          we use vectors to represent these diagonal weight matrices.
Y
Yibing Liu 已提交
781
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
782
          bias vector).
Y
Yibing Liu 已提交
783 784 785
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
786
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
787
    * :math:`h`: The hidden state.
788
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
789 790
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
791
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
792
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
793
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
794 795
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
796 797 798 799

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
800

Y
Yibing Liu 已提交
801 802 803 804 805 806 807 808 809 810 811 812
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
813
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
814 815
                               hidden-hidden weight and projection weight.

816 817
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
818 819
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
820 821
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
822
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
823 824 825 826 827

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
828
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
829 830 831 832 833 834
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
835
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
836 837 838
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
839
                                - The shape is (1 x 7D).
C
chengduo 已提交
840 841 842 843 844

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
845 846 847 848 849 850 851 852 853
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
854
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
855 856
                              default "tanh".
        proj_activation(str): The activation for projection output.
857
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
X
xuezhong 已提交
858
                              default "tanh".
Y
Yibing Liu 已提交
859
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
860 861
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
X
xuezhong 已提交
862 863 864 865 866 867 868 869 870 871 872
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the projection size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        cell_clip(float): If provided the cell state is clipped
                             by this value prior to the cell output activation.
        proj_clip(float): If `num_proj > 0` and `proj_clip` is
                            provided, then the projected values are clipped elementwise to within
                            `[-proj_clip, proj_clip]`.
Y
Yibing Liu 已提交
873 874

    Returns:
875 876 877 878
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
879 880

    Examples:
881

Y
Yibing Liu 已提交
882 883
        .. code-block:: python

884
            import paddle.fluid as fluid
885 886 887 888
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
889
            hidden_dim, proj_dim = 512, 256
890
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
891
                                     act=None, bias_attr=None)
892 893 894
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
895 896 897 898
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
899
    """
900

L
lujun 已提交
901
    assert in_dygraph_mode(
902 903
    ) is not True, "please use lstm instead of dynamic_lstmp in dygraph mode!"

C
chengduo 已提交
904
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
905
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
906
    size = size // 4
Y
Yibing Liu 已提交
907 908 909 910 911 912 913 914 915 916
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
917 918 919 920 921 922
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
    inputs = {
        'Input': input,
        'Weight': weight,
        'ProjWeight': proj_weight,
        'Bias': bias
    }
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, proj_size), \
            'The shape of h0 should be (batch_size, %d)' % proj_size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yibing Liu 已提交
938

X
xuezhong 已提交
939 940 941 942 943
    if cell_clip:
        assert cell_clip >= 0, "cell_clip should not be negtive."
    if proj_clip:
        assert proj_clip >= 0, "proj_clip should not be negtive."

Y
Yibing Liu 已提交
944 945
    helper.append_op(
        type='lstmp',
946
        inputs=inputs,
Y
Yibing Liu 已提交
947 948 949 950 951 952 953 954 955
        outputs={
            'Projection': projection,
            'Cell': cell,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
956 957
            'cell_clip': cell_clip,
            'proj_clip': proj_clip,
Y
Yibing Liu 已提交
958 959 960 961 962 963 964 965 966
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
967 968 969 970 971 972 973
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
974 975
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
976
    """
977
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
978

979 980 981
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
982

G
guosheng 已提交
983 984 985 986 987 988 989 990 991
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
992

G
guosheng 已提交
993
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
994

Q
Qiao Longfei 已提交
995 996 997

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
1010
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
1011 1012
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
1013 1014 1015 1016
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
1017
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
1018 1019

    Args:
1020 1021
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
1022
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
1023
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
1024 1025
            is the hidden size.
        size(int): The dimension of the gru cell.
1026
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
1027 1028
            hidden-hidden weight matrix. Note:

1029
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
1030
              :math:`D` is the hidden size.
1031
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
1032
              The first part are weights of the update gate and reset gate with
1033
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
1034
              candidate hidden state with shape :math:`(D \\times D)`.
1035 1036 1037 1038 1039

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1040
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1041
            the bias in the update gate, reset gate and candidate calculations.
1042 1043 1044
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
1045 1046
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1047
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
1048 1049 1050
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
1051
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
1052
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
1053 1054 1055 1056
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
1057 1058

    Returns:
G
guosheng 已提交
1059
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
1060
            and sequence length is the same with the input.
1061

G
guosheng 已提交
1062
    Examples:
1063

G
guosheng 已提交
1064 1065
        .. code-block:: python

1066 1067
            import paddle.fluid as fluid

1068 1069 1070 1071
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
1072
            hidden_dim = 512
1073
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
1074
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
1075 1076
    """

L
lujun 已提交
1077
    assert in_dygraph_mode(
1078 1079
    ) is not True, "please use gru instead of dynamic_gru in dygraph mode!"

G
guosheng 已提交
1080 1081 1082 1083 1084 1085 1086
    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
1087
    batch_size = input.shape[0]
G
guosheng 已提交
1088
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
1089
    if h_0:
G
guosheng 已提交
1090
        assert h_0.shape == (
Y
Yancey 已提交
1091 1092 1093
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
1094

X
Xin Pan 已提交
1095 1096 1097 1098
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1112 1113
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1114 1115 1116 1117
        })
    return hidden


Y
Yu Yang 已提交
1118 1119 1120
def gru_unit(input,
             hidden,
             size,
1121 1122
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1123
             activation='tanh',
Q
Qiao Longfei 已提交
1124 1125
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1126
    """
1127 1128 1129
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1130
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1131
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1132

1133 1134
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1135

1136
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1137

1138
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1139

1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1155 1156

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1157 1158 1159
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1160 1161
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1162 1163
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1164 1165 1166
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1167 1168 1169

    Args:
        input (Variable): The fc transformed input value of current step.
1170
        hidden (Variable): The hidden value of gru unit from previous step.
1171
        size (integer): The input dimension value.
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1186
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1187
            the bias in the update gate, reset gate and candidate calculations.
1188 1189 1190
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1191 1192
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1193 1194 1195 1196
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1197

1198 1199 1200 1201 1202 1203
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1204

1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
            import paddle.fluid as fluid

            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='step_data', shape=[1], dtype='int32')
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
            hidden_dim = 512
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
            pre_hidden = fluid.layers.data(
                name='pre_hidden', shape=[hidden_dim], dtype='float32')
            hidden = fluid.layers.gru_unit(
                input=x, hidden=pre_hidden, size=hidden_dim * 3)
Y
Yu Yang 已提交
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1228
    size = size // 3
Y
Yu Yang 已提交
1229 1230

    # create weight
1231 1232
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1233

X
Xin Pan 已提交
1234 1235 1236
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1237
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1238
    # create bias
1239
    if helper.bias_attr:
Y
Yu Yang 已提交
1240 1241 1242
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1243
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1244 1245 1246

    helper.append_op(
        type='gru_unit',
1247
        inputs=inputs,
Y
Yu Yang 已提交
1248 1249 1250 1251 1252 1253
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1254 1255
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1256 1257 1258 1259 1260
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1261
@templatedoc()
1262
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1263 1264 1265 1266 1267 1268 1269
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1270
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1271 1272 1273 1274
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1275 1276 1277
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1278

J
JesseyXujin 已提交
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
    Examples:
        .. code-block:: python

             import paddle.fluid as fluid
             emission = fluid.layers.data(name='emission', shape=[1000], dtype='float32')
             target = fluid.layers.data(name='target', shape=[1], dtype='int32')
             crf_cost = fluid.layers.linear_chain_crf(
                 input=emission,
                 label=target,
                 param_attr=fluid.ParamAttr(
                     name='crfw',
                     learning_rate=0.2))

Y
yuyang18 已提交
1292
    """
Y
Yu Yang 已提交
1293 1294 1295 1296 1297 1298
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1299 1300 1301 1302 1303 1304 1305 1306
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1322 1323 1324 1325
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1326

W
wopeizl 已提交
1327 1328
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1329

W
wopeizl 已提交
1330
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1331

W
wopeizl 已提交
1332
        label(${label_type}): ${label_comment}
1333

W
wopeizl 已提交
1334 1335
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1336

W
wopeizl 已提交
1337 1338
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1339

1340
           import paddle.fluid as fluid
Y
Yibing Liu 已提交
1341 1342 1343 1344 1345 1346 1347
           images = fluid.layers.data(name='pixel', shape=[784], dtype='float32')
           label = fluid.layers.data(name='label', shape=[1], dtype='int32')
           hidden = fluid.layers.fc(input=images, size=2)
           crf = fluid.layers.linear_chain_crf(input=hidden, label=label, 
                     param_attr=fluid.ParamAttr(name="crfw"))
           crf_decode = fluid.layers.crf_decoding(input=hidden, 
                     param_attr=fluid.ParamAttr(name="crfw"))
W
wopeizl 已提交
1348 1349 1350 1351 1352 1353 1354 1355
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1356
                "Transition": transition,
W
wopeizl 已提交
1357 1358
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1359

W
wopeizl 已提交
1360
    return viterbi_path
Y
Yu Yang 已提交
1361 1362


Y
yi.wu 已提交
1363
@templatedoc()
F
fengjiayi 已提交
1364
def cos_sim(X, Y):
Y
Yu Yang 已提交
1365
    """
Y
yi.wu 已提交
1366 1367 1368
    ${comment}

    Args:
1369 1370
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1371

Y
yi.wu 已提交
1372
    Returns:
1373
        Variable: the output of cosine(X, Y).
L
lvmengsi 已提交
1374 1375 1376 1377

    Examples:
        .. code-block:: python

1378
            import paddle.fluid as fluid
L
lvmengsi 已提交
1379 1380 1381
            x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
            y = fluid.layers.data(name='y', shape=[1, 7], dtype='float32', append_batch_size=False)
            out = fluid.layers.cos_sim(x, y)
Y
Yu Yang 已提交
1382
    """
F
fengjiayi 已提交
1383
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1384 1385 1386
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1397 1398 1399 1400 1401
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1402
            dropout_implementation="downgrade_in_infer"):
1403 1404 1405 1406 1407
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1408
    training. The dropout operator randomly sets (according to the given dropout
1409 1410 1411
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1412 1413
    dropout op can be removed from the program to make the program more efficient.

1414
    Args:
1415 1416
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1417 1418 1419 1420 1421 1422 1423
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1424 1425
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1426
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1427 1428

                                           - train: out = input * mask
C
ceci3 已提交
1429
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
1430 1431 1432

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1433
                                        2. upscale_in_train, upscale the outcome at training time
1434

H
haowang101779990 已提交
1435 1436
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1437

H
haowang101779990 已提交
1438 1439
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1440

M
minqiyang 已提交
1441

1442
    Returns:
1443
        Variable: A tensor variable is the shape with `x`.
1444 1445

    Examples:
1446

1447 1448
        .. code-block:: python

1449
            import paddle.fluid as fluid
1450 1451
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1452 1453
    """

F
fengjiayi 已提交
1454
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1455 1456
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
Z
Zeng Jinle 已提交
1457
        dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)
C
chengduo 已提交
1458 1459 1460 1461

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1462 1463 1464 1465 1466
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1467 1468 1469 1470
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1471 1472
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1473
        })
1474 1475 1476
    return out


J
jerrywgz 已提交
1477
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1478
    """
Y
Yibing Liu 已提交
1479 1480
    **Cross Entropy Layer**

1481 1482 1483
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1484 1485

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1486
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1487

Y
Yibing Liu 已提交
1488
        .. math::
Y
yangyaming 已提交
1489

Y
Yibing Liu 已提交
1490 1491 1492
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1493 1494
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1495 1496 1497 1498 1499

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1500
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1501 1502 1503
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1504 1505
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1506
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1507

Y
Yibing Liu 已提交
1508
    Args:
Y
yangyaming 已提交
1509
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1510 1511 1512 1513
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1514
        label (Variable|list): the ground truth which is a 2-D tensor. When
1515 1516 1517 1518
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1519
        soft_label (bool): a flag indicating whether to
1520
                                           interpretate the given labels as soft
1521
                                           labels. Default: `False`.
M
minqiyang 已提交
1522 1523
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1524
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1525 1526 1527 1528 1529

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1530 1531 1532
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1533

H
haowang101779990 已提交
1534 1535
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1536

H
haowang101779990 已提交
1537 1538
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1539 1540 1541 1542

    Examples:
        .. code-block:: python

1543
          import paddle.fluid as fluid
L
lvmengsi 已提交
1544 1545 1546 1547
          classdim = 7
          x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
          label = fluid.layers.data(name='label', shape=[3, 1], dtype='float32', append_batch_size=False)
          predict = fluid.layers.fc(input=x, size=classdim, act='softmax')
Y
Yibing Liu 已提交
1548
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1549
    """
S
sneaxiy 已提交
1550 1551
    if not soft_label:
        return cross_entropy2(input, label, ignore_index)
F
fengjiayi 已提交
1552
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1553
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1554 1555 1556 1557 1558
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1559 1560
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1561 1562 1563
    return out


S
sneaxiy 已提交
1564 1565 1566 1567
def cross_entropy2(input, label, ignore_index=kIgnoreIndex):
    helper = LayerHelper('cross_entropy2', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    xshape = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1568
    match_x = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1569 1570 1571 1572 1573
    helper.append_op(
        type='cross_entropy2',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out],
S
sneaxiy 已提交
1574
                 'MatchX': [match_x],
S
sneaxiy 已提交
1575 1576 1577 1578 1579
                 'XShape': [xshape]},
        attrs={'ignore_index': ignore_index})
    return out


F
frankwhzhang 已提交
1580
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1581
    """
1582
    **Bayesian Personalized Ranking Loss Operator**
F
frankwhzhang 已提交
1583

1584
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1585
    The loss at a given point in one session is defined as:
1586 1587 1588

    .. math::
        Y[i] = 1/(N[i] - 1) * \sum_j{\log(\sigma(X[i, Label[i]]-X[i, j]))}
F
frankwhzhang 已提交
1589 1590

    Learn more details by reading paper <session-based recommendations with recurrent
1591
    neural networks>.
F
frankwhzhang 已提交
1592

1593 1594 1595 1596 1597 1598
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1599 1600
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1601 1602 1603
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1604 1605 1606
    Examples:
        .. code-block:: python

1607 1608 1609 1610 1611 1612 1613
          import paddle.fluid as fluid

          neg_size = 10
          label = fluid.layers.data(
                    name="label", shape=[1], dtype="int64")
          predict = fluid.layers.data(
                    name="predict", shape=[neg_size + 1], dtype="float32")
1614
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1615
    """
1616 1617 1618 1619 1620
    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1621
                'Label': [label]},
1622 1623 1624 1625
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1626
def square_error_cost(input, label):
Y
Yu Yang 已提交
1627
    """
1628 1629
    **Square error cost layer**

1630 1631
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1632

1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1646 1647
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1648 1649

    Returns:
G
guosheng 已提交
1650
        Variable: The tensor variable storing the element-wise squared error \
1651
                  difference of input and label.
1652 1653 1654 1655

    Examples:
        .. code-block:: python

1656
          import paddle.fluid as fluid
R
ruri 已提交
1657 1658 1659
          y = fluid.layers.data(name='y', shape=[1], dtype='float32')
          y_predict = fluid.layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = fluid.layers.square_error_cost(input=y_predict, label=y)
1660

Y
Yu Yang 已提交
1661
    """
F
fengjiayi 已提交
1662
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1663
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1664 1665 1666 1667 1668 1669
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1670
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1671
    helper.append_op(
F
fengjiayi 已提交
1672 1673
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1674 1675 1676
    return square_out


Y
yi.wu 已提交
1677
@templatedoc()
Y
Yu Yang 已提交
1678 1679 1680 1681
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
1682 1683
               excluded_chunk_types=None,
               seq_length=None):
Y
Yu Yang 已提交
1684
    """
Y
yi.wu 已提交
1685
    **Chunk Evaluator**
Y
yi.wu 已提交
1686

Y
yangyaming 已提交
1687
    This function computes and outputs the precision, recall and
1688
    F1-score of chunk detection.
Y
yi.wu 已提交
1689

M
minqiyang 已提交
1690
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1691
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1692 1693 1694 1695 1696 1697

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1698

Y
yi.wu 已提交
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1724

Y
yi.wu 已提交
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1749
    Args:
1750 1751 1752 1753 1754
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
1755
        seq_length(Variable): 1-D Tensor specifying sequence length when input and label are Tensor type.
F
fengjiayi 已提交
1756

Y
yi.wu 已提交
1757
    Returns:
Y
update  
yi.wu 已提交
1758 1759 1760
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1761

Y
yi.wu 已提交
1762 1763 1764
    Examples:
        .. code-block:: python

1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
            import paddle.fluid as fluid

            dict_size = 10000
            label_dict_len = 7
            sequence = fluid.layers.data(
                name='id', shape=[1], lod_level=1, dtype='int64')
            embedding = fluid.layers.embedding(
                input=sequence, size=[dict_size, 512])
            hidden = fluid.layers.fc(input=embedding, size=512)
            label = fluid.layers.data(
                name='label', shape=[1], lod_level=1, dtype='int32')
Y
yi.wu 已提交
1776
            crf = fluid.layers.linear_chain_crf(
1777
                input=hidden, label=label, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
1778
            crf_decode = fluid.layers.crf_decoding(
1779
                input=hidden, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
1780 1781 1782 1783 1784
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1785
    """
F
fengjiayi 已提交
1786
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1787 1788

    # prepare output
X
Xin Pan 已提交
1789 1790 1791 1792 1793 1794 1795
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1796

1797 1798 1799 1800 1801
    this_input = {"Inference": [input], "Label": [label]}

    if seq_length:
        this_input["SeqLength"] = [seq_length]

Y
Yu Yang 已提交
1802 1803
    helper.append_op(
        type="chunk_eval",
1804
        inputs=this_input,
Y
Yu Yang 已提交
1805 1806 1807
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1808 1809 1810 1811
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1812 1813 1814
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1815 1816
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1817
        })
1818 1819
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1820 1821


1822
@templatedoc()
Y
Yu Yang 已提交
1823 1824 1825 1826 1827 1828 1829
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1830 1831
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1832 1833 1834 1835
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1836 1837 1838 1839 1840 1841 1842

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1856

1857 1858
    Returns:
        Variable: output of sequence_conv
B
bdzhuxiaoning 已提交
1859 1860 1861 1862 1863 1864 1865

    Examples:
        .. code-block:: python

             import paddle.fluid as fluid
             x = fluid.layers.data(name='x', shape=[10,10], append_batch_size=False, dtype='float32')
             x_conved = fluid.layers.sequence_conv(x,2)
Y
Yu Yang 已提交
1866 1867
    """

L
lujun 已提交
1868
    assert not in_dygraph_mode(), (
1869
        "sequence layer is not supported in dygraph mode yet.")
Y
Yu Yang 已提交
1870 1871 1872 1873 1874
    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1875
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1886
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1887 1888 1889 1890 1891 1892
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1893
def sequence_softmax(input, use_cudnn=False, name=None):
1894 1895 1896
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1897
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1914 1915 1916
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1917

1918 1919 1920 1921 1922 1923 1924
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

1925
             import paddle.fluid as fluid
1926 1927 1928 1929
             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
L
lujun 已提交
1930
    assert not in_dygraph_mode(), (
1931
        "sequence layer is not supported in dygraph mode yet.")
1932 1933
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1934
    softmax_out = helper.create_variable_for_type_inference(dtype)
1935 1936 1937 1938 1939 1940 1941 1942
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


D
dengkaipeng 已提交
1943
def softmax(input, use_cudnn=False, name=None, axis=-1):
Q
qiaolongfei 已提交
1944
    """
1945
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1946
    has the same shape as the input.
Q
qiaolongfei 已提交
1947

D
dengkaipeng 已提交
1948
    The dimension :attr:`axis` of the input tensor will be permuted to the last.
D
dengkaipeng 已提交
1949
    Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
D
dengkaipeng 已提交
1950
    second dimension(row length) is the same as the dimension :attr:`axis` of the input
1951 1952 1953
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
D
dengkaipeng 已提交
1954
    of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
F
fengjiayi 已提交
1955
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1956 1957 1958 1959 1960 1961 1962

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1963
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1964 1965 1966 1967 1968 1969 1970 1971

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
J
jerrywgz 已提交
1972 1973
            library is installed. To improve numerical stablity, set use_cudnn to \
            False by default. Default: False
C
chengduo 已提交
1974 1975
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
D
dengkaipeng 已提交
1976 1977 1978
        axis (int): The index of dimension to perform softmax calculations, it should
            be in range :math:`[-1, rank - 1]`, while :math:`rank` is the rank of
            input variable. Default: -1.
Q
qiaolongfei 已提交
1979 1980 1981 1982 1983 1984 1985 1986

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

J
JesseyXujin 已提交
1987 1988
             import paddle.fluid as fluid
             x = fluid.layers.data(name='x', shape=[2], dtype='float32')
Q
qiaolongfei 已提交
1989
             fc = fluid.layers.fc(input=x, size=10)
D
dengkaipeng 已提交
1990
             # perform softmax in the second dimension
D
dengkaipeng 已提交
1991
             softmax = fluid.layers.softmax(input=fc, axis=1)
D
dengkaipeng 已提交
1992 1993
             # perform softmax in the last dimension
             softmax = fluid.layers.softmax(input=fc, axis=-1)
Q
qiaolongfei 已提交
1994 1995

    """
1996 1997
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1998
    softmax_out = helper.create_variable_for_type_inference(dtype)
1999 2000 2001 2002
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
D
dengkaipeng 已提交
2003 2004
        attrs={"axis": axis,
               "use_cudnn": use_cudnn})
2005 2006 2007
    return softmax_out


Y
Yu Yang 已提交
2008 2009 2010
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
2011 2012
           stride=1,
           padding=0,
2013
           dilation=1,
Y
Yu Yang 已提交
2014 2015 2016
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
2017
           use_cudnn=True,
2018 2019
           act=None,
           name=None):
Y
Yu Yang 已提交
2020
    """
C
chengduoZH 已提交
2021
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
2022 2023
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
2024
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
2025 2026 2027 2028 2029 2030 2031
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
2032 2033 2034
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
2035

2036
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
2037

C
chengduoZH 已提交
2038 2039
    .. math::

C
refine  
chengduoZH 已提交
2040
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
2041

T
tensor-tang 已提交
2042
    Where:
C
chengduoZH 已提交
2043

2044 2045 2046 2047 2048
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
2049
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2050 2051 2052

    Example:

2053 2054
        - Input:

W
weixing02 已提交
2055
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
2056

W
weixing02 已提交
2057
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
2058

2059
        - Output:
T
tensor-tang 已提交
2060

W
weixing02 已提交
2061
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
2062

C
chengduoZH 已提交
2063
        Where
2064 2065

        .. math::
C
chengduoZH 已提交
2066

W
weixing02 已提交
2067 2068
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
2069 2070

    Args:
2071
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
2072
        num_filters(int): The number of filter. It is as same as the output
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
2090 2091 2092 2093 2094
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
2095
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
2096 2097 2098 2099 2100
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2101 2102
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2103 2104
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
2105
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2106
            will be named automatically. Default: None
C
chengduoZH 已提交
2107 2108

    Returns:
G
guosheng 已提交
2109
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
2110 2111
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
2112
    Raises:
2113 2114
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
2115

C
chengduoZH 已提交
2116 2117 2118
    Examples:
        .. code-block:: python

2119
          import paddle.fluid as fluid
2120 2121
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
2122 2123 2124
    """

    num_channels = input.shape[1]
C
chengduo 已提交
2125
    assert param_attr is not False, "param_attr should not be False here."
2126
    l_type = 'conv2d'
X
xzl 已提交
2127 2128
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
2129
        l_type = 'depthwise_conv2d'
2130 2131 2132 2133

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
2134 2135 2136 2137 2138
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2139
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
2140

C
chengduoZH 已提交
2141 2142 2143
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
2144
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
2145

C
chengduoZH 已提交
2146 2147
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2148 2149

    input_shape = input.shape
M
minqiyang 已提交
2150
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
2151 2152

    def _get_default_param_initializer():
C
chengduo 已提交
2153 2154
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
2155 2156 2157 2158 2159 2160 2161 2162
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2163
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2164

2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
2179
    helper.append_op(
2180
        type=l_type,
Y
Yu Yang 已提交
2181 2182 2183 2184 2185
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
2186 2187 2188
        attrs={
            'strides': stride,
            'paddings': padding,
2189
            'dilations': dilation,
C
chengduoZH 已提交
2190
            'groups': groups,
2191
            'use_cudnn': use_cudnn,
2192
            'use_mkldnn': False,
2193
            'fuse_relu_before_depthwise_conv': False
C
chengduoZH 已提交
2194
        })
Y
Yu Yang 已提交
2195 2196 2197 2198 2199 2200

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
2218 2219 2220 2221 2222 2223
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2224 2225 2226 2227 2228 2229 2230 2231 2232

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2233 2234
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2235 2236 2237
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2238
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
2261
        num_filters(int): The number of filter. It is as same as the output
C
chengduoZH 已提交
2262 2263
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2264
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2265 2266
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2267
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2268 2269
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2270
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2271 2272
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2273
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2274 2275 2276 2277 2278 2279
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2290 2291
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2292 2293
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2294
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2295
            will be named automatically. Default: None.
C
chengduoZH 已提交
2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2308
          import paddle.fluid as fluid
2309 2310
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2311 2312 2313
    """

    l_type = 'conv3d'
C
chengduo 已提交
2314
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2325
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2339 2340 2341
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2342 2343 2344 2345 2346 2347 2348 2349
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2350
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2365
            'use_mkldnn': False
C
chengduoZH 已提交
2366 2367
        })

2368
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2369 2370 2371 2372

    return helper.append_activation(pre_act)


2373
def sequence_pool(input, pool_type, is_test=False, pad_value=0.0):
Y
Yu Yang 已提交
2374
    """
Y
yangyaming 已提交
2375 2376 2377
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

2388 2389
       x is a 1-level LoDTensor and **pad_value** = 0.0:
         x.lod = [[2, 3, 2, 0]]
L
Luo Tao 已提交
2390 2391 2392 2393
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
2394
         out.dim = [4, 1]
2395
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2396 2397

       for different pool_type:
2398 2399 2400
         average: out.data = [2, 4, 3, 0.0], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6, 0.0], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24, 0.0], where 2.82=(1+3)/sqrt(2),
L
Luo Tao 已提交
2401
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
2402 2403 2404 2405 2406
         max    : out.data = [3, 6, 5, 0.0], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
         last   : out.data = [3, 6, 1, 0.0], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5, 0.0], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)

         and all above 0.0 = **pad_value**.
F
fengjiayi 已提交
2407

L
Luo Tao 已提交
2408
    Args:
2409
        input (variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2410
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2411
            It supports average, sum, sqrt and max.
2412 2413
        is_test (bool): Used to distinguish training from scoring mode. Default False.
        pad_value (float): Used to pad the pooling result for empty input sequence.
L
Luo Tao 已提交
2414 2415 2416 2417 2418 2419 2420

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2421

2422 2423
             import paddle.fluid as fluid

Y
yangyaming 已提交
2424
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2425 2426 2427 2428 2429
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2430 2431
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2432
    """
L
lujun 已提交
2433
    assert not in_dygraph_mode(), (
2434
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
2435
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2436
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2437 2438
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2439 2440 2441 2442 2443 2444

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
2445 2446 2447 2448 2449
        attrs={
            "pooltype": pool_type.upper(),
            "is_test": is_test,
            "pad_value": pad_value
        })
Y
Yu Yang 已提交
2450

Y
yangyaming 已提交
2451 2452 2453 2454 2455
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2456 2457 2458
    return pool_out


C
add doc  
chengduoZH 已提交
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

B
bdzhuxiaoning 已提交
2475 2476 2477 2478
           import paddle.fluid as fluid
           x = fluid.layers.data(name='x', shape=[10], dtype='float32')
           y = fluid.layers.data(name='y', shape=[10], dtype='float32')
           out = fluid.layers.sequence_concat(input=[x, y])
C
add doc  
chengduoZH 已提交
2479
    """
L
lujun 已提交
2480
    assert not in_dygraph_mode(), (
2481
        "sequence layer is not supported in dygraph mode yet.")
C
add doc  
chengduoZH 已提交
2482
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2483
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2484 2485 2486 2487 2488
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2489
def sequence_first_step(input):
L
Luo Tao 已提交
2490
    """
L
Luo Tao 已提交
2491
    This function gets the first step of sequence.
L
Luo Tao 已提交
2492 2493 2494 2495

    .. code-block:: text

       x is a 1-level LoDTensor:
2496
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2497 2498 2499 2500 2501
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2502
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2503
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2504

L
Luo Tao 已提交
2505 2506 2507 2508 2509 2510 2511 2512 2513
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2514

2515
             import paddle.fluid as fluid
Y
yangyaming 已提交
2516
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2517 2518 2519
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2520 2521 2522
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2523
def sequence_last_step(input):
L
Luo Tao 已提交
2524
    """
L
Luo Tao 已提交
2525
    This function gets the last step of sequence.
L
Luo Tao 已提交
2526 2527 2528 2529

    .. code-block:: text

       x is a 1-level LoDTensor:
2530
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2531 2532 2533 2534 2535
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2536
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2537
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2538

L
Luo Tao 已提交
2539 2540 2541 2542 2543 2544 2545 2546 2547
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2548

2549
             import paddle.fluid as fluid
Y
yangyaming 已提交
2550
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2551 2552 2553
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2554 2555 2556
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2557 2558 2559 2560
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2561
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2562 2563 2564 2565 2566
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2567

H
haowang101779990 已提交
2568
              - Case:
Y
Yibing Liu 已提交
2569

2570
            Given the input Variable **input**:
2571

2572 2573 2574
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2575

2576
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2577

2578
            the output Variable will be
2579

2580 2581 2582
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2583

M
minqiyang 已提交
2584
    Note:
H
haowang101779990 已提交
2585
          The first dimension size of **input**, **offset** and **length**
2586
          should be equal. The **offset** should start from 0.
2587

Y
Yibing Liu 已提交
2588
    Args:
2589
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2590
                         sequences.
Y
Yibing Liu 已提交
2591 2592 2593 2594 2595 2596
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2597
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2598 2599 2600 2601 2602

    Examples:

        .. code-block:: python

2603
             import paddle.fluid as fluid
Y
Yibing Liu 已提交
2604 2605 2606 2607 2608
             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2609
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2610 2611
                                                   length=length)
    """
L
lujun 已提交
2612
    assert not in_dygraph_mode(), (
2613
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
2614 2615
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2616
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2631
@templatedoc()
Y
Yu Yang 已提交
2632
def pool2d(input,
C
chengduoZH 已提交
2633 2634
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2635 2636
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2637
           global_pooling=False,
C
chengduoZH 已提交
2638
           use_cudnn=True,
2639
           ceil_mode=False,
2640 2641
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2642
    """
F
fengjiayi 已提交
2643
    ${comment}
2644 2645

    Args:
2646 2647 2648
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2649
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2650
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2651 2652
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2653
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2654 2655 2656 2657 2658 2659
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2660 2661 2662
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2663
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2664
                        layer will be named automatically.
2665
        exclusive (bool): Whether to exclude padding points in average pooling
2666
                          mode, default is true
F
fengjiayi 已提交
2667

2668
    Returns:
F
fengjiayi 已提交
2669
        Variable: The pooling result.
F
fengjiayi 已提交
2670 2671 2672 2673 2674 2675 2676 2677 2678 2679

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

2680
          import paddle.fluid as fluid
F
fengjiayi 已提交
2681 2682
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2683
          pool2d = fluid.layers.pool2d(
2684 2685 2686 2687
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2688
                            global_pooling=False)
Y
Yu Yang 已提交
2689 2690 2691 2692 2693
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2694

C
chengduoZH 已提交
2695 2696 2697 2698 2699
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2700 2701 2702 2703
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2704 2705
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2706

C
Add doc  
chengduoZH 已提交
2707
    l_type = 'pool2d'
2708 2709

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2710
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2711
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2712 2713

    helper.append_op(
2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2725 2726
            "use_mkldnn": False,
            "exclusive": exclusive,
2727 2728 2729 2730 2731
        })

    return pool_out


D
dengkaipeng 已提交
2732
@templatedoc()
2733 2734 2735 2736 2737 2738 2739 2740
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2741 2742
           name=None,
           exclusive=True):
2743
    """
2744
    ${comment}
2745 2746

    Args:
D
dengkaipeng 已提交
2747 2748 2749 2750 2751
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width
                          of the feature.
D
dengkaipeng 已提交
2752 2753 2754 2755 2756
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
2757 2758 2759 2760 2761 2762 2763
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2764
        exclusive (bool): Whether to exclude padding points in average pooling
2765
                          mode, default is true
2766

2767
    Returns:
2768
        Variable: output of pool3d layer.
D
dengkaipeng 已提交
2769 2770 2771 2772 2773

    Examples:

        .. code-block:: python

2774
          import paddle.fluid as fluid
D
dengkaipeng 已提交
2775 2776 2777 2778 2779 2780 2781 2782
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool3d = fluid.layers.pool3d(
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
Y
Yu Yang 已提交
2783 2784 2785 2786 2787
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2788

C
chengduoZH 已提交
2789 2790 2791 2792 2793
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2794 2795 2796
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2797

C
chengduoZH 已提交
2798 2799
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2800

2801 2802
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2803
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2804
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2805 2806

    helper.append_op(
2807
        type=l_type,
Y
Yu Yang 已提交
2808 2809 2810 2811 2812 2813 2814
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2815
            "paddings": pool_padding,
2816
            "use_cudnn": use_cudnn,
2817
            "ceil_mode": ceil_mode,
2818 2819
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2820 2821 2822 2823 2824
        })

    return pool_out


2825 2826 2827 2828 2829 2830 2831
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2832 2833 2834 2835 2836 2837 2838
    **Adaptive Pool2d Operator**
    The adaptive_pool2d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
    is same as Parameter(pool_size).
2839

2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
2853 2854 2855 2856 2857 2858 2859 2860 2861

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2862 2863
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
2878
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
2879
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
2880
          # of input data into m * n grids averagely and performs poolings in each
2881 2882
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2883
          #
2884 2885 2886 2887 2888 2889 2890 2891
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2892
          import paddle.fluid as fluid
2893 2894
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2895
          pool_out = fluid.layers.adaptive_pool2d(
2896 2897
                            input=data,
                            pool_size=[3, 3],
2898
                            pool_type='avg')
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2909
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2935
    return (pool_out, mask) if require_index else pool_out
2936 2937 2938 2939 2940 2941 2942 2943 2944


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2945 2946 2947 2948 2949 2950 2951
    **Adaptive Pool3d Operator**
    The adaptive_pool3d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
    dimensions of output(Out) is same as Parameter(pool_size).
2952

2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
2970 2971 2972

    Args:
        input (Variable): The input tensor of pooling operator. The format of
D
dengkaipeng 已提交
2973 2974 2975
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width of the feature.
2976
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
2977
            it must contain three integers, (Depth, Height, Width).
2978
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2979 2980
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2995 2996
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
2997
          # of input data into l * m * n grids averagely and performs poolings in each
2998 2999
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
3000
          #
3001 3002 3003 3004 3005 3006 3007 3008 3009
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
3010
          #                 output[:, :, i, j, k] =
3011 3012
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
K
Kaipeng Deng 已提交
3013 3014 3015

          import paddle.fluid as fluid

3016
          data = fluid.layers.data(
K
Kaipeng Deng 已提交
3017 3018
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool_out = fluid.layers.adaptive_pool3d(
3019
                            input=data,
D
dengkaipeng 已提交
3020
                            pool_size=[3, 3, 3],
3021
                            pool_type='avg')
3022 3023 3024 3025 3026 3027 3028 3029 3030 3031
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

3032
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
3058
    return (pool_out, mask) if require_index else pool_out
3059 3060


Y
Yu Yang 已提交
3061 3062 3063 3064 3065 3066 3067
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
3068
               data_layout='NCHW',
Y
Yang Yang 已提交
3069
               in_place=False,
3070 3071
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
3072
               moving_variance_name=None,
3073
               do_model_average_for_mean_and_var=False,
3074 3075
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
3076
    """
Q
qiaolongfei 已提交
3077 3078 3079 3080
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
3081

Q
qiaolongfei 已提交
3082
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
3083

Q
qiaolongfei 已提交
3084 3085
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
3086 3087 3088
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
3101

3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

3115
    Args:
Q
qingqing01 已提交
3116
        input(variable): The rank of input variable can be 2, 3, 4, 5.
Q
qiaolongfei 已提交
3117
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
3118 3119 3120 3121 3122 3123 3124 3125 3126
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
        momentum(float, Default 0.9): The value used for the moving_mean and
            moving_var computation. The updated formula is:
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
3127 3128
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
3129 3130 3131
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the param_attr is not set, the parameter is initialized 
	     with Xavier. Default: None.
C
chengduo 已提交
3132 3133
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
3134 3135 3136
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
	     Default: None.
Q
qiaolongfei 已提交
3137
        data_layout(string, default NCHW): NCHW|NHWC
3138
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
3139 3140
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
3141 3142 3143
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean. If it 
            is set to None, batch_norm will save global mean with a random name, otherwise, batch_norm 
            will save global mean with the string.
Q
qiaolongfei 已提交
3144
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
3145 3146
            If it is set to None, batch_norm will save global variance with a random name, otherwise, batch_norm 
            will save global variance with the string.
Q
qiaolongfei 已提交
3147
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
3148
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
3149 3150 3151 3152 3153
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
3154 3155

    Returns:
Q
qiaolongfei 已提交
3156
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
3157 3158 3159 3160 3161

    Examples:

        .. code-block:: python

3162
            import paddle.fluid as fluid
L
lvmengsi 已提交
3163
            x = fluid.layers.data(name='x', shape=[3, 7, 3, 7], dtype='float32', append_batch_size=False)
Q
qiaolongfei 已提交
3164 3165
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
3166
    """
C
chengduo 已提交
3167
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
3168 3169 3170
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
3171 3172 3173 3174
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
3193
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
3194

3195 3196
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
3197 3198 3199
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
3200
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3201
        shape=param_shape,
W
Wu Yi 已提交
3202
        dtype=dtype)
3203 3204 3205 3206 3207 3208
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
3209
            trainable=False,
W
wanghaoshuang 已提交
3210
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3211
        shape=param_shape,
W
Wu Yi 已提交
3212
        dtype=dtype)
3213
    variance.stop_gradient = True
Y
Yu Yang 已提交
3214 3215 3216 3217 3218 3219

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
3220 3221 3222 3223
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
3224

X
Xin Pan 已提交
3225 3226
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
3244 3245 3246 3247
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
3248
            "data_layout": data_layout,
X
Xin Pan 已提交
3249
            "use_mkldnn": False,
3250 3251
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
3252
        })
Y
Yu Yang 已提交
3253 3254 3255 3256

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python
3308 3309
            
            import paddle.fluid as fluid
H
heqiaozhi 已提交
3310

3311 3312
            hidden1 = fluid.layers.data(name="hidden1", shape=[200])
            hidden2 = fluid.layers.data_norm(name="hidden2", input=hidden1)
H
heqiaozhi 已提交
3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
H
heqiaozhi 已提交
3378
        attrs={"epsilon": epsilon})
H
heqiaozhi 已提交
3379 3380 3381 3382

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3383
@templatedoc()
G
guosheng 已提交
3384 3385 3386 3387 3388 3389 3390 3391 3392 3393
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3394
    ${comment}
G
guosheng 已提交
3395 3396 3397

    The formula is as follows:

Y
yuyang18 已提交
3398
    ..  math::
G
guosheng 已提交
3399 3400 3401 3402 3403 3404 3405

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3406 3407 3408 3409 3410 3411 3412 3413
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3414

G
guosheng 已提交
3415 3416
    Args:
        input(Variable): The input tensor variable.
3417
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3418
            normalization. Default True.
3419
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3420 3421
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3422
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3423
            Default 1.
3424
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3425
            division by zero. Default 1e-05.
G
guosheng 已提交
3426
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3427 3428
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3429 3430
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3431
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3432 3433
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3434
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3435
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3436
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3437 3438 3439
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3440 3441

    Returns:
Y
yuyang18 已提交
3442
        ${y_comment}
G
guosheng 已提交
3443 3444 3445

    Examples:

3446
        >>> import paddle.fluid as fluid
Y
yuyang18 已提交
3447 3448 3449
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3450
    """
L
lujun 已提交
3451
    assert in_dygraph_mode(
L
lujun 已提交
3452
    ) is not True, "please use FC instead of fc in dygraph mode!"
G
guosheng 已提交
3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3467
    if shift:
G
guosheng 已提交
3468 3469 3470 3471 3472 3473
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3474 3475 3476 3477 3478
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3506
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

3528
        >>> import paddle.fluid as fluid
D
Dun 已提交
3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554
        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3555 3556
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


@templatedoc()
3574
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
D
dengkaipeng 已提交
3575 3576 3577
    """
    **Spectral Normalization Layer**

D
dengkaipeng 已提交
3578
    This layer calculates the spectral normalization value of weight parameters of
3579
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
D
dengkaipeng 已提交
3580
    Parameters. Calculations are showed as follows.
3581

D
dengkaipeng 已提交
3582 3583 3584
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
3585
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math:: 

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
3598
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3599 3600 3601 3602

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3603

D
dengkaipeng 已提交
3604
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3605 3606
                

D
dengkaipeng 已提交
3607 3608 3609 3610
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(${weight_type}): ${weight_comment}
D
dengkaipeng 已提交
3611 3612 3613
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
D
dengkaipeng 已提交
3614 3615 3616
        name (str): The name of this layer. It is optional.

    Returns:
D
dengkaipeng 已提交
3617
        Variable: A tensor variable of weight parameters after spectral normalization.
D
dengkaipeng 已提交
3618 3619

    Examples:
K
Kaipeng Deng 已提交
3620
       .. code-block:: python
D
dengkaipeng 已提交
3621

K
Kaipeng Deng 已提交
3622 3623 3624 3625 3626
            import paddle.fluid as fluid

            weight = fluid.layers.data(name='weight', shape=[2, 8, 32, 32], 
                                       append_batch_size=False, dtype='float32')
            x = fluid.layers.spectral_norm(weight=weight, dim=1, power_iters=2)
D
dengkaipeng 已提交
3627 3628
    """
    helper = LayerHelper('spectral_norm', **locals())
3629
    dtype = weight.dtype
D
dengkaipeng 已提交
3630 3631 3632

    # create intput and parameters
    inputs = {'Weight': weight}
3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650
    input_shape = weight.shape
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    u.stop_gradient = True
    inputs['U'] = u
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    inputs['V'] = v
    v.stop_gradient = True
D
dengkaipeng 已提交
3651 3652

    # create output
3653
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3654 3655

    helper.append_op(
3656
        type="spectral_norm",
D
Dun 已提交
3657
        inputs=inputs,
3658 3659 3660 3661 3662 3663
        outputs={"Out": out, },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        })
D
Dun 已提交
3664

3665
    return out
D
Dun 已提交
3666 3667


Y
Yu Yang 已提交
3668 3669 3670 3671
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3672 3673 3674
                     padding=0,
                     stride=1,
                     dilation=1,
3675
                     groups=None,
C
caoying03 已提交
3676
                     param_attr=None,
3677
                     bias_attr=None,
C
chengduoZH 已提交
3678
                     use_cudnn=True,
3679
                     act=None,
C
caoying03 已提交
3680
                     name=None):
Y
Yu Yang 已提交
3681
    """
3682 3683 3684 3685 3686 3687 3688 3689
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3690 3691
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3692 3693 3694
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3695 3696 3697 3698 3699

    For each input :math:`X`, the equation is:

    .. math::

3700
        Out = \sigma (W \\ast X + b)
3701

3702
    Where:
3703 3704 3705

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3706 3707 3708 3709
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3710

3711 3712 3713 3714
    Example:

        - Input:

3715
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3716

3717
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3718 3719 3720

        - Output:

3721
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3722 3723

        Where
Y
Yu Yang 已提交
3724

3725 3726
        .. math::

3727 3728
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
H
haowang101779990 已提交
3729 3730
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3731 3732

    Args:
3733 3734 3735 3736
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3737 3738 3739 3740
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3759 3760 3761 3762 3763 3764 3765 3766 3767 3768
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3769
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3770 3771 3772
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3773
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3774
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3775 3776

    Returns:
3777
        Variable: The tensor variable storing the convolution transpose result.
3778 3779

    Raises:
3780 3781
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3782 3783 3784 3785

    Examples:
       .. code-block:: python

3786
          import paddle.fluid as fluid
3787 3788
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3789
    """
C
chengduo 已提交
3790
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3791 3792 3793 3794 3795 3796 3797 3798
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3799 3800 3801
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3802 3803 3804
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3805

C
chengduoZH 已提交
3806 3807
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3808

Y
Yu Yang 已提交
3809 3810 3811 3812 3813
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3814

Y
Yu Yang 已提交
3815 3816
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3817

C
chengduoZH 已提交
3818
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3819
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3820
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3821
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3822
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3823 3824 3825
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3826

3827 3828 3829 3830 3831 3832 3833
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3834
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3835
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3836

Y
Yu Yang 已提交
3837 3838 3839
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3840
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3841
    helper.append_op(
3842
        type=op_type,
Y
Yu Yang 已提交
3843 3844
        inputs={'Input': [input],
                'Filter': [img_filter]},
3845
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3846
        attrs={
3847
            'output_size': output_size,
3848 3849 3850 3851 3852
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3853 3854
        })

3855 3856 3857
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3858 3859


3860
def conv3d_transpose(input,
Y
Yu Yang 已提交
3861 3862 3863
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3864 3865 3866
                     padding=0,
                     stride=1,
                     dilation=1,
3867
                     groups=None,
C
caoying03 已提交
3868
                     param_attr=None,
3869
                     bias_attr=None,
C
chengduoZH 已提交
3870
                     use_cudnn=True,
3871
                     act=None,
C
caoying03 已提交
3872
                     name=None):
Y
Yu Yang 已提交
3873
    """
3874
    **Convlution3D transpose layer**
3875

3876
    The convolution3D transpose layer calculates the output based on the input,
3877
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3878 3879 3880 3881 3882 3883
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3884 3885 3886
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3887 3888 3889 3890 3891

    For each input :math:`X`, the equation is:

    .. math::

3892
        Out = \sigma (W \\ast X + b)
3893 3894 3895

    In the above equation:

3896 3897
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3898 3899 3900 3901
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3902

3903 3904 3905 3906
    Example:

        - Input:

3907
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3908

3909
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3910 3911 3912

        - Output:

3913
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3914 3915

        Where
Y
Yu Yang 已提交
3916

3917 3918
        .. math::

3919 3920 3921
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3922 3923

    Args:
3924
        input(Variable): The input image with [N, C, D, H, W] format.
3925 3926 3927
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3928
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3929 3930
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3931
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3932 3933 3934
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3935 3936
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3937
        stride(int|tuple): The stride size. If stride is a tuple, it must
3938 3939
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3940
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3941 3942 3943
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3944 3945 3946 3947 3948
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3949 3950 3951 3952 3953 3954 3955 3956 3957
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3958 3959
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3960 3961
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3962 3963
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3964 3965

    Returns:
3966
        Variable: The tensor variable storing the convolution transpose result.
3967 3968

    Raises:
3969 3970
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3971 3972 3973 3974

    Examples:
       .. code-block:: python

3975
          import paddle.fluid as fluid
3976 3977
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3978
    """
C
chengduo 已提交
3979
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3980 3981
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3982
    if not isinstance(input, Variable):
3983
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3984 3985
    input_channel = input.shape[1]

3986 3987 3988
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3989

C
chengduoZH 已提交
3990 3991 3992
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3993 3994 3995 3996 3997 3998
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3999 4000 4001
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
4002

4003
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
4004
                         padding[0] - 1) // dilation[0] + 1
4005
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
4006
                         padding[1] - 1) // dilation[1] + 1
4007
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
4008
                         padding[2] - 1) // dilation[2] + 1
4009
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
4010
    else:
4011 4012
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
4013

4014
    groups = 1 if groups is None else groups
M
minqiyang 已提交
4015
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
4016 4017 4018
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
4019
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
4020
    helper.append_op(
4021
        type=l_type,
Y
Yu Yang 已提交
4022 4023
        inputs={'Input': [input],
                'Filter': [img_filter]},
4024
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
4025 4026 4027 4028
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
4029
            'groups': groups,
C
chengduoZH 已提交
4030 4031
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
4032

4033 4034
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
4035
    return out
Y
yangyaming 已提交
4036 4037


Y
yangyaming 已提交
4038
def sequence_expand(x, y, ref_level=-1, name=None):
4039
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
4040 4041 4042 4043
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
4044 4045 4046 4047 4048

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
4049
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
4050
                x.data = [[a], [b], [c], [d]]
4051 4052 4053
                x.dims = [4, 1]

            y is a LoDTensor:
4054 4055
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
4056

Y
yangyaming 已提交
4057
            ref_level: 0
4058

Y
yangyaming 已提交
4059
            then output is a 1-level LoDTensor:
4060
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
4061
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
4062 4063 4064 4065
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
4066
                x.data = [[a], [b], [c]]
4067 4068 4069
                x.dims = [3, 1]

            y is a LoDTensor:
4070
                y.lod = [[2, 0, 3]]
4071

Y
yangyaming 已提交
4072
            ref_level: -1
4073

Y
yangyaming 已提交
4074 4075 4076
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
4077 4078 4079
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
4080 4081
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
4082
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
4083
                        will be named automatically.
4084 4085 4086 4087 4088 4089

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python
4090
	
4091
            import paddle.fluid as fluid
4092
            import paddle.fluid.layers as layers
4093 4094 4095
            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
4096
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
4097
    """
L
lujun 已提交
4098
    assert not in_dygraph_mode(), (
4099
        "sequence layer is not supported in dygraph mode yet.")
Y
yangyaming 已提交
4100
    helper = LayerHelper('sequence_expand', input=x, **locals())
4101
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4102
    tmp = helper.create_variable_for_type_inference(dtype)
4103
    helper.append_op(
Y
yangyaming 已提交
4104 4105 4106 4107 4108
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
4109
    return tmp
4110 4111


C
chengduo 已提交
4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python
4160 4161
            
            import paddle.fluid as fluid
4162
            import paddle.fluid.layers as layers
C
chengduo 已提交
4163 4164 4165 4166 4167 4168

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
L
lujun 已提交
4169
    assert not in_dygraph_mode(), (
4170
        "sequence layer is not supported in dygraph mode yet.")
C
chengduo 已提交
4171 4172
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4173
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
4174 4175 4176 4177 4178 4179 4180 4181
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
4182
@templatedoc()
4183
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
4184 4185 4186 4187 4188
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
4189 4190 4191
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
4192
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
4193 4194 4195 4196
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
4197 4198 4199
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
4200

F
fengjiayi 已提交
4201
    Returns:
M
minqiyang 已提交
4202
        Variable: The padded sequence batch and the original lengths before
4203
                  padding. All sequences has the same length.
M
minqiyang 已提交
4204

F
fengjiayi 已提交
4205 4206 4207
    Examples:
        .. code-block:: python

4208
            import paddle.fluid as fluid
F
fengjiayi 已提交
4209 4210 4211 4212
            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
4213
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
4214
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
4215 4216 4217
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

L
lujun 已提交
4218
    assert not in_dygraph_mode(), (
4219
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
4220 4221
    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4222 4223
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
4224 4225 4226 4227

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
4228 4229 4230 4231 4232 4233
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
4234 4235
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
4236
        attrs={'padded_length': maxlen})
4237
    return out, length
F
fengjiayi 已提交
4238 4239


4240
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
4241
    """
4242
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
4243

4244 4245
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
4246 4247 4248 4249 4250 4251 4252 4253 4254
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
4255 4256 4257
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
4258
	specified by input Variable **length**:
Y
Yibing Liu 已提交
4259 4260 4261 4262 4263 4264

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
4265
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
4266 4267 4268 4269 4270 4271

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
4272 4273
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
4274 4275 4276 4277 4278 4279 4280

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

4281
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
4282 4283 4284 4285 4286
            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

L
lujun 已提交
4287
    assert not in_dygraph_mode(), (
4288
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
4289 4290
    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4291
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


4303 4304 4305 4306 4307 4308 4309
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
4310
                is_accumulated=True,
4311 4312
                name=None,
                return_parent_idx=False):
4313
    """
4314 4315
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
4316 4317 4318

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
4319 4320

    This layer does the search in beams for one time step. Specifically, it
4321 4322 4323
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
4335 4336 4337 4338

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
4339

4340
    Args:
4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
4364 4365
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
4366 4367
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4368 4369 4370 4371
        return_parent_idx(bool): Whether to return an extra Tensor variable 
                        preserving the selected_ids' parent indice in pre_ids
                        in output, which can be used to gather cell states at
                        the next time step.
F
fengjiayi 已提交
4372

4373
    Returns:
4374 4375 4376 4377
        Variable: The LodTensor tuple containing the selected ids and the \
            corresponding scores. If :attr:`return_parent_idx` is :attr:`True`, \
            an extra Tensor variable preserving the selected_ids' parent indice \
            is included.
Y
Yan Chunwei 已提交
4378 4379 4380 4381

    Examples:
        .. code-block:: python

4382 4383
            import paddle.fluid as fluid

4384 4385 4386
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398
            beam_size = 4
            end_id = 1
            pre_ids = fluid.layers.data(
                name='pre_id', shape=[1], lod_level=2, dtype='int64')
            pre_scores = fluid.layers.data(
                name='pre_scores', shape=[1], lod_level=2, dtype='float32')
            probs = fluid.layers.data(
                name='probs', shape=[10000], dtype='float32')
            topk_scores, topk_indices = fluid.layers.topk(probs, k=beam_size)
            accu_scores = fluid.layers.elementwise_add(
                x=fluid.layers.log(x=topk_scores),
                y=fluid.layers.reshape(pre_scores, shape=[-1]),
4399
                axis=0)
4400
            selected_ids, selected_scores = fluid.layers.beam_search(
4401 4402 4403 4404 4405 4406 4407
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
4408
    helper = LayerHelper('beam_search', **locals())
4409 4410 4411 4412 4413 4414
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
4415

X
Xin Pan 已提交
4416 4417 4418
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
4419 4420 4421 4422 4423
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")
Q
Qiao Longfei 已提交
4424 4425 4426

    helper.append_op(
        type='beam_search',
4427
        inputs=inputs,
Q
Qiao Longfei 已提交
4428 4429 4430
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
4431
            'parent_idx': parent_idx
Q
Qiao Longfei 已提交
4432 4433 4434 4435 4436 4437
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
4438
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
4439
        })
4440 4441 4442 4443
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores
Q
Qiao Longfei 已提交
4444 4445


4446 4447 4448 4449 4450 4451 4452
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
4453

4454 4455 4456 4457 4458 4459 4460 4461 4462
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
4463

4464 4465 4466 4467 4468 4469
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4470

4471 4472
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4473

4474 4475
            import paddle.fluid as fluid

4476 4477
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
4478 4479 4480
            ids = fluid.layers.create_array(dtype='int64')
            scores = fluid.layers.create_array(dtype='float32')
            finished_ids, finished_scores = fluid.layers.beam_search_decode(
4481 4482 4483
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4484 4485
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4501 4502 4503 4504
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4505
              param_attr=None,
C
caoying03 已提交
4506 4507
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4508 4509 4510 4511
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4512
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4513

4514
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4515

4516
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4517

4518
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4519 4520 4521

            h_t & = o_t tanh(c_t)

4522 4523 4524 4525 4526 4527
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4528 4529 4530

        .. math::

4531
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4532 4533 4534 4535 4536 4537 4538 4539

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

4540
    This layer has two outputs including :math:`h_t` and :math:`c_t`.
Y
yangyaming 已提交
4541 4542

    Args:
Y
yangyaming 已提交
4543 4544 4545 4546 4547 4548
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4549
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4562 4563
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4564 4565

    Returns:
Y
yangyaming 已提交
4566
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4567 4568

    Raises:
4569 4570 4571 4572
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4573 4574 4575 4576 4577

    Examples:

        .. code-block:: python

4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590
            import paddle.fluid as fluid

            dict_dim, emb_dim, hidden_dim = 128, 64, 512
            data = fluid.layers.data(name='step_data', shape=[1], dtype='int32')
            x = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
            pre_hidden = fluid.layers.data(
                name='pre_hidden', shape=[hidden_dim], dtype='float32')
            pre_cell = fluid.layers.data(
                name='pre_cell', shape=[hidden_dim], dtype='float32')
            hidden = fluid.layers.lstm_unit(
                x_t=x,
                hidden_t_prev=pre_hidden,
                cell_t_prev=pre_cell)
Y
yangyaming 已提交
4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4605
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4606 4607 4608 4609
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4610 4611
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4612 4613 4614
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4615
    size = cell_t_prev.shape[1]
4616
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4617 4618
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4619
                param_attr=param_attr,
4620
                bias_attr=bias_attr)
Y
yangyaming 已提交
4621
    dtype = x_t.dtype
X
Xin Pan 已提交
4622 4623
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4624 4625 4626 4627 4628 4629 4630 4631 4632

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4633
    return h, c
G
guosheng 已提交
4634 4635


C
caoying03 已提交
4636
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4637
    """
Y
yangyaming 已提交
4638
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4639 4640 4641

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4642
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4643 4644
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4645 4646
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4647
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4648
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4649
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4650 4651
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4652 4653 4654

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4655

G
guosheng 已提交
4656 4657 4658
    Examples:
        .. code-block:: python

4659
            import paddle.fluid as fluid
G
guosheng 已提交
4660 4661 4662
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4663
            # Each example is followed by the corresponding output tensor.
4664
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
G
guosheng 已提交
4665 4666 4667 4668
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4669

4670
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4671 4672
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4673
            # Each example is followed by the corresponding output tensor.
4674 4675 4676
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_sum(y, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(y, dim=[0, 1]) # [16, 20]
W
whs 已提交
4677

G
guosheng 已提交
4678 4679
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4680
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4681 4682
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4683 4684 4685 4686 4687
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4688
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4689 4690 4691 4692
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4693 4694


C
caoying03 已提交
4695
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4696
    """
Y
Yibing Liu 已提交
4697
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4698 4699 4700

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4701 4702 4703
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4704
            must be in the range :math:`[-rank(input), rank(input))`. If
4705
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4706
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4707 4708
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4709
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4710
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4711
                       will be named automatically.
G
guosheng 已提交
4712 4713

    Returns:
Y
Yibing Liu 已提交
4714
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4715

G
guosheng 已提交
4716 4717 4718
    Examples:
        .. code-block:: python

4719
            import paddle.fluid as fluid
G
guosheng 已提交
4720 4721 4722 4723
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4724
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
G
guosheng 已提交
4725 4726 4727
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
4728
            fluid.layers.reduce_mean(x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4729

4730
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4731 4732 4733
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4734 4735 4736
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_mean(y, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(y, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4737 4738
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4739
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4740 4741
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4742 4743 4744 4745 4746
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4747
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4748 4749 4750 4751
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4752 4753


C
caoying03 已提交
4754
def reduce_max(input, dim=None, keep_dim=False, name=None):
4755
    """
Y
yangyaming 已提交
4756
    Computes the maximum of tensor elements over the given dimension.
4757 4758 4759

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4760
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4761 4762 4763
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4764
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4765 4766
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4767
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4768 4769
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4770 4771 4772

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4773

4774 4775 4776
    Examples:
        .. code-block:: python

4777
            import paddle.fluid as fluid
4778 4779 4780 4781
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4782
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
4783 4784 4785 4786
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4787

4788
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4789 4790 4791
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4792 4793 4794
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_max(y, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(y, dim=[0, 1]) # [7.0, 8.0]
4795 4796
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4797
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4798 4799
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4800 4801 4802 4803 4804
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4805
            'dim': dim if dim != None else [0],
4806 4807 4808 4809 4810 4811
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4812
def reduce_min(input, dim=None, keep_dim=False, name=None):
4813
    """
Y
yangyaming 已提交
4814
    Computes the minimum of tensor elements over the given dimension.
4815 4816 4817

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4818
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4819 4820 4821
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4822
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4823 4824
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4825
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4826 4827
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4828 4829 4830

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4831

4832 4833 4834
    Examples:
        .. code-block:: python

4835
            import paddle.fluid as fluid
4836 4837 4838 4839
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4840
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
4841 4842 4843 4844
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4845

4846
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4847 4848 4849
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4850 4851 4852
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_min(y, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(y, dim=[0, 1]) # [1.0, 2.0]
4853 4854
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4855
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4856 4857
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4858 4859 4860 4861 4862
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4863
            'dim': dim if dim != None else [0],
4864 4865 4866 4867
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4868 4869


4870 4871 4872 4873 4874 4875
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4876
        dim (list|int|None): The dimensions along which the product is performed. If
4877 4878
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4879 4880
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4881 4882 4883
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4884
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4885
            layer will be named automatically.
4886 4887 4888 4889 4890 4891 4892

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

4893
            import paddle.fluid as fluid
4894 4895 4896 4897
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4898
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
4899 4900 4901
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4902
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4903
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4904

4905
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4906 4907 4908
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4909 4910 4911
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_prod(y, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(y, dim=[0, 1]) # [105.0, 384.0]
4912 4913
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4914
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4915 4916
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4917 4918 4919 4920 4921
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4922
            'dim': dim if dim != None else [0],
4923 4924 4925 4926 4927 4928
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


Z
zhoukunsheng 已提交
4929 4930
def reduce_all(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
4931
    Computes the ``logical and`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical and is computed.
            If :attr:`None`, compute the logical and over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4951
        
4952
            import paddle.fluid as fluid
4953 4954 4955
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
4956 4957 4958
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [True, True]]
4959 4960 4961 4962 4963 4964 4965
            x = layers.assign(np.array([[1, 0], [1, 1]], dtype='int32'))
            x = layers.cast(x, 'bool')

            out = layers.reduce_all(x)  # False 
            out = layers.reduce_all(x, dim=0)  # [True, False]
            out = layers.reduce_all(x, dim=-1)  # [False, True]
            out = layers.reduce_all(x, dim=1, keep_dim=True)  # [[False], [True]]
Z
zhoukunsheng 已提交
4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985

    """
    helper = LayerHelper('reduce_all', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_all',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


def reduce_any(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
4986
    Computes the ``logical or`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical or is computed.
            If :attr:`None`, compute the logical or over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
5006

5007
            import paddle.fluid as fluid
5008 5009 5010
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
5011 5012 5013
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [False, False]]
5014 5015 5016 5017 5018 5019 5020
            x = layers.assign(np.array([[1, 0], [0, 0]], dtype='int32'))
            x = layers.cast(x, 'bool')

            out = layers.reduce_any(x)  # True
            out = layers.reduce_any(x, dim=0)  # [True, False]
            out = layers.reduce_any(x, dim=-1)  # [True, False]
            out = layers.reduce_any(x, dim=1,
Z
zhoukunsheng 已提交
5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034
                                     keep_dim=True)  # [[True], [False]]

    """
    helper = LayerHelper('reduce_any', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_any',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
5035 5036 5037 5038 5039
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
5040
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
5041
    """
C
caoying03 已提交
5042
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
5043 5044 5045

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
5046 5047 5048 5049 5050
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
5051
            :attr:`dim` dimension orderly.
C
caoying03 已提交
5052
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
5053
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
5054 5055
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
5056 5057

    Returns:
D
dzhwinter 已提交
5058
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
5059 5060 5061 5062

    Examples:
        .. code-block:: python

5063 5064 5065 5066 5067 5068
            import paddle.fluid as fluid

            # input is a variable which shape is [-1, 3, 9, 5]
            input = fluid.layers.data(
                 name="input", shape=[3, 9, 5], dtype="float32")

5069
            x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=2)
5070 5071 5072 5073 5074 5075 5076 5077
            # x0.shape [-1, 3, 3, 5]
            # x1.shape [-1, 3, 3, 5]
            # x2.shape [-1, 3, 3, 5]

            x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=2)
            # x0.shape [-1, 3, 2, 5]
            # x1.shape [-1, 3, 3, 5]
            # x2.shape [-1, 3, 4, 5]
G
guosheng 已提交
5078 5079 5080 5081 5082 5083 5084 5085
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
T
tink2123 已提交
5086
        assert len(num_or_sections) <= input_shape[
G
guosheng 已提交
5087 5088 5089
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
5090
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
5104 5105 5106 5107 5108 5109 5110 5111 5112


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

5113
    .. math::
5114 5115

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
5116 5117 5118 5119 5120

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
5121
        x(Variable|list): The input tensor to l2_normalize layer.
5122
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
5123 5124
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
5125
        epsilon(float): The epsilon value is used to avoid division by zero, \
翟飞跃 已提交
5126
            the default value is 1e-12.
5127
        name(str|None): A name for this layer(optional). If set None, the layer \
5128
            will be named automatically.
C
caoying03 已提交
5129 5130

    Returns:
5131
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
5132 5133

    Examples:
5134

C
caoying03 已提交
5135 5136
        .. code-block:: python

5137
            import paddle.fluid as fluid
5138 5139 5140 5141
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
5142 5143
    """

F
fengjiayi 已提交
5144 5145
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
5146 5147
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
5148 5149
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5150
    helper.append_op(
5151 5152 5153 5154
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
5155
        attrs={
5156 5157
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
5158 5159
        })
    return out
5160 5161


S
sneaxiy 已提交
5162
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
5163
    """
Y
ying 已提交
5164 5165 5166 5167
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
5168

C
chengduoZH 已提交
5169
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
5170
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
5171

5172 5173 5174 5175 5176
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
5177
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
5178

C
chengduoZH 已提交
5179
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
5180
      performs in the following way.
G
guosheng 已提交
5181

5182
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
5183
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
5184
        last two dimensions and a batched matrix multiply supporting broadcast
5185
        applies on the two tensors.
G
guosheng 已提交
5186

Y
ying 已提交
5187 5188
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
5189
    removed after matrix multiplication.
G
guosheng 已提交
5190 5191 5192

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
5193 5194 5195
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
5196
        alpha (float): The scale of output. Default 1.0.
5197
        name(str|None): A name for this layer(optional). If set None, the layer
5198
            will be named automatically.
G
guosheng 已提交
5199 5200

    Returns:
5201
        Variable: The product Tensor variable.
G
guosheng 已提交
5202

G
guosheng 已提交
5203 5204 5205
    Examples:
        .. code-block:: python

5206
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
5207
            # x: [B, ..., M, K], y: [B, ..., K, N]
5208
            # fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
5209

5210
            # x: [B, M, K], y: [B, K, N]
5211
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5212

5213
            # x: [B, M, K], y: [K, N]
5214
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5215

5216
            # x: [M, K], y: [K, N]
5217
            # fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
5218 5219

            # x: [B, M, K], y: [K]
5220
            # fluid.layers.matmul(x, y)  # out: [B, M]
Y
ying 已提交
5221

5222
            # x: [K], y: [K]
5223
            # fluid.layers.matmul(x, y)  # out: [1]
5224

Y
ying 已提交
5225
            # x: [M], y: [N]
5226 5227
            # fluid.layers.matmul(x, y, True, True)  # out: [M, N]

5228
            import paddle.fluid as fluid
5229 5230 5231
            x = fluid.layers.data(name='x', shape=[2, 3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[3, 2], dtype='float32')
            out = fluid.layers.matmul(x, y, True, True)
G
guosheng 已提交
5232
    """
Y
ying 已提交
5233 5234 5235 5236 5237 5238 5239

    def __check_input(x, y):
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
5240
            y_shape = y_shape + [1]
Y
ying 已提交
5241 5242 5243 5244 5245 5246 5247

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
5248 5249
            raise ValueError("Invalid inputs for matmul. x: %s, y: %s\n" %
                             (x_shape, y_shape))
Y
ying 已提交
5250

C
chengduo 已提交
5251
        if len(y_shape) > 2 and len(x_shape) > 2:
Y
ying 已提交
5252
            for i, dim_x in enumerate(x_shape[:-2]):
P
phlrain 已提交
5253 5254 5255
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
Y
ying 已提交
5256
                if dim_x != y_shape[i]:
C
chengduo 已提交
5257 5258
                    raise ValueError("Invalid inputs for matmul. x(%s), y(%s)" %
                                     (x.shape, y.shape))
Y
ying 已提交
5259 5260 5261

    __check_input(x, y)

5262
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
5263
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
5264
    helper.append_op(
5265 5266 5267 5268
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
5269 5270 5271
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
5272
            'alpha': float(alpha),
S
sneaxiy 已提交
5273
        })
5274
    return out
5275 5276


5277
def topk(input, k, name=None):
Q
qingqing01 已提交
5278 5279 5280 5281
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
5282
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
5283 5284 5285 5286 5287 5288
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
5310 5311 5312
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
5313
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
5314
                 of input.
5315
        name(str|None): A name for this layer(optional). If set None, the layer
5316
                       will be named automatically.
F
fengjiayi 已提交
5317
                       Default: None
Q
qingqing01 已提交
5318 5319

    Returns:
5320 5321 5322
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
5323
        within the last dimension of input.
Q
qingqing01 已提交
5324

F
fengjiayi 已提交
5325 5326
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
5327 5328 5329 5330

    Examples:
        .. code-block:: python

5331
            import paddle.fluid as fluid
5332 5333
            import paddle.fluid.layers as layers
            input = layers.data(name="input", shape=[13, 11], dtype='float32')
Q
qingqing01 已提交
5334 5335 5336
            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
5337 5338
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
5339 5340 5341 5342 5343 5344
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
5345 5346
    helper.append_op(
        type="top_k",
W
whs 已提交
5347
        inputs=inputs,
Q
qingqing01 已提交
5348 5349
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
5350
        attrs=attrs)
Q
qingqing01 已提交
5351 5352 5353 5354 5355
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


5356 5357 5358 5359 5360 5361
def edit_distance(input,
                  label,
                  normalized=True,
                  ignored_tokens=None,
                  input_length=None,
                  label_length=None):
5362
    """
R
ruri 已提交
5363
    Edit distance operator computes the edit distances between a batch of
Y
ying 已提交
5364 5365 5366 5367 5368 5369 5370 5371
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
5372

Y
ying 已提交
5373
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
5374

5375
    The input is a LoDTensor/Tensor consisting of all the hypothesis strings with
Y
ying 已提交
5376
    the total number denoted by `batch_size`, and the separation is specified
5377 5378
    by the LoD information or input_length. And the `batch_size` reference strings are arranged
    in order in the same way as `input`.
W
wanghaoshuang 已提交
5379

5380
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
5381 5382
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
5383

5384
    Args:
5385 5386
        input(Variable): The indices for hypothesis strings, it should have rank 2 and dtype int64.
        label(Variable): The indices for reference strings, it should have rank 2 and dtype int64.
5387
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
5388
                          the length of reference string.
5389
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
5390
                                     calculating edit distance.
5391 5392
        input_length(Variable): The length for each sequence in `input` if it's of Tensor type, it should have shape `[batch_size]` and dtype int64.
        label_length(Variable): The length for each sequence in `label` if it's of Tensor type, it should have shape `[batch_size]` and dtype int64.
5393

W
wanghaoshuang 已提交
5394
    Returns:
5395 5396 5397
        edit_distance_out(Variable): edit distance result in shape [batch_size, 1]. \n
        sequence_num(Variable): sequence number in shape [].
        
W
wanghaoshuang 已提交
5398 5399 5400

    Examples:
        .. code-block:: python
5401
            
R
ruri 已提交
5402 5403
            import paddle.fluid as fluid

5404 5405 5406 5407
            # using LoDTensor
            x_lod = fluid.layers.data(name='x_lod', shape=[1], dtype='int64', lod_level=1)
            y_lod = fluid.layers.data(name='y_lod', shape=[1], dtype='int64', lod_level=1)
            distance_lod, seq_num_lod = fluid.layers.edit_distance(input=x_lod, label=y_lod)
R
ruri 已提交
5408

5409 5410 5411 5412 5413 5414 5415 5416
            # using Tensor
            x_seq_len = 5
            y_seq_len = 6
            x_pad = fluid.layers.data(name='x_pad', shape=[x_seq_len], dtype='int64')
            y_pad = fluid.layers.data(name='y_pad', shape=[y_seq_len], dtype='int64')
            x_len = fluid.layers.data(name='x_len', shape=[], dtype='int64')
            y_len = fluid.layers.data(name='y_len', shape=[], dtype='int64')
            distance_pad, seq_num_pad = fluid.layers.edit_distance(input=x_pad, label=y_pad, input_length=x_len, label_length=y_len)
R
ruri 已提交
5417

5418
    """
5419
    helper = LayerHelper("edit_distance", **locals())
5420

5421
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
5422
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
5423 5424
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
5425 5426 5427 5428 5429

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
5430
            attrs={"tokens": ignored_tokens})
5431 5432 5433 5434 5435
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
5436
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
5437
            attrs={"tokens": ignored_tokens})
5438 5439
        label = erased_label

5440 5441 5442 5443 5444
    this_inputs = {"Hyps": [input], "Refs": [label]}
    if input_length and label_length:
        this_inputs['HypsLength'] = [input_length]
        this_inputs['RefsLength'] = [label_length]

5445
    # edit distance op
X
Xin Pan 已提交
5446 5447
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
5448 5449
    helper.append_op(
        type="edit_distance",
5450
        inputs=this_inputs,
5451 5452
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
5453 5454
        attrs={"normalized": normalized})

5455
    return edit_distance_out, sequence_num
5456 5457 5458 5459 5460


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
5461

Y
ying 已提交
5462 5463 5464 5465
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

5483
        input.lod = [[4, 4]]
M
minqiyang 已提交
5484

W
whs 已提交
5485
        Computation:
5486

W
whs 已提交
5487 5488 5489 5490 5491 5492
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
5493 5494 5495 5496 5497

        output.data = [[2],
                       [1],
                       [3]]

5498
        output.lod = [[2, 1]]
5499

W
whs 已提交
5500

5501 5502
    Args:

Y
ying 已提交
5503 5504 5505 5506 5507 5508 5509 5510 5511
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
5512
        name (str): The name of this layer. It is optional.
5513 5514

    Returns:
H
haowang101779990 已提交
5515 5516 5517
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
5518
                  LoD [[]] and dims [1, 1].
5519 5520 5521 5522

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
5523
            import paddle.fluid as fluid
5524 5525
            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
5526
    """
5527
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
5528
    _, topk_indices = topk(input, k=1)
5529 5530

    # ctc align op
X
Xin Pan 已提交
5531
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
5532 5533 5534
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
5535
        outputs={"Output": [ctc_out]},
5536 5537
        attrs={"merge_repeated": True,
               "blank": blank})
5538
    return ctc_out
5539 5540


W
Wu Yi 已提交
5541
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
5542
    """
5543 5544
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
5545
    to compute Connectionist Temporal Classification (CTC) loss.
5546 5547
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
5548 5549 5550
    input tensor.

    Args:
5551
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
5552 5553 5554 5555
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
5556
       label (Variable): The ground truth of variable-length sequence,
5557 5558 5559
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
5560 5561
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
5562 5563 5564
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
5565
         follewed by a mean_op.
W
Wu Yi 已提交
5566
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
5567 5568

    Returns:
5569 5570
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
5571 5572

    Examples:
5573

W
wanghaoshuang 已提交
5574
        .. code-block:: python
5575

B
Bai Yifan 已提交
5576 5577 5578 5579 5580
            import paddle.fluid as fluid
            label = fluid.layers.data(name='label', shape=[11, 8],
                                      dtype='float32', lod_level=1)
            predict = fluid.layers.data(name='predict', shape=[11, 1],
                                        dtype='float32')
5581
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
5582 5583

    """
F
fengjiayi 已提交
5584
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
5585 5586
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
5587 5588 5589 5590 5591 5592
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
5593 5594 5595 5596 5597
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
5598
    return loss_out
5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
5614 5615 5616
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
5617 5618 5619 5620 5621
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
5622

5623
            out.lod  = [[0, 1, 3]]
5624 5625 5626 5627

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
5628 5629 5630 5631 5632 5633 5634
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
5635 5636 5637

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
5638 5639

    Returns:
5640

5641 5642 5643 5644 5645
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

B
bdzhuxiaoning 已提交
5646 5647 5648
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2, 6], append_batch_size=False, dtype='float32', lod_level=1)
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=4)
5649
    """
L
lujun 已提交
5650
    assert not in_dygraph_mode(), (
5651
        "sequence layer is not supported in dygraph mode yet.")
5652
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
5653
    out = helper.create_variable_for_type_inference(helper.input_dtype())
5654 5655 5656 5657 5658 5659
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
5660 5661


5662 5663 5664 5665
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
5666 5667 5668 5669 5670 5671
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
5672
        num_neg_samples=None,
5673 5674 5675
        name=None,
        sampler="uniform",
        custom_dist=None,
5676 5677
        seed=0,
        is_sparse=False):
5678 5679 5680 5681 5682 5683 5684
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5685 5686
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5687
            sample is 1.0.
C
chengduo 已提交
5688 5689 5690 5691 5692 5693 5694 5695 5696
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5697
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
5698 5699
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5700 5701 5702
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5703
        custom_dist (float[]): A float[] with size=num_total_classes.
5704 5705 5706 5707
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5708
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
5709

5710
    Returns:
Y
Yibing Liu 已提交
5711 5712 5713 5714 5715 5716
        Variable: The output nce loss.

    Examples:
        .. code-block:: python


5717 5718
	    import paddle.fluid as fluid
        import numpy as np
Y
Yibing Liu 已提交
5719

Y
Yibing Liu 已提交
5720 5721 5722 5723 5724 5725 5726 5727
	    window_size = 5
	    words = []
	    for i in xrange(window_size):
		words.append(fluid.layers.data(
		    name='word_{0}'.format(i), shape=[1], dtype='int64'))

	    dict_size = 10000
	    label_word = int(window_size / 2) + 1
Y
Yibing Liu 已提交
5728

Y
Yibing Liu 已提交
5729 5730 5731 5732
	    embs = []
	    for i in xrange(window_size):
		if i == label_word:
		    continue
Y
Yibing Liu 已提交
5733

Y
Yibing Liu 已提交
5734 5735 5736
		emb = fluid.layers.embedding(input=words[i], size=[dict_size, 32],
				   param_attr='embed', is_sparse=True)
		embs.append(emb)
5737

Y
Yibing Liu 已提交
5738 5739 5740 5741
	    embs = fluid.layers.concat(input=embs, axis=1)
	    loss = fluid.layers.nce(input=embs, label=words[label_word],
		      num_total_classes=dict_size, param_attr='nce.w_0',
		      bias_attr='nce.b_0')
5742

Y
Yibing Liu 已提交
5743 5744 5745 5746 5747 5748 5749 5750
	    #or use custom distribution
	    dist = np.array([0.05,0.5,0.1,0.3,0.05])
	    loss = fluid.layers.nce(input=embs, label=words[label_word],
		      num_total_classes=5, param_attr='nce.w_1',
		      bias_attr='nce.b_1',
		      num_neg_samples=3,
		      sampler="custom_dist",
		      custom_dist=dist)
5751
    """
Y
Yang Yu 已提交
5752 5753 5754
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
5755 5756

    dim = input.shape[1]
Y
Yang Yu 已提交
5757 5758 5759 5760 5761 5762
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
5763
    inputs = {}
C
chengduo 已提交
5764 5765 5766 5767 5768 5769 5770
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
5771 5772 5773
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
5774

5775 5776 5777 5778
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
5779 5780 5781 5782 5783 5784 5785

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
5786 5787
        # assert isinstance(custom_dist, Variable)

Y
Yibing Liu 已提交
5788
        custom_dist_len = num_total_classes
5789 5790 5791 5792 5793 5794
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
5795
            if normal_prob - 1.0 > 0:
5796
                bigs.append((i, normal_prob))
5797
            elif 1.0 - normal_prob > 0:
5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
5813
            if big_left - 1.0 > 0:
5814
                bigs.append((big_idx, big_left))
5815
            elif 1.0 - big_left > 0:
5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
5845 5846 5847 5848
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5849 5850 5851 5852 5853
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

5854 5855 5856 5857
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5858

Y
Yang Yu 已提交
5859 5860
    attrs = {
        'num_total_classes': int(num_total_classes),
5861 5862
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5863
        'sampler': sampler,
5864 5865
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
5866
    }
Y
Yang Yu 已提交
5867 5868 5869

    helper.append_op(
        type='nce',
C
chengduo 已提交
5870
        inputs=inputs,
Y
Yang Yu 已提交
5871 5872 5873 5874 5875 5876
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5877
    return cost / (num_neg_samples + 1)
5878 5879


C
chengduo 已提交
5880 5881
def hsigmoid(input,
             label,
5882
             num_classes,
C
chengduo 已提交
5883 5884
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5885
             name=None,
5886 5887 5888
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5889
             is_sparse=False):
W
weixing02 已提交
5890 5891
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5892
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
5893
    complete binary tree, or you can use is_custom to pass your own tree to
5894
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5895 5896 5897 5898 5899 5900
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5901
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5902
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5903

5904 5905
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
5906 5907 5908 5909
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
5910
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
5911
       related to the same batch of inputs.
5912

W
weixing02 已提交
5913
    Args:
M
minqiyang 已提交
5914
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5915 5916 5917 5918
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
5919 5920
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
5921
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
5933
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
5934
            it should be in leaf -> root order
M
minqiyang 已提交
5935 5936 5937
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
5938
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
5939
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
5940
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
5941
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
5942
             of W and input will be sparse.
W
weixing02 已提交
5943 5944

    Returns:
J
JiabinYang 已提交
5945
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5946 5947 5948 5949 5950

    Examples:

        .. code-block:: python

5951
            import paddle.fluid as fluid
G
guosheng 已提交
5952 5953 5954
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5955 5956 5957 5958
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5959 5960
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5961
    dim = input.shape[1]
5962
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5963 5964 5965
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5966 5967 5968 5969 5970 5971 5972 5973 5974
    if (not is_custom) and (is_sparse):
        print("Sparse mode should not be used without custom tree")
        is_sparse = False

    if (not is_custom) and ((path_table is not None) or
                            (path_code is not None)):
        raise ValueError(
            "only num_classes should be passed without custom tree")

5975
    if (is_custom) and (path_code is None):
5976
        raise ValueError("path_code should not be None with custom tree")
5977
    elif (is_custom) and (path_table is None):
5978
        raise ValueError("path_table should not be None with custom tree")
5979
    elif (is_custom) and (num_classes is None):
5980
        raise ValueError("num_classes should not be None with custom tree")
5981 5982 5983
    else:
        pass

J
JiabinYang 已提交
5984
    weights = None
5985 5986 5987 5988
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5989
    if not is_custom:
J
JiabinYang 已提交
5990 5991 5992 5993 5994 5995 5996 5997
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5998
            shape=[num_classes, dim],
J
JiabinYang 已提交
5999 6000
            is_bias=False,
            dtype=input.dtype)
6001 6002 6003
    inputs = {
        "X": input,
        "W": weights,
6004
        "PathTable": path_table,
6005
        "PathCode": path_code,
6006 6007
        "Label": label
    }
W
weixing02 已提交
6008
    if helper.bias_attr:
6009
        if not is_custom:
J
JiabinYang 已提交
6010 6011
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
6012
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
6013 6014 6015 6016 6017 6018
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
6019
                shape=[num_classes, 1],
J
JiabinYang 已提交
6020 6021 6022
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
6023 6024
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
6025
        inputs=inputs,
W
weixing02 已提交
6026
        outputs={"Out": out,
6027 6028 6029 6030 6031 6032 6033
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
6034 6035 6036
    return out


Y
fix ci.  
ying 已提交
6037
def transpose(x, perm, name=None):
Y
ying 已提交
6038 6039 6040 6041 6042 6043 6044
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
6045 6046 6047
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
6048 6049 6050 6051 6052 6053 6054

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

6055
            # use append_batch_size=False to avoid prepending extra
6056
            # batch size in shape
6057
            import paddle.fluid as fluid
6058
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
6059
                            dtype='float32', append_batch_size=False)
6060
            x_transposed = fluid.layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
6061 6062
    """

Y
fix ci.  
ying 已提交
6063
    if len(perm) != len(x.shape):
Y
ying 已提交
6064 6065
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
6066
            "Its length should be equal to Input(input)'s rank.")
Y
ying 已提交
6067 6068 6069 6070 6071 6072
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
6073 6074

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
6075 6076
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
6077
    helper.append_op(
6078
        type='transpose2',
Y
fix ci.  
ying 已提交
6079
        inputs={'X': [x]},
6080 6081
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
6082 6083
        attrs={'axis': perm})
    return out
6084 6085


6086 6087 6088 6089 6090 6091 6092
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
6093
    """
6094 6095 6096 6097 6098 6099 6100
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
6101 6102 6103 6104 6105 6106 6107 6108 6109 6110

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

6129 6130 6131 6132 6133 6134 6135 6136 6137
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

6138 6139 6140
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
6141 6142 6143 6144 6145
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
6173 6174 6175
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

6188
            output.dims = {8, 8}
6189

6190
            output.lod = [[4, 4]]
6191

T
Tink_Y 已提交
6192
    Examples:
6193 6194 6195

        .. code-block:: python

B
Bai Yifan 已提交
6196 6197 6198
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                     dtype='float32')
6199
            output = fluid.layers.im2sequence(
B
Bai Yifan 已提交
6200 6201
                input=data, stride=[1, 1], filter_size=[2, 2])

6202 6203

    """
L
lujun 已提交
6204
    assert not in_dygraph_mode(), (
6205
        "sequence layer is not supported in dygraph mode yet.")
W
wanghaoshuang 已提交
6206 6207 6208 6209 6210 6211 6212 6213 6214 6215

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
6216
    inputs = {"X": input}
6217
    attrs = {"kernels": filter_size, "strides": stride, "paddings": padding}
6218 6219 6220 6221 6222
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
6223
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
6224
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
6225
    helper.append_op(
6226
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
6227
    return out
6228 6229


Y
yuyang18 已提交
6230
@templatedoc()
6231
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
6232 6233
    """
    ${comment}
6234 6235

    Args:
Y
yuyang18 已提交
6236
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
6237 6238
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
6239 6240 6241 6242 6243
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
6244
        ${out_comment}.
6245 6246

    Examples:
Y
yuyang18 已提交
6247 6248 6249 6250
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
6251 6252 6253 6254 6255 6256
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
6257
    out = helper.create_variable_for_type_inference(dtype)
6258 6259 6260 6261 6262
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
6263
    return helper.append_activation(out)
6264 6265


Y
yuyang18 已提交
6266
@templatedoc()
6267 6268
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
6269 6270
    ${comment}

L
lujun 已提交
6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313
    For Example:

    .. code-block:: text

        case 1:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
             [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
             [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

        index = [3,0,1,2]

        out:[[3 0 3 4]    // X[3,0] (3 = index[i], 0 = i); i=0
             [0 1 3 4]    // X[0,1] (0 = index[i], 1 = i); i=1
             [1 2 4 2]    // X[1,2] (0 = index[i], 2 = i); i=2
             [2 3 3 4]]   // X[2,3] (0 = index[i], 3 = i); i=3

        case 2:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]]]

        index = [1,0]

        out:[[1 0 3 4]    // X[1,0] (3 = index[0], 0 = i); i=1
             [0 1 3 4]    // X[0,1] (0 = index[1], 1 = i); i=2
             [0 2 4 4]    // X[0,2] (0 = 0, 2 = i); i=3
             [0 3 3 4]]   // X[0,3] (0 = 0, 3 = i); i=4

    Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
        x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
        index = fluid.layers.data(name='index', shape=[1], dtype='int32')
        out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
6314 6315

    Args:
Y
yuyang18 已提交
6316 6317
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
6318 6319

    Returns:
Y
yuyang18 已提交
6320
        ${out_comment}.
6321 6322
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
6323 6324 6325 6326 6327

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
6328
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
6329 6330 6331 6332 6333 6334
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
6335 6336


6337 6338 6339
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
6340
                               ignore_index=kIgnoreIndex,
6341
                               numeric_stable_mode=True,
6342 6343
                               return_softmax=False,
                               axis=-1):
6344 6345
    """
    **Softmax With Cross Entropy Operator.**
6346

6347
    Cross entropy loss with softmax is used as the output layer extensively. This
6348 6349 6350
    operator computes the softmax normalized values for dimension :attr:`axis` of 
    the input tensor, after which cross-entropy loss is computed. This provides 
    a more numerically stable gradient.
6351

6352 6353 6354
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
6355

6356 6357 6358 6359
    When the attribute :attr:`soft_label` is set :attr:`False`, this operators 
    expects mutually exclusive hard labels, each sample in a batch is in exactly 
    one class with a probability of 1.0. Each sample in the batch will have a 
    single label.
6360

6361
    The equation is as follows:
6362

6363
    1) Hard label (one-hot label, so every sample has exactly one class)
6364

6365 6366 6367 6368
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
6369

6370 6371 6372
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
6373

6374 6375 6376 6377
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

6378 6379
    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated 
    first by:
S
sneaxiy 已提交
6380 6381

    .. math::
6382

H
haowang101779990 已提交
6383
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
6384

H
haowang101779990 已提交
6385
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
6386

H
haowang101779990 已提交
6387
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
6388 6389 6390

    and then cross entropy loss is calculated by softmax and label.

6391
    Args:
6392 6393 6394 6395 6396 6397
        logits (Variable): The input tensor of unscaled log probabilities.
        label (Variable): The ground truth  tensor. If :attr:`soft_label`
            is set to :attr:`True`, Label is a Tensor<float/double> in the 
            same shape with :attr:`logits`. If :attr:`soft_label` is set to 
            :attr:`True`, Label is a Tensor<int64> in the same shape with 
            :attr:`logits` expect shape in dimension :attr:`axis` as 1.
6398
        soft_label (bool): A flag to indicate whether to interpretate the given
6399
            labels as soft labels. Default False.
M
minqiyang 已提交
6400 6401
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
6402 6403
                            if :attr:`soft_label` is set to :attr:`False`. 
                            Default: kIgnoreIndex
S
sneaxiy 已提交
6404 6405
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
6406 6407 6408 6409
                                    when :attr:`soft_label` is :attr:`False` 
                                    and GPU is used. When :attr:`soft_label` 
                                    is :attr:`True` or CPU is used, the 
                                    algorithm is always numerically stable.
6410
                                    Note that the speed may be slower when use
6411
                                    stable algorithm. Default: True
6412
        return_softmax (bool): A flag indicating whether to return the softmax
6413
                               along with the cross entropy loss. Default: False
6414 6415 6416
        axis (int): The index of dimension to perform softmax calculations. It 
                    should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                    is the rank of input :attr:`logits`. Default: -1.
6417

6418
    Returns:
H
haowang101779990 已提交
6419 6420
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
6421 6422 6423 6424
                                            (loss, softmax), softmax is in the same shape \
                                            with input logits and cross entropy loss is in \
                                            the same shape with input logits except shape \
                                            in dimension :attr:`axis` as 1.
6425 6426 6427 6428

    Examples:
        .. code-block:: python

6429 6430
            import paddle.fluid as fluid

6431 6432 6433
            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
6434 6435
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
6436 6437
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
6438 6439
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
6440 6441 6442 6443 6444 6445
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
6446 6447 6448
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
6449 6450
            'numeric_stable_mode': numeric_stable_mode,
            'axis': axis
S
sneaxiy 已提交
6451
        })
6452 6453 6454 6455

    if return_softmax:
        return loss, softmax

6456 6457 6458
    return loss


6459 6460 6461
def sampled_softmax_with_cross_entropy(logits,
                                       label,
                                       num_samples,
X
xuezhong 已提交
6462
                                       num_true=1,
6463
                                       remove_accidental_hits=True,
X
xuezhong 已提交
6464 6465 6466
                                       use_customized_samples=False,
                                       customized_samples=None,
                                       customized_probabilities=None,
6467
                                       seed=0):
X
xuezhong 已提交
6468 6469 6470 6471 6472
    """
    **Sampled Softmax With Cross Entropy Operator.**

    Cross entropy loss with sampled softmax is used as the output layer for 
    larger output classes extensively. This operator samples a number of samples
6473
    for all examples, and computes the softmax normalized values for each 
X
xuezhong 已提交
6474 6475 6476 6477 6478 6479 6480 6481
    row of the sampled tensor, after which cross-entropy loss is computed. 

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
    
    For examples with T true labels (T >= 1), we assume that each true label has
    a probability of 1/T. For each sample, S samples are generated using a
X
xuezhong 已提交
6482
    log uniform distribution. True labels are concatenated with these samples to
X
xuezhong 已提交
6483 6484 6485 6486 6487 6488 6489 6490
    form T + S samples for each example. So, assume the shape of logits is
    [N x K], the shape for samples is [N x (T+S)]. For each sampled label, a 
    probability is calculated, which corresponds to the Q(y|x) in 
    [Jean et al., 2014](http://arxiv.org/abs/1412.2007).
    
    Logits are sampled according to the sampled labels. Then if 
    remove_accidental_hits is True, if a sample[i, j] accidentally hits true 
    labels, then the corresponding sampled_logits[i, j] is minus by 1e20 to 
X
xuezhong 已提交
6491
    make its softmax result close to zero. Then sampled logits are subtracted by
X
xuezhong 已提交
6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502
    logQ(y|x), these sampled logits and re-indexed labels are used to compute 
    a softmax with cross entropy.

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. Label is a 
            Tensor<int64> with shape [N x T], where T is the number of true 
            labels per example. 
        num_samples (int): The number for each example, num_samples should be 
            less than the number of class.
6503
        num_true(int): The number of target classes per training example.
X
xuezhong 已提交
6504 6505 6506 6507 6508
        remove_accidental_hits (bool): A flag indicating whether to remove 
            accidental hits when sampling. If True and if a sample[i, j] 
            accidentally hits true labels, then the corresponding 
            sampled_logits[i, j] is minus by 1e20 to make its softmax result 
            close to zero. Default is True.
X
xuezhong 已提交
6509
        use_customized_samples (bool): Whether to use custom samples and probabities to sample
6510
            logits.
X
xuezhong 已提交
6511 6512 6513 6514 6515
        customized_samples (Variable): User defined samples, which is a 2-D tensor
            with shape [N, T + S]. S is the num_samples, and T is the number of true 
            labels per example. 
        customized_probabilities (Variable): User defined probabilities of samples, 
            a 2-D tensor which has the same shape with customized_samples.
6516 6517 6518
        seed (int): The random seed for generating random number, which is used
            in the process of sampling. Default is 0.

X
xuezhong 已提交
6519 6520 6521 6522 6523 6524 6525
    Returns:
        Variable: Return the cross entropy loss which is a 2-D tensor with shape
                  [N x 1].

    Examples:
        .. code-block:: python

6526 6527 6528
            import paddle.fluid as fluid

            input = fluid.layers.data(name='data', shape=[256], dtype='float32')
6529
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
6530
            fc = fluid.layers.fc(input=input, size=100)
X
xuezhong 已提交
6531
            out = fluid.layers.sampled_softmax_with_cross_entropy(
6532
                      logits=fc, label=label, num_samples=25)
X
xuezhong 已提交
6533 6534 6535 6536 6537 6538 6539 6540
    """
    helper = LayerHelper('sample_logits', **locals())
    samples = helper.create_variable_for_type_inference(dtype='int64')
    probabilities = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
    sampled_logits \
        = helper.create_variable_for_type_inference(dtype=logits.dtype)
    sampled_label = helper.create_variable_for_type_inference(dtype='int64')
X
xuezhong 已提交
6541 6542
    sampled_softlabel = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
6543 6544
    logits_dim = helper.create_variable_for_type_inference(dtype=logits.dtype)
    labels_dim = helper.create_variable_for_type_inference(dtype=label.type)
X
xuezhong 已提交
6545 6546 6547 6548 6549

    helper.append_op(
        type='sample_logits',
        inputs={
            'Logits': logits,
X
xuezhong 已提交
6550
            'Labels': label,
X
xuezhong 已提交
6551 6552
            'CustomizedSamples': customized_samples,
            'CustomizedProbabilities': customized_probabilities
X
xuezhong 已提交
6553 6554 6555 6556
        },
        outputs={
            'Samples': samples,
            'Probabilities': probabilities,
X
xuezhong 已提交
6557
            'SampledLabels': sampled_label,
6558 6559 6560
            'SampledLogits': sampled_logits,
            'LogitsDim': logits_dim,
            'LabelsDim': labels_dim
X
xuezhong 已提交
6561 6562
        },
        attrs={
X
xuezhong 已提交
6563
            'use_customized_samples': use_customized_samples,
6564
            'uniq': True,
X
xuezhong 已提交
6565 6566 6567 6568
            'remove_accidental_hits': remove_accidental_hits,
            'num_samples': num_samples,
            'seed': seed
        })
X
xuezhong 已提交
6569 6570
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
X
xuezhong 已提交
6571 6572 6573 6574 6575 6576
    helper.append_op(
        type='one_hot',
        inputs={'X': sampled_label},
        attrs={'depth': num_samples + 1},
        outputs={'Out': sampled_softlabel})

6577 6578
    helper.append_op(
        type='softmax_with_cross_entropy',
X
xuezhong 已提交
6579
        inputs={'Logits': sampled_logits,
X
xuezhong 已提交
6580
                'Label': sampled_softlabel},
X
xuezhong 已提交
6581 6582 6583
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={
X
xuezhong 已提交
6584
            'soft_label': True,
X
xuezhong 已提交
6585 6586 6587
            'ignore_index': False,
            'numeric_stable_mode': False
        })
X
xuezhong 已提交
6588
    return loss / num_true
X
xuezhong 已提交
6589 6590


6591 6592
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
6593 6594
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
6595
    For each instance, it computes the smooth L1 loss element by element first
6596
    and then sums all the losses. So the shape of ouput Variable is
6597
    [batch_size, 1].
6598

6599 6600
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
6601
            L1 loss op with shape [batch_size, dim1, ..., dimN].
6602
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
6603
            L1 loss op with same shape as :attr:`x`.
6604
        inside_weight (Variable|None):  A tensor with rank at least 2. This
6605 6606
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
6607
            by this tensor element by element.
6608
        outside_weight (Variable|None): A tensor with rank at least 2. This
6609 6610
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
6611
            element by element.
6612
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
6613 6614
           scalar with default value 1.0.

6615
    Returns:
6616
        Variable: The output smooth L1 loss with shape [batch_size, 1].
6617 6618 6619 6620

    Examples:
        .. code-block:: python

6621
            import paddle.fluid as fluid
6622
            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
6623 6624
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
6625
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
6626
            out = fluid.layers.smooth_l1(x=fc, y=label)
6627
    """
6628

6629
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
6630 6631
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
6632 6633 6634 6635 6636 6637 6638 6639 6640 6641
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
6642
        attrs={'sigma': sigma if sigma is not None else 1.0})
6643
    return loss
6644 6645 6646 6647


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
6648
    This layer creates the one-hot representations for input indices.
6649 6650

    Args:
Y
Yibing Liu 已提交
6651 6652
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
6653 6654

    Returns:
Y
Yibing Liu 已提交
6655
        Variable: The one-hot representations of input.
6656 6657

    Examples:
C
caoying03 已提交
6658
        .. code-block:: python
6659

6660
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
6661 6662
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            one_hot_label = fluid.layers.one_hot(input=label, depth=10)
6663 6664
    """
    helper = LayerHelper("one_hot", **locals())
6665

X
Xin Pan 已提交
6666
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
6667 6668 6669 6670 6671 6672 6673 6674 6675 6676

    if in_dygraph_mode():
        inputs = {'X': input}
        attrs = {'depth': depth}
    else:
        if not isinstance(depth, Variable):
            # user attribute 
            inputs = {'X': input}
            attrs = {'depth': depth}
        else:
H
Hongyu Liu 已提交
6677
            depth.stop_gradient = True
6678 6679
            inputs = {'X': input, 'depth_tensor': depth}
            attrs = {}
6680 6681
    helper.append_op(
        type="one_hot",
6682 6683
        inputs=inputs,
        attrs=attrs,
6684 6685
        outputs={'Out': one_hot_out},
        stop_gradient=True)
6686
    return one_hot_out
Y
Yu Yang 已提交
6687 6688


Y
Yu Yang 已提交
6689
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
6690
    """
Y
yi.wu 已提交
6691 6692 6693
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
6694 6695 6696 6697 6698 6699

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

6700 6701
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
6702 6703 6704 6705

    Examples:
        .. code-block:: python

6706
           import paddle.fluid as fluid
Y
yi.wu 已提交
6707
           global_step = fluid.layers.autoincreased_step_counter(
Y
Yibing Liu 已提交
6708
               counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Y
Yu Yang 已提交
6709 6710
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
6711 6712
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
6713 6714 6715 6716 6717
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
6718
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
6719
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
6720 6721
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
6722
            outputs={'Out': [counter]},
M
minqiyang 已提交
6723 6724
            attrs={'step': float(step)},
            stop_gradient=True)
Y
Yu Yang 已提交
6725 6726 6727
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
6728 6729


6730
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
6731
    """
C
caoying03 已提交
6732 6733
    Gives a new shape to the input Tensor without changing its data.

6734 6735 6736 6737 6738
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
6739

6740
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
6741

6742 6743 6744 6745
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

6746
    2. 0 means the actual dimension value is going to be copied from the
6747 6748 6749 6750
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
6751 6752

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
6753
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
6754
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
6755

6756
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6757 6758
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
6759 6760
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
6761
    dimensions.
C
caoying03 已提交
6762

6763
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6764 6765 6766 6767
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
6768 6769

    Args:
6770
        x(variable): The input tensor.
C
caoying03 已提交
6771 6772
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
6773 6774 6775 6776 6777
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
6778 6779
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
C
chengduozh 已提交
6780 6781 6782
        inplace(bool): If ``inplace`` is `True`, the input and output of ``layers.reshape``
                       are the same variable, otherwise, the input and output of
                       ``layers.reshape`` are different variables. Note that if :attr:`x`
C
chengduozh 已提交
6783
                       is more than one layer's input, ``inplace`` must be :attr:`False`.
6784
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
6785

6786
    Returns:
G
guosheng 已提交
6787 6788 6789 6790
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
6791

X
Xin Pan 已提交
6792 6793 6794
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
6795 6796
    Examples:
        .. code-block:: python
G
guosheng 已提交
6797

6798
            import paddle.fluid as fluid
6799
            data = fluid.layers.data(
6800
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
6801
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
6802
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
6803 6804 6805
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
6806
        raise ValueError("Input shape must be a python list or tuple.")
6807

X
Xin Pan 已提交
6808 6809 6810 6811 6812
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
6813

6814 6815
    # Validate the shape
    unk_dim_idx = -1
6816
    contain_var = False
6817
    for dim_idx, dim_size in enumerate(shape):
6818 6819 6820 6821
        if isinstance(dim_size, Variable):
            contain_var = True
            continue

6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

6834
    helper = LayerHelper("reshape2", **locals())
6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856
    if in_dygraph_mode():
        inputs = {'X': x}
        attrs = {'shape': shape}
    else:
        if contain_var:
            new_shape_tensor = []
            for dim in shape:
                if isinstance(dim, Variable):
                    dim.stop_gradient = True
                    new_shape_tensor.append(dim)
                else:
                    assert (isinstance(dim, int))
                    temp_out = helper.create_variable_for_type_inference(
                        'int32')
                    fill_constant(
                        [1], 'int32', dim, force_cpu=True, out=temp_out)
                    new_shape_tensor.append(temp_out)
            inputs['ShapeTensor'] = new_shape_tensor
            attrs = {}

        else:
            attrs = {'shape': shape}
6857 6858
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
6859
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
6860
    helper.append_op(
6861
        type="reshape2",
X
Xin Pan 已提交
6862
        inputs=inputs,
6863
        attrs=attrs,
6864 6865
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
6866

D
dzhwinter 已提交
6867
    return helper.append_activation(out)
6868

6869

6870
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
6871
    """
M
minqiyang 已提交
6872 6873 6874
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
6875
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
6876

H
haowang101779990 已提交
6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
6898

Y
Yibing Liu 已提交
6899
    Args:
6900
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
6901
        axes (list): List of integers, indicating the dimensions to be squeezed.
6902
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6903 6904 6905 6906 6907 6908 6909

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

6910
            import paddle.fluid as fluid
6911
            import paddle.fluid.layers as layers
Y
Yibing Liu 已提交
6912
            x = layers.data(name='x', shape=[5, 1, 10])
6913
            y = layers.squeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6914
    """
L
lujun 已提交
6915
    assert not in_dygraph_mode(), (
L
lujun 已提交
6916
        "squeeze layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
6917
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
6918 6919
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6920
    helper.append_op(
6921
        type="squeeze2",
6922
        inputs={"X": input},
Y
Yibing Liu 已提交
6923
        attrs={"axes": axes},
6924 6925
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6926

6927 6928 6929
    return out


6930
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
6931
    """
M
minqiyang 已提交
6932 6933 6934
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
6935

M
minqiyang 已提交
6936
    For example:
H
haowang101779990 已提交
6937 6938 6939

    .. code-block:: text

M
minqiyang 已提交
6940
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
6941
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
6942

Y
Yibing Liu 已提交
6943
    Args:
6944
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
6945
        axes (list): List of integers, indicating the dimensions to be inserted.
6946
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6947 6948 6949 6950 6951 6952 6953

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

6954 6955 6956
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10])
            y = fluid.layers.unsqueeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6957 6958
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
6959 6960
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6961
    helper.append_op(
6962
        type="unsqueeze2",
6963
        inputs={"X": input},
Y
Yibing Liu 已提交
6964
        attrs={"axes": axes},
6965 6966
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6967

6968 6969
    return out

6970

Y
yangyaming 已提交
6971
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
6972
    """
Y
Yibing Liu 已提交
6973
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
6974 6975 6976 6977
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
6978
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
6979 6980 6981 6982 6983 6984

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
6985
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
6986 6987 6988
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

6989
            target_lod: [4, 2]
Y
yangyaming 已提交
6990 6991

            then we get a 1-level LoDTensor:
6992
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
6993 6994 6995 6996 6997 6998
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
6999
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
7000 7001 7002 7003
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
7004
                y.data = [[2, 4]]
Y
yangyaming 已提交
7005 7006 7007
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
7008
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
7009 7010 7011 7012 7013 7014
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
7015
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
7016 7017 7018 7019
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
7020
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
7021 7022 7023 7024
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
7025
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
7026 7027 7028 7029 7030
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
7031
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
7032
                           from :attr:`y`.
Y
yangyaming 已提交
7033
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
7034
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
7035 7036

    Returns:
Y
Yibing Liu 已提交
7037
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
7038 7039

    Raises:
Y
Yibing Liu 已提交
7040
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
7041 7042 7043 7044

    Examples:
        .. code-block:: python

7045
            import paddle.fluid as fluid
7046 7047 7048
            x = fluid.layers.data(name='x', shape=[10])
            y = fluid.layers.data(name='y', shape=[10, 20], lod_level=2)
            out = fluid.layers.lod_reset(x=x, y=y)
Y
yangyaming 已提交
7049 7050
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
7051
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

X
xiaoting 已提交
7077
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C-1, i + n/2)}_{j = \\max(0, i - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

7106
          import paddle.fluid as fluid
F
stash  
fengjiayi 已提交
7107 7108
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
7121 7122 7123
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
7137 7138 7139 7140


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
7141
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
7142
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
7143

G
guosheng 已提交
7144 7145 7146 7147
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
7170
                         The length of :attr:paddings must be
G
guosheng 已提交
7171 7172 7173 7174 7175 7176 7177 7178 7179 7180
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
7181

G
guosheng 已提交
7182
            # x is a rank 2 tensor variable.
S
SunGaofeng 已提交
7183 7184
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape=[224], dtype='float32')
G
guosheng 已提交
7185 7186 7187 7188 7189
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7190
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
7191 7192 7193 7194 7195 7196 7197
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
7198 7199


C
chengduo 已提交
7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
7231 7232
		And
            pad_value = -1,
C
chengduo 已提交
7233

T
Tink_Y 已提交
7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
S
SunGaofeng 已提交
7264 7265 7266
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2,3,2,3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1,3,1,3], dtype='float32')
C
chengduo 已提交
7267 7268 7269 7270 7271
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7272
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
7273 7274 7275 7276 7277 7278 7279 7280 7281
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


7282 7283 7284 7285 7286 7287 7288
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
7289 7290
    called label-smoothing regularization (LSR).

7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
7314
                              be :math:`(1, class\_num)`.
7315 7316
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
7317
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
7318 7319 7320 7321 7322 7323 7324 7325 7326
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python
7327
            
7328
            import paddle.fluid as fluid
7329
            import paddle.fluid.layers as layers
7330 7331 7332 7333 7334 7335 7336 7337 7338 7339

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
7340
    smooth_label = helper.create_variable_for_type_inference(dtype)
7341 7342 7343 7344 7345 7346 7347
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
7348 7349


W
wopeizl 已提交
7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380
            import paddle.fluid as fluid

            x = fluid.layers.data(
                name='x', shape=[8, 112, 112], dtype='float32')
            rois = fluid.layers.data(
                name='roi', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.roi_pool(
                input=x,
                rois=rois,
                pooled_height=7,
                pooled_width=7,
                spatial_scale=1.0)

W
wopeizl 已提交
7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
7398 7399


J
jerrywgz 已提交
7400 7401 7402 7403 7404 7405
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
7406 7407
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

7424
            import paddle.fluid as fluid
J
jerrywgz 已提交
7425 7426 7427 7428
            x = fluid.layers.data(
                name='data', shape=[256, 32, 32], dtype='float32')
            rois = fluid.layers.data(
                name='rois', shape=[4], dtype='float32')
7429 7430 7431
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
7432 7433 7434 7435 7436 7437
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7438
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
7479 7480
        .. code-block:: python

S
SunGaofeng 已提交
7481 7482 7483
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape = [3, 224, 224, 2], dtype='float32')
            label = fluid.layers.data(name='label', shape=[3, 224, 224, 1], dtype='float32')
W
whs 已提交
7484
            predictions = fluid.layers.softmax(x)
S
SunGaofeng 已提交
7485
            loss = fluid.layers.dice_loss(input=predictions, label=label)
W
whs 已提交
7486 7487
    """
    label = one_hot(label, depth=input.shape[-1])
7488
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
7489 7490 7491 7492 7493 7494
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
7495 7496


7497 7498 7499 7500
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
7501
                 resample='BILINEAR',
7502 7503
                 actual_shape=None,
                 align_corners=True,
T
tink2123 已提交
7504
                 align_mode=1):
7505
    """
Q
qiaolongfei 已提交
7506
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
7507

7508
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
7509 7510 7511
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
7512

7513
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
7514

7515
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
7516

7517 7518 7519 7520 7521 7522 7523 7524 7525 7526
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

T
tink2123 已提交
7527
    Align_corners and align_mode are optinal parameters,the calculation method 
7528 7529 7530 7531
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7532
    .. code-block:: text
7533

T
Tink_Y 已提交
7534
        For scale:
7535
          
T
Tink_Y 已提交
7536
            if align_corners = True && out_size > 1 :
7537

T
Tink_Y 已提交
7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
          
          if:
              align_corners = False
7549

T
Tink_Y 已提交
7550 7551
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7552

T
Tink_Y 已提交
7553 7554
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
7555

T
Tink_Y 已提交
7556 7557
          else:
              align_corners = True
7558

T
Tink_Y 已提交
7559 7560
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7561

T
Tink_Y 已提交
7562 7563
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7564

T
Tink_Y 已提交
7565 7566 7567 7568 7569 7570 7571 7572 7573 7574
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7575

T
Tink_Y 已提交
7576 7577 7578 7579
          else:
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7580

T
Tink_Y 已提交
7581 7582
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7583 7584 7585 7586 7587 7588 7589 7590 7591

    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.



7592
    Args:
7593
        input (Variable): The input tensor of image resize layer,
7594 7595
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
7596
        out_shape(list|tuple|Variable|None): Output shape of image resize
7597 7598
                                    layer, the shape is (out_h, out_w).
                                    Default: None
D
dengkaipeng 已提交
7599
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7600
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7601
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7602
             Default: None.
7603 7604
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7605
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
7606
                       currently.
7607
                       Default: 'BILINEAR'
7608 7609 7610
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7611
                                :attr:`out_shape` and :attr:`scale` specifying
7612 7613 7614 7615 7616 7617 7618
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7619 7620
                                constructing stage.
                                Default: None
7621 7622 7623 7624
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
7625
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
7626 7627
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
                            src_idx = scale*dst_index .
7628 7629

    Returns:
Q
update  
qiaolongfei 已提交
7630 7631
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
7632

7633 7634 7635
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
7636
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
7637 7638 7639
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.
D
dengkaipeng 已提交
7640
        ValueError: scale should be greater than zero.
7641 7642
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
7643

7644 7645 7646
    Examples:
        .. code-block:: python

7647
            import paddle.fluid as fluid
R
ruri 已提交
7648
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7649
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
7650
    """
7651 7652 7653 7654
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
7655 7656
    if resample not in resample_methods:
        raise ValueError(
7657
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
7658
        )
7659
    resample_type = resample_methods[resample]
7660 7661 7662 7663 7664 7665

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

7666
    if out_shape is None and scale is None:
7667
        raise ValueError("One of out_shape and scale must not be None.")
7668
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
7669
    dtype = helper.input_dtype()
7670 7671 7672 7673

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

7674
    inputs = {"X": input}
D
dengkaipeng 已提交
7675
    attrs = {
D
dengkaipeng 已提交
7676 7677
        "out_h": 0,
        "out_w": 0,
D
dengkaipeng 已提交
7678 7679 7680 7681 7682
        "interp_method": resample_type,
        "align_corners": align_corners,
        "align_mode": align_mode
    }

7683
    if out_shape is not None:
7684 7685 7686 7687
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
7688
            inputs['OutSize'] = out_shape
7689 7690
        else:
            if not (_is_list_or_turple_(out_shape)):
D
dengkaipeng 已提交
7691 7692
                raise TypeError(
                    "out_shape should be a list or tuple or Variable.")
7693 7694 7695 7696 7697 7698 7699
            if len(out_shape) != 2:
                raise ValueError("out_shape length should be 2.")

            out_shape = list(map(int, out_shape))
            attrs['out_h'] = out_shape[0]
            attrs['out_w'] = out_shape[1]

7700
    else:
D
dengkaipeng 已提交
7701 7702
        if scale <= 0:
            raise ValueError("scale should be greater than zero.")
D
dengkaipeng 已提交
7703
        attrs['scale'] = float(scale)
7704

7705 7706 7707 7708 7709
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
7710
    out = helper.create_variable_for_type_inference(dtype)
7711
    helper.append_op(
7712
        type='{}_interp'.format(resample_type),
7713
        inputs=inputs,
7714
        outputs={"Out": out},
D
dengkaipeng 已提交
7715
        attrs=attrs)
7716
    return out
F
stash  
fengjiayi 已提交
7717 7718


7719
@templatedoc(op_type="bilinear_interp")
7720 7721 7722 7723
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
7724 7725
                    actual_shape=None,
                    align_corners=True,
T
tink2123 已提交
7726
                    align_mode=1):
7727
    """
7728 7729
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
7730 7731
    in priority order.

7732 7733 7734 7735
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
7736 7737
    again in the other direction.

7738
    For details of bilinear interpolation, please refer to Wikipedia:
7739
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
7740

T
tink2123 已提交
7741
    Align_corners and align_mode are optinal parameters,the calculation 
7742 7743 7744 7745
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7746
    .. code-block:: text
7747

T
Tink_Y 已提交
7748
        For scale:
7749
          
T
Tink_Y 已提交
7750
            if align_corners = True && out_size > 1 :
7751

T
Tink_Y 已提交
7752 7753 7754 7755 7756
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     
7757

T
Tink_Y 已提交
7758 7759 7760 7761 7762 7763 7764 7765 7766 7767
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7768 7769


T
Tink_Y 已提交
7770
          else:
T
tink2123 已提交
7771

T
Tink_Y 已提交
7772 7773
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7774

T
Tink_Y 已提交
7775 7776
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7777 7778 7779



Y
yuyang18 已提交
7780 7781 7782
    Args:
        input(${x_type}): ${x_comment}.

D
dengkaipeng 已提交
7783 7784 7785
        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
                                    layer, the shape is (out_h, out_w).
                                    Default: None
7786

Y
yuyang18 已提交
7787
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7788
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7789
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7790
             Default: None.
Y
yuyang18 已提交
7791 7792

        name(str|None): The output variable name.
7793 7794 7795
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7796
                                :attr:`out_shape` and :attr:`scale` specifying
7797 7798 7799 7800 7801 7802 7803
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7804 7805
                                constructing stage.
                                Default: None
7806 7807
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
Y
yuyang18 已提交
7808 7809 7810

    Returns:
        ${out_comment}.
7811 7812 7813 7814

    Examples:
        .. code-block:: python

7815
            import paddle.fluid as fluid
R
ruri 已提交
7816
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7817
            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
7818 7819
    """

7820 7821
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
                        align_corners, align_mode)
7822 7823


7824
@templatedoc(op_type="nearest_interp")
7825 7826 7827 7828
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
7829 7830
                   actual_shape=None,
                   align_corners=True):
7831
    """
7832
    Resize input by performing nearest neighbor interpolation in both the
T
Tink_Y 已提交
7833 7834
    3rd dimension(in height direction) and the 4th dimension(in width
    direction) based on given output shape which is specified by actual_shape,
7835 7836
    out_shape and scale in priority order.

7837 7838
    Example:

T
Tink_Y 已提交
7839 7840 7841 7842 7843
    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :
7844

T
Tink_Y 已提交
7845 7846 7847 7848 7849 7850 7851 7852
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
7853
          
T
Tink_Y 已提交
7854 7855
          if:
              align_corners = False
7856

T
Tink_Y 已提交
7857 7858
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7859

T
Tink_Y 已提交
7860 7861
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
7862

T
Tink_Y 已提交
7863 7864
          else:
              align_corners = True
7865

T
Tink_Y 已提交
7866 7867
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7868

T
Tink_Y 已提交
7869 7870
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7871 7872


7873
    For details of nearest neighbor interpolation, please refer to Wikipedia:
7874
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
7875 7876 7877 7878

    Args:
        input(${x_type}): ${x_comment}.

D
dengkaipeng 已提交
7879 7880 7881
        out_shape(list|tuple|Variable|None): Output shape of resize nearest
                                    layer, the shape is (out_h, out_w).
                                    Default: None
7882

Y
yuyang18 已提交
7883
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7884
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7885
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7886
             Default: None.
Y
yuyang18 已提交
7887 7888

        name(str|None): The output variable name.
7889 7890 7891
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7892
                                :attr:`out_shape` and :attr:`scale` specifying
7893 7894 7895 7896 7897 7898 7899
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7900 7901
                                constructing stage.
                                Default: None
7902
        align_corners(bool): ${align_corners_comment}
Y
yuyang18 已提交
7903 7904 7905

    Returns:
        ${out_comment}.
7906 7907 7908 7909

    Examples:
        .. code-block:: python

7910
            import paddle.fluid as fluid
R
ruri 已提交
7911
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7912
            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
7913 7914
    """

7915 7916
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape,
                        align_corners)
7917 7918 7919 7920


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
7921 7922 7923
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
7924 7925 7926 7927 7928 7929 7930
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
7931
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
7932

7933
    Returns:
Q
update  
qiaolongfei 已提交
7934
        Variable: The output is a 4-D tensor of the shape
7935
        (num_batches, channls, out_h, out_w).
R
ruri 已提交
7936 7937 7938 7939

    Examples:
        .. code-block:: python

7940
            import paddle.fluid as fluid
R
ruri 已提交
7941 7942
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
            out = fluid.layers.image_resize_short(input, out_short_len=3)
7943 7944 7945 7946 7947 7948 7949 7950 7951 7952
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
7953 7954 7955
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
7956 7957 7958
    return image_resize(input=input, out_shape=out_shape, resample=resample)


7959
def gather(input, index, overwrite=True):
W
whs 已提交
7960
    """
Q
qiaolongfei 已提交
7961 7962
    **Gather Layer**

7963
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
7964 7965 7966 7967
    of X indexed by `index` and concatenate them together.

    .. math::

7968
        Out = X[Index]
W
whs 已提交
7969 7970 7971 7972 7973 7974 7975


    .. code-block:: text


                Given:

7976 7977
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
7978 7979 7980 7981 7982 7983 7984 7985 7986 7987
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
7988
        input (Variable): The source input with rank>=1.
W
whs 已提交
7989
        index (Variable): The index input with rank=1.
7990 7991 7992 7993 7994 7995
        overwrite (bool): The mode that updating the grad when has same index.
            If True, use the overwrite mode to update the grad of the same index,
	    if False, use the accumulate mode to update the grad of the same index. 
	    Default value is True.
	    

W
whs 已提交
7996 7997 7998 7999 8000

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
8001

W
whs 已提交
8002 8003
        .. code-block:: python

8004
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
8005 8006
            x = fluid.layers.data(name='x', shape=[-1, 5], dtype='float32')
            index = fluid.layers.data(name='index', shape=[-1, 1], dtype='int32')
W
whs 已提交
8007 8008 8009 8010
            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8011
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
8012 8013 8014 8015
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
8016 8017
        outputs={"Out": out},
        attrs={'overwrite': overwrite})
W
whs 已提交
8018 8019 8020
    return out


8021
def scatter(input, index, updates, name=None, overwrite=True):
8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.
8039 8040 8041 8042
        overwrite (bool): The mode that updating the output when has same index.
            If True, use the overwrite mode to update the output of the same index,
	    if False, use the accumulate mode to update the output of the same index. 
	    Default value is True.You can set overwrite=False to implement scatter_add.
8043 8044 8045 8046 8047 8048 8049 8050

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

8051 8052 8053 8054 8055
            import paddle.fluid as fluid

            input = fluid.layers.data(name='data', shape=[3, 5, 9], dtype='float32', append_batch_size=False)
            index = fluid.layers.data(name='index', shape=[3], dtype='int64', append_batch_size=False)
            updates = fluid.layers.data(name='update', shape=[3, 5, 9], dtype='float32', append_batch_size=False)
8056

8057
            output = fluid.layers.scatter(input, index, updates)
8058 8059 8060
    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8061
    out = helper.create_variable_for_type_inference(dtype)
8062 8063 8064 8065 8066
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
8067
        attrs={'overwrite': overwrite},
8068 8069 8070 8071
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
8072 8073 8074 8075 8076 8077 8078 8079 8080
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
8081

Q
Qingsheng Li 已提交
8082
    Given the following input:
H
haowang101779990 已提交
8083

Q
Qingsheng Li 已提交
8084
    .. code-block:: text
H
haowang101779990 已提交
8085

Q
Qingsheng Li 已提交
8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
8098

Q
Qingsheng Li 已提交
8099
    .. code-block:: text
H
haowang101779990 已提交
8100

Q
Qingsheng Li 已提交
8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
8116
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
8117 8118 8119 8120

    Examples:

        .. code-block:: python
8121
	
8122
            import paddle.fluid as fluid
8123
            import paddle.fluid.layers as layers
Q
Qingsheng Li 已提交
8124

8125 8126 8127
            input = layers.data( name="x", shape=[3, 6], append_batch_size=False, dtype='float32' )
            index = layers.data( name='index', shape=[1], dtype='int32')
            updates = layers.data( name='updates', shape=[1], dtype='float32')
Q
Qingsheng Li 已提交
8128 8129 8130
            output = fluid.layers.sequence_scatter(input, index, updates)

    """
L
lujun 已提交
8131
    assert not in_dygraph_mode(), (
8132
        "sequence layer is not supported in dygraph mode yet.")
Q
Qingsheng Li 已提交
8133 8134
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8135
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
8136 8137 8138 8139 8140 8141 8142 8143 8144
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
8158

8159
    Examples:
8160
        >>> import paddle.fluid as fluid
8161 8162
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
8163
    """
F
stash  
fengjiayi 已提交
8164
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
8165
    dtype = x.dtype
X
Xin Pan 已提交
8166
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
8167
    if seed is None:
8168
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
8169
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
8170
    if isinstance(seed, int):
F
fengjiayi 已提交
8171 8172 8173 8174 8175
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
8176 8177 8178 8179
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
8180
        inputs={"X": x,
F
stash  
fengjiayi 已提交
8181 8182
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
8183 8184
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
8185
    return out
W
whs 已提交
8186 8187


8188
def log(x, name=None):
W
wanghaoshuang 已提交
8189 8190 8191 8192 8193
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

8194
        Out = \\ln(x)
W
wanghaoshuang 已提交
8195 8196

    Args:
8197
        x (Variable): Input tensor.
8198 8199
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
8200 8201 8202 8203 8204 8205 8206 8207

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

8208
            import paddle.fluid as fluid
8209
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
8210
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
8211 8212
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
8213
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8214
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
8215
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
8216 8217 8218
    return out


8219
def relu(x, name=None):
W
wanghaoshuang 已提交
8220 8221
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
8222
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
8223 8224 8225 8226
    the tensor elementwise.

    .. math::

8227
        Out = \\max(0, x)
W
wanghaoshuang 已提交
8228 8229

    Args:
8230
        x (Variable): The input tensor.
8231 8232
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
8233 8234 8235 8236 8237 8238 8239 8240

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

8241
            import paddle.fluid as fluid
8242
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
8243
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
8244 8245
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
8246
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8247
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
8248 8249
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
8250
    return out
8251 8252


C
chengduo 已提交
8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python
8277 8278 8279 8280 8281 8282
             
            import paddle.fluid as fluid
          
            input = fluid.layers.data(
                 name="input", shape=[3, 9, 5], dtype="float32")
            output = fluid.layers.selu(input)
C
chengduo 已提交
8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
8298 8299 8300
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
8301 8302 8303 8304
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
8305
    .. math::
8306

H
haowang101779990 已提交
8307
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
8308

8309
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
8310 8311 8312 8313 8314
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
8315
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
8316
                           Its shape should be the same as input.
8317
        num_classes (int): The possible number of labels.
W
whs 已提交
8318 8319

    Returns:
M
minqiyang 已提交
8320 8321
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
8322
                     Three variables:
M
minqiyang 已提交
8323

H
haowang101779990 已提交
8324 8325 8326
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
8327 8328 8329 8330

    Examples:

        .. code-block:: python
8331

B
Bai Yifan 已提交
8332 8333 8334 8335 8336
            import paddle.fluid as fluid
            predict = fluid.layers.data(name='predict', shape=[3, 32, 32])
            label = fluid.layers.data(name='label', shape=[1])
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label,
                                                          num_classes=5)
W
whs 已提交
8337 8338 8339
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8340 8341 8342
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
8343 8344
    helper.append_op(
        type="mean_iou",
W
whs 已提交
8345 8346
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
8347
        outputs={
W
whs 已提交
8348 8349 8350
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
8351 8352 8353
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
S
SunGaofeng 已提交
8396
        offsets (Variable|list/tuple of integer|None): Specifies the cropping
8397
            offsets at each dimension. It can be a Variable or or a list/tupe
S
SunGaofeng 已提交
8398
            of integers. If a tensor Variable, it's rank must be the same as `x`.
8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

S
SunGaofeng 已提交
8416
            import paddle.fluid as fluid
8417 8418 8419 8420 8421 8422
            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
8423
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
8424 8425 8426 8427 8428

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
8429
            isinstance(shape, Variable)):
8430 8431 8432 8433 8434
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
8435
    out = helper.create_variable_for_type_inference(x.dtype)
8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
8453 8454


W
whs 已提交
8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
8472

W
whs 已提交
8473
              out_shape = [2, 3, 5, 5]
8474

W
whs 已提交
8475
          Step 1:
8476

W
whs 已提交
8477 8478 8479
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
8480

W
whs 已提交
8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
8526
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
8527
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
8540

S
SunGaofeng 已提交
8541
            import paddle.fluid as fluid
W
whs 已提交
8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
8553
            isinstance(out_shape, Variable)):
W
whs 已提交
8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


8575 8576
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
8577

8578 8579
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
8580
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
8581 8582 8583
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
8584

8585 8586
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
8587

H
haowang101779990 已提交
8588 8589
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
8590 8591
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
8592

H
haowang101779990 已提交
8593 8594 8595 8596 8597 8598 8599 8600
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
8601 8602 8603

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

8621
            import paddle.fluid as fluid
8622 8623 8624
            label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
8639
    out = helper.create_variable_for_type_inference("float32")
8640 8641 8642 8643 8644 8645 8646 8647

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
8648 8649


M
minqiyang 已提交
8650 8651
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
8652
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
8653
    which compares left score and right score passed in.
M
minqiyang 已提交
8654
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
8655 8656 8657

    .. math::

H
haowang101779990 已提交
8658
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
8659 8660

    Args:
M
minqiyang 已提交
8661
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
8662 8663
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
8664
       margin (float): Indicates the given margin.
M
minqiyang 已提交
8665 8666
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
8667

M
minqiyang 已提交
8668
    Returns:
M
minqiyang 已提交
8669
       Variable: The ranking loss.
H
haowang101779990 已提交
8670

M
minqiyang 已提交
8671
    Raises:
M
minqiyang 已提交
8672
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
8673

M
minqiyang 已提交
8674
    Examples:
H
haowang101779990 已提交
8675

M
minqiyang 已提交
8676
        .. code-block:: python
H
haowang101779990 已提交
8677

8678
           import paddle.fluid as fluid
Y
Yibing Liu 已提交
8679 8680 8681
           label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
M
minqiyang 已提交
8682 8683
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
8684
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
8685 8686 8687 8688 8689 8690
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
8691 8692
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
8716
        .. code-block:: text
W
whs 已提交
8717

T
Tink_Y 已提交
8718
	      Given that X is a channel of image from input:
M
minqiyang 已提交
8719

T
Tink_Y 已提交
8720 8721
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
8722

T
Tink_Y 已提交
8723
	      Case 0:
M
minqiyang 已提交
8724

T
Tink_Y 已提交
8725 8726 8727
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
8728

T
Tink_Y 已提交
8729 8730 8731
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
8732

T
Tink_Y 已提交
8733
	      Case 1:
M
minqiyang 已提交
8734

T
Tink_Y 已提交
8735 8736
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
8737

T
Tink_Y 已提交
8738 8739 8740
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
8741

T
Tink_Y 已提交
8742
	      Case 2:
M
minqiyang 已提交
8743

T
Tink_Y 已提交
8744 8745
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
8746

T
Tink_Y 已提交
8747 8748 8749
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
8750 8751


W
whs 已提交
8752 8753
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
8754
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

B
Bai Yifan 已提交
8772 8773 8774 8775 8776
          import paddle.fluid as fluid
          data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                   dtype='float32')
          result = fluid.layers.pad2d(input=data, paddings=[1, 2, 3, 4],
                                      mode='reflect')
W
whs 已提交
8777 8778 8779 8780
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
8781
    out = helper.create_variable_for_type_inference(dtype)
8782 8783 8784 8785 8786 8787 8788 8789 8790
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
8791
    helper.append_op(
8792
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
8793 8794 8795 8796

    return out


8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8809 8810 8811 8812 8813

    Examples:

        .. code-block:: python

8814
            import paddle.fluid as fluid
Z
ZhenWang 已提交
8815 8816
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
8817 8818
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
8819
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8840 8841 8842 8843 8844

    Examples:

        .. code-block:: python

8845
            import paddle.fluid as fluid
Z
ZhenWang 已提交
8846 8847
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
8848 8849
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
8850
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8871 8872 8873 8874 8875

    Examples:

        .. code-block:: python

8876
            import paddle.fluid as fluid
Z
ZhenWang 已提交
8877 8878
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
8879 8880
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
8881
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8903 8904 8905 8906 8907

    Examples:

        .. code-block:: python

8908
            import paddle.fluid as fluid
Z
ZhenWang 已提交
8909
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
8910
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
8911 8912
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
8913
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8936 8937 8938 8939 8940

    Examples:

        .. code-block:: python

8941
            import paddle.fluid as fluid
Z
ZhenWang 已提交
8942 8943
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
8944 8945
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
8946
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8968 8969 8970 8971 8972

    Examples:

        .. code-block:: python

8973
            import paddle.fluid as fluid
Z
ZhenWang 已提交
8974 8975
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
8976 8977
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
8978
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8979 8980 8981 8982 8983 8984 8985 8986
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
8987 8988 8989 8990
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
8991 8992
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
8993

J
jerrywgz 已提交
8994 8995 8996 8997 8998 8999 9000 9001
    There are three modes for the activation:

    .. code-block:: text

        all: All elements share same alpha.
        channel: Elements in same channel share same alpha.
        element: All elements do not share alpha. Each element has its own alpha.

J
jerrywgz 已提交
9002 9003
    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
9004
        mode (string): The mode for weight sharing. 
J
jerrywgz 已提交
9005
        param_attr(ParamAttr|None): The parameter attribute for the learnable
J
jerrywgz 已提交
9006
          weight (alpha), it can be create by ParamAttr.
J
jerrywgz 已提交
9007
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
9008
          will be named automatically.
J
jerrywgz 已提交
9009 9010 9011 9012 9013 9014 9015 9016

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
9017 9018 9019
            import paddle.fluid as fluid
            from paddle.fluid.param_attr import ParamAttr
            x = fluid.layers.data(name="x", shape=[5,10,10], dtype="float32")
J
jerrywgz 已提交
9020
            mode = 'channel'
J
jerrywgz 已提交
9021 9022 9023
            output = fluid.layers.prelu(
                     x,mode,param_attr=ParamAttr(name='alpha'))

J
jerrywgz 已提交
9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
9035
        attr=helper.param_attr,
J
jerrywgz 已提交
9036 9037 9038 9039
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
9040
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
9041 9042 9043 9044 9045 9046 9047 9048 9049
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


9050 9051 9052 9053 9054 9055 9056 9057 9058 9059
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
9060
    Returns:
9061
        output(${out_type}): ${out_comment}
9062 9063 9064

    Examples:

9065
    .. code-block:: python
9066

9067
            import paddle.fluid as fluid
H
haowang101779990 已提交
9068 9069
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
9070 9071
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
9072
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
9091
    Returns:
9092
        output(${out_type}): ${out_comment}
9093 9094 9095 9096 9097

    Examples:

        .. code-block:: python

9098
            import paddle.fluid as fluid
H
haowang101779990 已提交
9099 9100
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
9101 9102
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
9103
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
9121
    Returns:
9122
        output(${out_type}): ${out_comment}
9123 9124 9125

    Examples:

9126 9127 9128 9129 9130
        .. code-block:: python 
 
            import paddle.fluid as fluid
   
            x = fluid.layers.data(name="x", shape=[3,16,16], dtype="float32")
H
haowang101779990 已提交
9131
            y = fluid.layers.soft_relu(x, threshold=20.0)
9132 9133
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
9134
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9135 9136 9137 9138 9139 9140 9141 9142
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


9143 9144 9145 9146
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
9147

H
haowang101779990 已提交
9148
    For Example:
M
minqiyang 已提交
9149

H
haowang101779990 已提交
9150
    .. code-block:: text
9151

H
haowang101779990 已提交
9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
9173 9174 9175

    Args:
        x (Variable): A tensor of rank >= axis.
9176 9177
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
9178 9179 9180 9181 9182 9183 9184 9185
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
9186 9187 9188
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
9189 9190 9191 9192
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
9193
        ValueError: If axis is not in range [0, rank(x)].
9194 9195 9196 9197 9198

    Examples:

        .. code-block:: python

9199
            import paddle.fluid as fluid
9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210
            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
9211 9212
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
9213
    helper.append_op(
9214
        type='flatten2',
9215
        inputs={"X": x},
9216 9217
        outputs={'Out': out,
                 'XShape': x_shape},
9218 9219
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
9220 9221


C
chenweihang 已提交
9222
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
9223
    """
C
chenweihang 已提交
9224
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
9225
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
9226 9227
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
9228

H
haowang101779990 已提交
9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
9246 9247

    Args:
C
chenweihang 已提交
9248 9249 9250
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
9251 9252 9253 9254 9255 9256 9257

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

9258 9259 9260
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[-1, 1], dtype='int32', lod_level=1)
C
chenweihang 已提交
9261 9262
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
L
lujun 已提交
9263
    assert not in_dygraph_mode(), (
9264
        "sequence layer is not supported in dygraph mode yet.")
C
chenweihang 已提交
9265
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
9266 9267
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
9268 9269 9270 9271 9272 9273
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
9274
    return out
9275

9276

S
sneaxiy 已提交
9277 9278 9279 9280 9281 9282 9283 9284 9285
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
9286

S
sneaxiy 已提交
9287
    .. math::
9288

S
sneaxiy 已提交
9289 9290 9291
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
9292
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
9293 9294 9295 9296
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
9297 9298 9299
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
9300 9301
    Returns:
        Variable: The output sequence mask.
9302

9303 9304 9305
    Examples:
        .. code-block:: python
	
9306
            import paddle.fluid as fluid
9307 9308 9309 9310 9311
            import paddle.fluid.layers as layers

            x = fluid.layers.data(name='x', shape=[10], dtype='float32', lod_level=1)
            mask = layers.sequence_mask(x=x)

S
sneaxiy 已提交
9312
    """
L
lujun 已提交
9313
    assert not in_dygraph_mode(), (
9314
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
9315

Q
qingqing01 已提交
9316
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
9317
    if name is None:
X
Xin Pan 已提交
9318
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
9319
    else:
X
Xin Pan 已提交
9320
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
9321

9322 9323 9324 9325 9326 9327 9328 9329
    inputs = {'X': [x]}
    attrs = {'out_dtype': out.dtype}
    if maxlen is not None:
        if isinstance(maxlen, Variable):
            inputs['MaxLenTensor'] = maxlen
        else:
            attrs['maxlen'] = maxlen

Q
qingqing01 已提交
9330
    helper.append_op(
9331 9332 9333
        type='sequence_mask', inputs=inputs, outputs={'Y': out}, attrs=attrs)

    out.stop_gradient = True
S
sneaxiy 已提交
9334
    return out
S
sneaxiy 已提交
9335 9336


X
Xin Pan 已提交
9337
def stack(x, axis=0):
S
sneaxiy 已提交
9338 9339 9340 9341
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
9342 9343 9344 9345 9346 9347 9348

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
9349
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
9350
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
9351

C
chengduozh 已提交
9352 9353
    For Example:

C
chengduozh 已提交
9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391
    .. code-block:: text

        Case 1:
          Input:
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 0

          Output:
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
            Out.dims = [3, 1, 2]

        Case 2:
          Given
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 1 or axis = -2

          Output:
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
            Out.dims = [1, 3, 2]

S
sneaxiy 已提交
9392
    Args:
9393
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
9394
        axis (int|None): The axis along which all inputs are stacked.
9395

S
sneaxiy 已提交
9396 9397
    Returns:
        Variable: The stacked variable.
9398

9399 9400 9401
    Examples:
        .. code-block:: python

9402
            import paddle.fluid as fluid
9403
            import paddle.fluid.layers as layers
9404 9405
            x1 = layers.data(name='x1', shape=[1, 2], dtype='int32')
            x2 = layers.data(name='x2', shape=[1, 2], dtype='int32')
9406 9407
            data = layers.stack([x1,x2])

S
sneaxiy 已提交
9408 9409
    """

X
Xin Pan 已提交
9410 9411 9412 9413 9414 9415
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
9416
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
9417
    helper.append_op(
S
sneaxiy 已提交
9418 9419
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
9420

X
Xin Pan 已提交
9421
    return out
D
dzhwinter 已提交
9422 9423 9424 9425 9426 9427 9428


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
9429

D
dzhwinter 已提交
9430 9431 9432
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
9433
    raised.
D
dzhwinter 已提交
9434 9435

    Args:
M
minqiyang 已提交
9436
        x (Variable): Input variable.
D
dzhwinter 已提交
9437 9438
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
9439

D
dzhwinter 已提交
9440 9441
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
9442

9443 9444 9445 9446 9447 9448
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10], dtype='float32')
            y = fluid.layers.unstack(x, axis=1)
D
dzhwinter 已提交
9449 9450 9451 9452 9453 9454 9455 9456 9457 9458
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
9459
    for _ in range(num):
X
Xin Pan 已提交
9460
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
9461 9462 9463 9464 9465 9466 9467 9468

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
9481

W
whs 已提交
9482 9483 9484 9485
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
9486

W
whs 已提交
9487
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
9488

W
whs 已提交
9489
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
9490

W
whs 已提交
9491 9492 9493 9494
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
9495

W
whs 已提交
9496 9497 9498 9499 9500 9501 9502 9503 9504 9505
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python
W
wangchaochaohu 已提交
9506 9507 9508
          
            import paddle.fluid as fluid
            x = fluid.layers.fill_constant(shape=[2, 3, 1], dtype='int32', value=0)
W
whs 已提交
9509 9510 9511 9512
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
9513
    out = helper.create_variable_for_type_inference(dtype)
9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530
    # check expand_times have tensor

    if in_dygraph_mode():
        inputs = {'X': x}
        attrs = {'expand_times': expand_times}
    else:

        def contain_tensor(expand_times):
            for ele in expand_times:
                if isinstance(ele, Variable):
                    return True
            return False

        if contain_tensor(expand_times):
            new_expand_times = []
            for ele in expand_times:
                if isinstance(ele, Variable):
H
Hongyu Liu 已提交
9531
                    ele.stop_gradient = True
9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544
                    new_expand_times.append(ele)
                else:
                    assert (isinstance(ele, int))
                    temp_out = helper.create_variable_for_type_inference(dtype)
                    fill_constant(
                        [1], 'int32', ele, force_cpu=True, out=temp_out)
                    new_expand_times.append(temp_out)
            inputs = {'X': x, 'expand_times_tensor': new_expand_times}
            attrs = {}
        else:
            inputs = {'X': x}
            attrs = {'expand_times': expand_times}

W
whs 已提交
9545
    helper.append_op(
9546
        type='expand', inputs=inputs, outputs={'Out': out}, attrs=attrs)
W
whs 已提交
9547
    return out
S
sneaxiy 已提交
9548 9549


G
fix  
gongweibao 已提交
9550 9551 9552
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
9553
@templatedoc()
G
fix  
gongweibao 已提交
9554 9555 9556 9557 9558 9559 9560 9561 9562
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
9563
    ${comment}
G
fix  
gongweibao 已提交
9564 9565

    Args:
G
gongweibao 已提交
9566 9567 9568
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9569
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
9570 9571 9572
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9573 9574
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
9575
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9576

9577 9578 9579
    Examples:
        .. code-block:: python

9580
            import paddle.fluid as fluid
9581 9582
            import paddle.fluid.layers as layers 

9583 9584
            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
9585 9586 9587
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
9588
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
9605 9606


G
gongweibao 已提交
9607
@templatedoc()
X
Xin Pan 已提交
9608
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9609
    """
G
gongweibao 已提交
9610
    ${comment}
G
fix  
gongweibao 已提交
9611 9612

    Args:
G
gongweibao 已提交
9613 9614 9615 9616
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9617 9618 9619
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
9620
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9621

9622 9623 9624
    Examples:
        .. code-block:: python

9625
            import paddle.fluid as fluid
J
JesseyXujin 已提交
9626
            import paddle.fluid.layers as layers
9627
            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
9628 9629 9630
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
9631
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9632 9633 9634 9635 9636 9637 9638 9639 9640 9641
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
9642
            'use_mkldnn': False
G
fix  
gongweibao 已提交
9643 9644 9645 9646 9647
        })

    return out


G
gongweibao 已提交
9648
@templatedoc()
G
fix  
gongweibao 已提交
9649
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9650
    """
G
gongweibao 已提交
9651
    ${comment}
G
fix  
gongweibao 已提交
9652 9653

    Args:
G
gongweibao 已提交
9654 9655 9656 9657
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
9658
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9659 9660

    Returns:
G
gongweibao 已提交
9661
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9662

9663 9664 9665
    Examples:
        .. code-block:: python

9666
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
9667
            x = fluid.layers.data(
9668 9669 9670 9671 9672
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

Y
Yibing Liu 已提交
9673
            out = fluid.layers.sampling_id(x)
G
fix  
gongweibao 已提交
9674 9675 9676
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
9677
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
9689
@templatedoc()
G
fix  
gongweibao 已提交
9690 9691 9692 9693 9694 9695 9696 9697 9698
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
9699
    ${comment}
G
fix  
gongweibao 已提交
9700 9701

    Args:
G
gongweibao 已提交
9702 9703
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
9704
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9705 9706 9707 9708
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9709
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9710 9711

    Returns:
G
gongweibao 已提交
9712
        out (Variable): ${out_comment}
9713 9714 9715 9716

    Examples:
        .. code-block:: python

9717
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
9718
            input = fluid.layers.data(name="input", shape=[13, 11], dtype='float32')
9719

Y
Yibing Liu 已提交
9720
            out = fluid.layers.gaussian_random_batch_size_like(
9721
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
9722 9723 9724
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
9725
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
9744
@templatedoc()
X
Xin Pan 已提交
9745
def sum(x):
G
fix  
gongweibao 已提交
9746
    """
G
gongweibao 已提交
9747
    ${comment}
G
fix  
gongweibao 已提交
9748 9749

    Args:
G
gongweibao 已提交
9750
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
9751 9752

    Returns:
G
gongweibao 已提交
9753
        out (Variable): ${out_comment}
9754 9755 9756 9757

    Examples:
        .. code-block:: python

9758
            import paddle.fluid as fluid
9759 9760 9761 9762
            import paddle.fluid.layers as layers
            input0 = layers.data(name="input0", shape=[13, 11], dtype='float32')
            input1 = layers.data(name="input1", shape=[13, 11], dtype='float32')
            out = layers.sum([input0,input1])
G
fix  
gongweibao 已提交
9763 9764 9765
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
9766 9767
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
9768 9769 9770 9771
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
9772
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
9773 9774 9775 9776

    return out


G
gongweibao 已提交
9777
@templatedoc()
G
fix  
gongweibao 已提交
9778 9779
def slice(input, axes, starts, ends):
    """
9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794
    Slice Operator.

    Produces a slice of the input tensor along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses `axes`, `starts` and `ends` attributes to specify the start and
    end dimension for each axis in the list of axes, it uses this information
    to slice the input data tensor. If a negative value is passed for any of
    the start or end indices, it represents number of elements before the end
    of that dimension. If the value passed to start or end is larger than
    the n (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of axes must be equal to starts\' and ends\'.
    Following examples will explain how slice works:

    .. code-block:: text
G
fix  
gongweibao 已提交
9795

9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812
        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
            Then:
                result = [ [5, 6, 7], ]
        
        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]
            Then:
                result = [ [2, 3, 4], ]
G
fix  
gongweibao 已提交
9813
    Args:
G
gongweibao 已提交
9814 9815 9816 9817
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
9818 9819

    Returns:
G
gongweibao 已提交
9820
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9821

9822 9823 9824
    Examples:
        .. code-block:: python

9825 9826
            import paddle.fluid as fluid
 
9827 9828 9829 9830
            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

9831
            input = fluid.layers.data(
9832 9833
                name="input", shape=[3, 4, 5, 6], dtype='float32')

9834
            out = fluid.layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
9835 9836 9837
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
9838 9839
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


def shape(input):
    """
C
chengduozh 已提交
9853 9854
    **Shape Layer**

C
fix doc  
chengduozh 已提交
9855
    Get the shape of the input.
G
fix  
gongweibao 已提交
9856 9857

    Args:
C
chengduozh 已提交
9858
        input (Variable): The input variable.
G
fix  
gongweibao 已提交
9859 9860

    Returns:
C
fix doc  
chengduozh 已提交
9861
        Variable: The shape of the input variable.
G
fix  
gongweibao 已提交
9862

9863 9864 9865
    Examples:
        .. code-block:: python

9866 9867 9868
            import paddle.fluid as fluid

            input = fluid.layers.data(
9869
                name="input", shape=[3, 100, 100], dtype="float32")
9870
            out = fluid.layers.shape(input)
G
fix  
gongweibao 已提交
9871 9872 9873
    """

    helper = LayerHelper('shape', **locals())
9874
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
9875
    helper.append_op(
G
fix  
gongweibao 已提交
9876
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
9877 9878

    return out
G
merge  
gongweibao 已提交
9879 9880


Z
zhoukunsheng 已提交
9881 9882 9883 9884
def rank(input):
    """
    **Rank Layer**

Z
zhoukunsheng 已提交
9885
    Returns the number of dimensions for a tensor, which is a 0-D int32 Tensor.
Z
zhoukunsheng 已提交
9886 9887 9888 9889 9890 9891 9892 9893 9894 9895

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The rank of the input variable.

    Examples:
        .. code-block:: python

9896 9897 9898 9899
            import paddle.fluid as fluid

            input = fluid.layers.data(name="input", shape=[3, 100, 100], dtype="float32")
            rank = fluid.layers.rank(input) # 4
Z
zhoukunsheng 已提交
9900 9901 9902 9903 9904 9905 9906 9907
    """

    ndims = len(input.shape)
    out = assign(np.array(ndims, 'int32'))

    return out


Z
zhoukunsheng 已提交
9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936
def size(input):
    """
    **Size Layer**

    Returns the number of elements for a tensor, which is a int64 Tensor with shape [1].

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The number of elements for the input variable.

    Examples:
        .. code-block:: python

            import paddle.fluid.layers as layers

            input = layers.data(
                name="input", shape=[3, 100], dtype="float32", append_batch_size=False)
            rank = layers.size(input) # 300
    """

    helper = LayerHelper('size', **locals())
    out = helper.create_variable_for_type_inference(dtype='int64')
    helper.append_op(type='size', inputs={'Input': input}, outputs={'Out': out})

    return out


S
sneaxiy 已提交
9937 9938 9939 9940
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
L
lujun 已提交
9941
    if in_dygraph_mode():
X
Xin Pan 已提交
9942 9943 9944
        x = base.to_variable(x)
        y = base.to_variable(y)

S
sneaxiy 已提交
9945 9946 9947 9948
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
9949 9950
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
9951
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9952 9953 9954
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9955

S
sneaxiy 已提交
9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
9967
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
9968 9969 9970 9971 9972 9973 9974 9975
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
9976
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
9977
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
9978 9979 9980

    Returns:
        out(${out_type}): ${out_comment}
9981 9982 9983 9984 9985 9986 9987 9988

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            x = fluid.layers.data(name="X", shape=[1, 2, 5, 5], dtype='float32')
            y = fluid.layers.scale(x, scale = 2.0, bias = 1.0)
S
sneaxiy 已提交
9989 9990 9991
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
9992
    if name is None:
X
Xin Pan 已提交
9993
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9994 9995 9996
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9997 9998 9999 10000 10001 10002 10003 10004 10005 10006

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
10007
    return helper.append_activation(out)
S
sneaxiy 已提交
10008 10009


X
Xin Pan 已提交
10010
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10011 10012 10013
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
10014
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10015 10016 10017
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
10018
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10019 10020 10021
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
10022
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10023 10024 10025
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
10026
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10027 10028 10029
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
10030
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10031 10032 10033
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
10034
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10035 10036 10037
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


10038 10039 10040 10041 10042 10043 10044 10045
def elementwise_mod(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_mod', **locals()))


def elementwise_floordiv(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))


S
sneaxiy 已提交
10046
for func in [
10047 10048 10049 10050 10051 10052 10053 10054 10055
        elementwise_add,
        elementwise_div,
        elementwise_sub,
        elementwise_mul,
        elementwise_max,
        elementwise_min,
        elementwise_pow,
        elementwise_mod,
        elementwise_floordiv,
S
sneaxiy 已提交
10056 10057 10058 10059 10060
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
10061 10062
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
10063
        ])
10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100
    func.__doc__ = func.__doc__ + """

Examples:
  .. code-block:: python
    
    import paddle.fluid as fluid
    # example 1: shape(x) = (2, 3, 4, 5), shape(y) = (2, 3, 4, 5)
    x0 = fluid.layers.data(name="x0", shape=[2, 3, 4, 5], dtype='float32')
    y0 = fluid.layers.data(name="y0", shape=[2, 3, 4, 5], dtype='float32')
    z0 = fluid.layers.%s(x0, y0)

    # example 2: shape(X) = (2, 3, 4, 5), shape(Y) = (5)
    x1 = fluid.layers.data(name="x1", shape=[2, 3, 4, 5], dtype='float32')
    y1 = fluid.layers.data(name="y1", shape=[5], dtype='float32')
    z1 = fluid.layers.%s(x1, y1)

    # example 3: shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
    x2 = fluid.layers.data(name="x2", shape=[2, 3, 4, 5], dtype='float32')
    y2 = fluid.layers.data(name="y2", shape=[4, 5], dtype='float32')
    z2 = fluid.layers.%s(x2, y2, axis=2)

    # example 4: shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    x3 = fluid.layers.data(name="x3", shape=[2, 3, 4, 5], dtype='float32')
    y3 = fluid.layers.data(name="y3", shape=[3, 4], dtype='float32')
    z3 = fluid.layers.%s(x3, y3, axis=1)

    # example 5: shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    x4 = fluid.layers.data(name="x4", shape=[2, 3, 4, 5], dtype='float32')
    y4 = fluid.layers.data(name="y4", shape=[2], dtype='float32')
    z4 = fluid.layers.%s(x4, y4, axis=0)

    # example 6: shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
    x5 = fluid.layers.data(name="x5", shape=[2, 3, 4, 5], dtype='float32')
    y5 = fluid.layers.data(name="y5", shape=[2], dtype='float32')
    z5 = fluid.layers.%s(x5, y5, axis=0)
    """ % (func.__name__, func.__name__, func.__name__, func.__name__,
           func.__name__, func.__name__)
M
minqiyang 已提交
10101 10102


10103
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
10104 10105
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
10106 10107
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
10108 10109 10110

    if out is None:
        if name is None:
X
Xin Pan 已提交
10111
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
10127
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10139 10140 10141 10142

    Examples:
        .. code-block:: python

10143
            import paddle.fluid as fluid
10144 10145 10146 10147 10148
            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
10149 10150 10151 10152 10153 10154 10155
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
10156
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10168 10169 10170 10171

    Examples:
        .. code-block:: python

10172
            import paddle.fluid as fluid
10173 10174 10175 10176 10177
            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
10178 10179 10180 10181 10182 10183 10184
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
10185
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10197 10198 10199 10200

    Examples:
        .. code-block:: python

10201
            import paddle.fluid as fluid
10202 10203 10204 10205 10206
            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
10207 10208 10209 10210 10211 10212 10213
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
10214
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
10215 10216 10217 10218 10219 10220 10221 10222 10223 10224
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10225 10226 10227 10228

    Examples:
        .. code-block:: python

10229
            import paddle.fluid as fluid
10230 10231 10232
            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
10233 10234 10235 10236
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10252 10253 10254 10255

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
10256
            import paddle.fluid as fluid
10257 10258 10259
            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
10260 10261 10262 10263 10264
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
10265 10266
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
10267 10268 10269

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10293 10294 10295 10296

    Examples:
        .. code-block:: python

10297
            import paddle.fluid as fluid
10298 10299 10300
            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
10301 10302 10303 10304 10305
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
10306 10307
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
10308 10309 10310

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
10311 10312 10313 10314 10315 10316 10317 10318

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10332 10333 10334 10335

    Examples:
        .. code-block:: python

10336
            import paddle.fluid as fluid
10337 10338 10339
            input = fluid.layers.data(
                name='data', shape=[2, 3], dtype='float32')
            mean = fluid.layers.mean(input)
X
Xin Pan 已提交
10340 10341 10342 10343 10344
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
10345
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10346 10347 10348 10349 10350 10351 10352 10353 10354 10355
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10367 10368 10369 10370

    Examples:
        .. code-block:: python

10371
            import paddle.fluid as fluid
10372 10373 10374 10375 10376
            b = fluid.default_main_program().global_block()
            var = b.create_var(
                name="X", dtype="float32", persistable=True,
                type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            y = fluid.layers.merge_selected_rows(var)
C
chengduo 已提交
10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            dataX = fluid.layers.data(name="dataX", append_batch_size = False, shape=[2, 5], dtype="float32")
            dataY = fluid.layers.data(name="dataY", append_batch_size = False, shape=[5, 3], dtype="float32")
            output = fluid.layers.mul(dataX, dataY,
                                      x_num_col_dims = 1,
                                      y_num_col_dims = 1)
            

X
Xin Pan 已提交
10415 10416 10417 10418 10419
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
10420
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10421 10422 10423 10424 10425 10426 10427 10428 10429
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
10430 10431
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
10432 10433 10434 10435 10436 10437
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
10438 10439 10440
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
10441 10442
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
10443 10444 10445 10446 10447 10448
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
10449
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
10450
        name(basestring|None): Name of the output.
10451 10452
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
10453 10454 10455

    Returns:
        out(${out_type}): ${out_comment}
10456 10457 10458 10459

    Examples:
        .. code-block:: python

10460
            import paddle.fluid as fluid
10461 10462 10463 10464 10465 10466 10467 10468 10469 10470
            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
10471 10472 10473 10474 10475
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
10476
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10477 10478 10479 10480 10481 10482 10483 10484
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
10485 10486
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
J
jerrywgz 已提交
10503 10504 10505 10506

    Examples:
        .. code-block:: python

10507
            import paddle.fluid as fluid
J
jerrywgz 已提交
10508 10509 10510 10511 10512
            input = fluid.layers.data(
                name='data', 
                shape=[256, 32, 32], 
                dtype='float32')
            out = fluid.layers.maxout(input, groups=2)
X
Xin Pan 已提交
10513 10514 10515 10516
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
10517
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10518 10519 10520 10521 10522 10523 10524 10525 10526 10527
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
10528 10529


J
JiabinYang 已提交
10530
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
10531
    """
J
JiabinYang 已提交
10532
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
10533 10534 10535

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
10536
    The attr blocksize indicates the input block size.
10537 10538

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
10539
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
10540 10541

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
10542
    (but keeping all data)
J
JiabinYang 已提交
10543

J
JiabinYang 已提交
10544
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
10545
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
10546 10547 10548 10549 10550
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
10551
    Args:
J
JiabinYang 已提交
10552
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
10553
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
10554 10555

    Returns:
J
JiabinYang 已提交
10556
        Variable: The output LoDtensor.
J
JiabinYang 已提交
10557 10558

    Raises:
J
JiabinYang 已提交
10559
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
10560 10561 10562

    Examples:
        .. code-block:: python
10563 10564 10565
	
            import paddle.fluid as fluid
            import numpy as np
J
JiabinYang 已提交
10566 10567

            data = fluid.layers.data(
10568
                name='data', shape=[1, 4, 2, 2], dtype='float32', append_batch_size=False)
J
JiabinYang 已提交
10569
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
10570
                x=data, blocksize=2)
10571

10572
            exe = fluid.Executor(fluid.CPUPlace())
10573 10574 10575 10576
            data_np = np.arange(0,16).reshape((1,4,2,2)).astype('float32')
            out_main = exe.run(fluid.default_main_program(),
                          feed={'data': data_np},
                          fetch_list=[space_to_depthed])
10577

J
JiabinYang 已提交
10578 10579
    """

J
JiabinYang 已提交
10580
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
10581

J
JiabinYang 已提交
10582 10583
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
10584 10585

    if name is None:
J
JiabinYang 已提交
10586 10587
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
10588 10589 10590 10591 10592
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
10593
        type="space_to_depth",
J
JiabinYang 已提交
10594
        inputs={"X": x},
J
JiabinYang 已提交
10595
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
10596
        outputs={"Out": out})
J
JiabinYang 已提交
10597 10598
    return out

J
JiabinYang 已提交
10599

S
sneaxiy 已提交
10600 10601
@templatedoc()
def sequence_reverse(x, name=None):
10602
    """
S
sneaxiy 已提交
10603 10604 10605 10606 10607 10608 10609 10610
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
B
bdzhuxiaoning 已提交
10611 10612 10613 10614 10615 10616 10617

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2, 6], dtype='float32')
            x_reversed = fluid.layers.sequence_reverse(x)
S
sneaxiy 已提交
10618
    """
L
lujun 已提交
10619
    assert not in_dygraph_mode(), (
10620
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
10621 10622
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
10623
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
10624 10625 10626 10627 10628 10629 10630 10631 10632 10633
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
10634 10635


10636 10637 10638 10639 10640 10641
def affine_channel(x,
                   scale=None,
                   bias=None,
                   data_layout='NCHW',
                   name=None,
                   act=None):
10642 10643 10644 10645 10646
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
10647

10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.
10660
        act (str, default None): Activation to be applied to the output of this layer.
10661 10662 10663

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
B
Bai Yifan 已提交
10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                     dtype='float32')
            input_scale = fluid.layers.create_parameter(shape=[3],
                                     dtype="float32")
            input_bias = fluid.layers.create_parameter(shape=[3],
                                     dtype="float32")
            out = fluid.layers.affine_channel(data,scale=input_scale,
                                     bias=input_bias)

10678 10679 10680 10681
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
10682
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
10694
    return helper.append_activation(out)
10695 10696


B
barrierye 已提交
10697
def similarity_focus(input, axis, indexes, name=None):
10698
    """
B
barrierye 已提交
10699
    SimilarityFocus Operator
B
barrierye 已提交
10700 10701

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
10702

10703 10704 10705
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
10706
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
10707 10708 10709 10710 10711 10712 10713
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
10714
       each index.
B
barrierye 已提交
10715 10716 10717 10718
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
10768
    Args:
10769
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
10770
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
10771
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
10772
            1, 2 or 3.
B
barrierye 已提交
10773
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
10774 10775

    Returns:
H
haowang101779990 已提交
10776 10777
        Variable: A tensor variable with the same shape and same type \
                  as the input.
10778

B
barrierye 已提交
10779 10780
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
10781

10782
            import paddle.fluid as fluid
B
barrierye 已提交
10783
            data = fluid.layers.data(
Y
Yibing Liu 已提交
10784 10785
                name='data', shape=[-1, 3, 2, 2], dtype='float32')
            fluid.layers.similarity_focus(input=data, axis=1, indexes=[0])
B
barrierye 已提交
10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
10798 10799 10800 10801 10802
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
10803 10804 10805 10806 10807 10808 10809
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
10810 10811


M
minqiyang 已提交
10812 10813
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
10814 10815
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
10816 10817
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
10818 10819 10820 10821 10822 10823 10824 10825

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
10826
        input.data = 
10827
            [[1, 2],
10828
             [3, 4]]
M
minqiyang 已提交
10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
10842 10843
            [[9662, 9217, 1129, 8487],
             [8310, 1327, 1654, 4567]],
M
minqiyang 已提交
10844 10845 10846 10847
        ]

    Args:
        input (Variable): The input variable which is a one-hot word. The
10848
            dimensions of the input variable must be 2. Both Tensor and LoDTensor are supported.
M
minqiyang 已提交
10849 10850
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
10851
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
10852
        name (str, default None): The name of this layer.
M
minqiyang 已提交
10853 10854

    Returns:
10855
       Variable: The hash result variable, which the same variable type as `input`.
M
minqiyang 已提交
10856 10857 10858

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
10859

10860 10861
            import paddle.fluid as fluid

10862 10863 10864 10865
            # titles has shape [batch, 1]
            titles = fluid.layers.data(name='titles', shape=[1], dtype='int32', lod_level=0)
            # hash_r has shape [batch, 2]
            hash_r = fluid.layers.hash(name='hash_x', input=titles, num_hash=2, hash_size=1000)
10866 10867


10868 10869 10870 10871
            # titles has shape [batch, 1] and lod information
            titles = fluid.layers.data(name='titles', shape=[1], dtype='int32', lod_level=1)
            # hash_r has shape [batch, 2] and inherits lod information from titles
            hash_r = fluid.layers.hash(name='hash_x', input=titles, num_hash=2, hash_size=1000)
M
minqiyang 已提交
10872 10873
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
10874 10875
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
10876 10877 10878 10879 10880 10881 10882
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
10883 10884


D
dengkaipeng 已提交
10885
@templatedoc()
10886 10887
def grid_sampler(x, grid, name=None):
    """
10888
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
10889
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
10890 10891 10892 10893
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
10894
    interpolation value of 4 nearest corner points.
10895

H
haowang101779990 已提交
10896
    .. code-block:: text
10897

H
haowang101779990 已提交
10898 10899
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
10900

H
haowang101779990 已提交
10901 10902
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
10903

H
haowang101779990 已提交
10904 10905 10906
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
10907

H
haowang101779990 已提交
10908 10909 10910 10911 10912 10913 10914 10915 10916
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
10917

H
haowang101779990 已提交
10918 10919 10920 10921
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
10922

H
haowang101779990 已提交
10923 10924 10925 10926
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
10927

H
haowang101779990 已提交
10928 10929 10930 10931
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
10932

H
haowang101779990 已提交
10933 10934
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
10935 10936

    Args:
10937 10938 10939
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
10940 10941

    Returns:
H
haowang101779990 已提交
10942
        Variable: Output of shape [N, C, H, W] data samples input X
10943 10944
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
10945 10946 10947 10948
    Examples:

        .. code-block:: python

K
Kaipeng Deng 已提交
10949 10950 10951 10952 10953
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(theta=theta, out_shape=[3, 10, 32, 32])
H
haowang101779990 已提交
10954
            out = fluid.layers.grid_sampler(x=x, grid=grid)
10955

D
dengkaipeng 已提交
10956 10957 10958 10959 10960 10961 10962 10963 10964
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

10965
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
10966 10967
    ipts = {'X': x, 'Grid': grid}

10968
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
10969 10970 10971
    return out


G
gmcather 已提交
10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

10999
          import paddle.fluid as fluid
Y
Yibing Liu 已提交
11000 11001
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          prob = fluid.layers.data(name='prob', shape=[10], dtype='float32')
G
gmcather 已提交
11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
11040
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
11041 11042 11043 11044 11045 11046 11047
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
11048 11049
          
          import paddle.fluid as fluid
H
heqiaozhi 已提交
11050

11051 11052 11053 11054 11055
          batch_size = 64
          label = fluid.layers.data(
                    name="label", shape=[batch_size, 1], dtype="int64", append_batch_size=False)
          similarity = fluid.layers.data(
                    name="similarity", shape=[batch_size, 1], dtype="float32", append_batch_size=False)
H
heqiaozhi 已提交
11056
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
11057

H
heqiaozhi 已提交
11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
11071 11072 11073 11074
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
11075
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
11076 11077
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
11078
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
11079 11080

    .. math::
H
haowang101779990 已提交
11081 11082 11083
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
11084 11085

    Where:
H
haowang101779990 已提交
11086 11087
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

11101 11102 11103 11104 11105 11106 11107 11108 11109
          import paddle.fluid as fluid

          tensor = fluid.layers.data(
              name='tensor',
              shape=[32, 64, 512],
              dtype='float32',
              append_batch_size=False)
          position_tensor = fluid.layers.add_position_encoding(
              input=tensor, alpha=1.0, beta=1.0)
H
haowang101779990 已提交
11110

G
gmcather 已提交
11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
11127 11128 11129 11130 11131 11132 11133 11134 11135 11136


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
11137
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
11138

Q
Qiao Longfei 已提交
11139
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
11140 11141 11142
    For example:

    .. math::
H
haowang101779990 已提交
11143
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
11144

Q
Qiao Longfei 已提交
11145
    In this formula:
11146 11147
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
11148
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
11149
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
11150 11151 11152
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
11153 11154
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
11155 11156 11157
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
11158
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
11159
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
11160
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
11161 11162 11163 11164
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
11165
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
11166 11167 11168 11169

    Examples:
        .. code-block:: python

11170
          import paddle.fluid as fluid
Y
Yibing Liu 已提交
11171 11172 11173
          layer1 = fluid.layers.data("t1", shape=[-1, 5], dtype="float32")
          layer2 = fluid.layers.data("t2", shape=[-1, 4], dtype="float32")
          tensor = fluid.layers.bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
11174 11175
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
11176
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
11177 11178 11179 11180

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
11181
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
B
bdzhuxiaoning 已提交
11212 11213 11214 11215 11216 11217 11218 11219

    Examples:
        .. code-block:: python
	    
            import paddle.fluid as fluid
            b = fluid.default_main_program().global_block()
            input = b.create_var(name="X", dtype="float32", persistable=True, type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            out = fluid.layers.get_tensor_from_selected_rows(input)
C
chengduo 已提交
11220 11221 11222 11223 11224 11225 11226 11227 11228 11229
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
11230 11231


S
shippingwang 已提交
11232
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
11233 11234
    """
    **Shuffle Channel Operator**
11235

S
shippingwang 已提交
11236 11237 11238 11239 11240 11241
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
11242
    
S
shippingwang 已提交
11243
    .. code-block:: text
11244

S
shippingwang 已提交
11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
11273
    Args: 
S
shippingwang 已提交
11274 11275
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
11276 11277

    Returns:
S
shippingwang 已提交
11278 11279
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
11280 11281

    Raises:
S
shippingwang 已提交
11282
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
11283 11284 11285

    Examples:
        .. code-block:: python
11286

11287
            import paddle.fluid as fluid
11288
            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
S
shippingwang 已提交
11289
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
11290 11291 11292
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
11293
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
11294 11295 11296 11297 11298 11299 11300 11301 11302

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
11303
    return out
S
Add  
shippingwang 已提交
11304 11305


11306
@templatedoc()
D
dengkaipeng 已提交
11307
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None):
11308 11309 11310 11311 11312 11313 11314 11315
    """
    **Temporal Shift Operator**
    
    ${comment}
                        
    Args: 
        x(Variable): ${x_comment}
        seg_num(int): ${seg_num_comment}
D
dengkaipeng 已提交
11316
        shift_ratio(float): ${shift_ratio_comment}
D
dengkaipeng 已提交
11317
        name (str, default None): The name of this layer.
11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328

    Returns:
        out(Variable): The temporal shifting result is a tensor variable with the 
        same shape and same type as the input.

    Raises:
        TypeError: seg_num must be int type.

    Examples:
        .. code-block:: python

11329
            import paddle.fluid as fluid
11330
            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
D
dengkaipeng 已提交
11331
            out = fluid.layers.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343
    """
    helper = LayerHelper("temporal_shift", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(seg_num, int):
        raise TypeError("seg_num must be int type.")

    helper.append_op(
        type="temporal_shift",
        inputs={"X": x},
        outputs={"Out": out},
D
dengkaipeng 已提交
11344 11345
        attrs={"seg_num": seg_num,
               "shift_ratio": shift_ratio})
11346 11347 11348
    return out


S
sneaxiy 已提交
11349
class PyFuncRegistry(object):
S
sneaxiy 已提交
11350 11351 11352
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
11353
        if func is None or not callable(func):
S
sneaxiy 已提交
11354 11355 11356
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
11357
        # find named args using reflection
S
sneaxiy 已提交
11358 11359 11360 11361 11362 11363 11364
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
11365 11366 11367
        '''
        Why record self here?

M
minqiyang 已提交
11368 11369
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
11370
           to find the registered function corresponding
M
minqiyang 已提交
11371
           to :code:`idx`.
S
sneaxiy 已提交
11372

M
minqiyang 已提交
11373 11374
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
11375
           whose reference count is 1 would cause
M
minqiyang 已提交
11376
           segmentation fault error in C++ side.
S
sneaxiy 已提交
11377 11378
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
11379
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
11394 11395 11396 11397 11398 11399 11400 11401 11402
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
11403

S
sneaxiy 已提交
11404 11405
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
11406 11407

        ret = []
S
sneaxiy 已提交
11408 11409 11410
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
11411 11412
                continue

S
sneaxiy 已提交
11413 11414
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
11415

S
sneaxiy 已提交
11416 11417 11418
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
11419

S
sneaxiy 已提交
11420
        return tuple(ret)
S
sneaxiy 已提交
11421 11422


S
sneaxiy 已提交
11423 11424 11425 11426
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
11427

S
sneaxiy 已提交
11428 11429 11430 11431 11432 11433 11434 11435
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
11436
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
11437

S
sneaxiy 已提交
11438 11439
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
11440 11441 11442 11443
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
11444
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
11445
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
11446 11447
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
11448 11449 11450 11451 11452
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
11453
            should create :code:`out` beforehand.
S
sneaxiy 已提交
11454
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
11455
                                       None means no backward. Default None.
S
sneaxiy 已提交
11456
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
11457
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
11458 11459
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
11460
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
11461 11462 11463

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
11464 11465

    Examples:
M
minqiyang 已提交
11466

S
sneaxiy 已提交
11467 11468 11469 11470 11471
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
11472
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
11473 11474
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
11475
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
11476 11477 11478
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
11479
        >>>
S
sneaxiy 已提交
11480 11481 11482 11483 11484
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
11485
        >>>     print(x)
S
sneaxiy 已提交
11486 11487 11488 11489 11490 11491
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
11492
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
11493 11494
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
11495 11496
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
11497 11498 11499 11500 11501 11502 11503 11504
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
11505
    """
S
sneaxiy 已提交
11506
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
11507 11508 11509
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
11510
        x = [x]
S
sneaxiy 已提交
11511 11512
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
11513

S
sneaxiy 已提交
11514 11515 11516
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
11517
        out_list = [out]
S
sneaxiy 已提交
11518
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
11519
        out_list = out
S
sneaxiy 已提交
11520 11521 11522
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
11523

S
sneaxiy 已提交
11524 11525
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
11526
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
11527 11528

    for each_out in out_list:
S
sneaxiy 已提交
11529 11530
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
11531 11532
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
11533

S
sneaxiy 已提交
11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
11549 11550 11551 11552

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
11553 11554
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
11555 11556 11557
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
11558
        })
S
sneaxiy 已提交
11559
    return out
S
sneaxiy 已提交
11560 11561 11562


# For debug usage
S
sneaxiy 已提交
11563 11564 11565 11566
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
S
SunGaofeng 已提交
11580 11581 11582 11583 11584
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates.
11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
11597 11598 11599 11600
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[490, 28, 28], dtype='float32')
            rois = fluid.layers.data(name='rois', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.psroi_pool(x, rois, 10, 1.0, 7, 7)
11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
11626

M
minqiyang 已提交
11627

M
minqiyang 已提交
11628
def huber_loss(input, label, delta):
11629
    """
M
minqiyang 已提交
11630 11631 11632
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
11633 11634 11635 11636

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
11637
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
11638 11639 11640 11641

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
11642
        huber\_loss = 0.5 * (label - input) * (label - input)
11643 11644 11645 11646 11647 11648 11649


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
11650
        delta (float): The parameter of huber loss, which controls
11651 11652 11653
                       the range of outliers

    Returns:
M
minqiyang 已提交
11654
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
11655 11656 11657 11658

    Examples:
        .. code-block:: python

11659 11660 11661 11662 11663 11664 11665 11666 11667
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            predict = fluid.layers.fc(input=x, size=1)
            label = fluid.layers.data(
                name='label', shape=[1], dtype='float32')
            loss = fluid.layers.huber_loss(
                input=predict, label=label, delta=1.0)

11668
    """
M
minqiyang 已提交
11669
    helper = LayerHelper('huber_loss', **locals())
11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
11681 11682


D
dengkaipeng 已提交
11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699
@templatedoc()
def kldiv_loss(x, target, reduction='mean', name=None):
    """
    ${comment}

    Args:
        x (Variable): ${x_comment}
        target (Variable): ${target_comment}
        reduction (Variable): ${reduction_comment}
        name (str, default None): The name of this layer.

    Returns:
        kldiv\_loss (Variable): The KL divergence loss.

    Examples:
        .. code-block:: python

11700
            import paddle.fluid as fluid
D
dengkaipeng 已提交
11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715
            x = fluid.layers.data(name='x', shape=[4,2,2], dtype='float32')
            target = fluid.layers.data(name='target', shape=[4,2,2], dtype='float32')
            loss = fluid.layers.kldiv_loss(x=x, target=target, reduction='batchmean')
    """
    helper = LayerHelper('kldiv_loss', **locals())
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='kldiv_loss',
        inputs={'X': x,
                'Target': target},
        outputs={'Loss': loss},
        attrs={'reduction': reduction})
    return loss


Z
zhaozhehao 已提交
11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745
@templatedoc()
def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
    """ 
    ${comment}
    		
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

11746
          import paddle.fluid as fluid
T
Tao Luo 已提交
11747 11748 11749
          # 10 for max_node_size of dataset, 5 for vector width
          nodes_vector = fluid.layers.data(name='vectors', shape=[10, 5], dtype='float32')
          # 10 for max_node_size of dataset, 2 for every edge has two nodes
Z
zhaozhehao 已提交
11750
          # edges must be directional
T
Tao Luo 已提交
11751 11752 11753 11754
          edge_set = fluid.layers.data(name='edge_set', shape=[10, 2], dtype='float32')
          # the shape of output will be [10, 6, 1],
          # 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = fluid.layers.tree_conv(nodes_vector, edge_set, 6, 1, 2)
Z
zhaozhehao 已提交
11755
          # After reshape, output tensor could be nodes_vector for next tree convolution
T
Tao Luo 已提交
11756 11757
          out_vector = fluid.layers.reshape(out_vector, shape=[-1, 10, 6])
          out_vector_2 = fluid.layers.tree_conv(out_vector, edge_set, 3, 4, 2)
Z
zhaozhehao 已提交
11758
          # also output tensor could be pooling(the pooling in paper called global pooling)
T
Tao Luo 已提交
11759
          pooled = fluid.layers.reduce_max(out_vector, dim=2) # global pooling
Z
zhaozhehao 已提交
11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782
    """
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    if name == None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)
C
ceci3 已提交
11783 11784


C
ceci3 已提交
11785
from .ops import square
C
ceci3 已提交
11786
from .control_flow import equal
C
ceci3 已提交
11787 11788


C
ceci3 已提交
11789 11790 11791
def npair_loss(anchor, positive, labels, l2_reg=0.002):
    '''
  **Npair Loss Layer**
C
ceci3 已提交
11792

C
ceci3 已提交
11793
  Read `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_ .
C
ceci3 已提交
11794 11795

  Npair loss requires paired data. Npair loss has two parts: the first part is L2
C
ceci3 已提交
11796
  regularizer on the embedding vector; the second part is cross entropy loss which
C
ceci3 已提交
11797 11798 11799 11800 11801
  takes the similarity matrix of anchor and positive as logits.

  Args:
    anchor(Variable): embedding vector for the anchor image. shape=[batch_size, embedding_dims]
    positive(Variable): embedding vector for the positive image. shape=[batch_size, embedding_dims]
C
ceci3 已提交
11802 11803
    labels(Variable): 1-D tensor. shape=[batch_size]
    l2_reg(float32): L2 regularization term on embedding vector, default: 0.002
C
ceci3 已提交
11804 11805 11806 11807 11808 11809 11810

  Returns:
    npair loss(Variable): return npair loss, shape=[1]

  Examples:
    .. code-block:: python

11811
       import paddle.fluid as fluid
C
ceci3 已提交
11812 11813 11814 11815 11816 11817 11818 11819
       anchor = fluid.layers.data(
                     name = 'anchor', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       positive = fluid.layers.data(
                     name = 'positive', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       labels = fluid.layers.data(
                     name = 'labels', shape = [18], dtype = 'float32', append_batch_size=False)

       npair_loss = fluid.layers.npair_loss(anchor, positive, labels, l2_reg = 0.002)
C
ceci3 已提交
11820 11821 11822 11823 11824 11825 11826
  '''
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = reshape(labels, shape=[batch_size, 1], inplace=True)
    labels = expand(labels, expand_times=[1, batch_size])

C
ceci3 已提交
11827
    labels = equal(labels, transpose(labels, perm=[1, 0])).astype('float32')
C
ceci3 已提交
11828 11829
    labels = labels / reduce_sum(labels, dim=1, keep_dim=True)

C
ceci3 已提交
11830 11831
    l2loss = reduce_mean(reduce_sum(square(anchor), 1)) \
             + reduce_mean(reduce_sum(square(positive), 1))
C
ceci3 已提交
11832 11833 11834 11835
    l2loss = l2loss * Beta * l2_reg

    similarity_matrix = matmul(
        anchor, positive, transpose_x=False, transpose_y=True)
C
ceci3 已提交
11836 11837 11838
    softmax_ce = softmax_with_cross_entropy(
        logits=similarity_matrix, label=labels, soft_label=True)
    cross_entropy = reduce_sum(labels * softmax_ce, 0)
C
ceci3 已提交
11839 11840 11841
    celoss = reduce_mean(cross_entropy)

    return l2loss + celoss
11842 11843


R
ruri 已提交
11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872
def pixel_shuffle(x, upscale_factor):
    """

    **Pixel Shuffle Layer**

    This layer rearranges elements in a tensor of shape [N, C, H, W]
    to a tensor of shape [N, C/r**2, H*r, W*r].
    This is useful for implementing efficient sub-pixel convolution
    with a stride of 1/r.
    Please refer to the paper: `Real-Time Single Image and Video Super-Resolution 
    Using an Efficient Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_ .
    by Shi et. al (2016) for more details.

        .. code-block:: text
        
            Given a 4-D tensor with the shape:
                x.shape = [1, 9, 4, 4]
            Given upscale_factor:
                upscale_factor= 3
            output shape is:
                [1, 1, 12, 12]
    
    Args:

        x(Variable): The input tensor variable.
        upscale_factor(int): factor to increase spatial resolution

    Returns:

11873
        Out(Variable): Reshaped tensor according to the new dimension.
R
ruri 已提交
11874 11875 11876 11877 11878 11879 11880 11881 11882

    Raises:

        ValueError: If the square of upscale_factor cannot divide the channels of input.

    Examples:

        .. code-block:: python

11883
            import paddle.fluid as fluid
R
ruri 已提交
11884
            input = fluid.layers.data(name="input", shape=[9,4,4])
R
ruri 已提交
11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903
            output = fluid.layers.pixel_shuffle(x=input, upscale_factor=3)

    """

    helper = LayerHelper("pixel_shuffle", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(upscale_factor, int):
        raise TypeError("upscale factor must be int type")

    helper.append_op(
        type="pixel_shuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"upscale_factor": upscale_factor})
    return out


11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934
def fsp_matrix(x, y):
    """

    **FSP matrix op**

    This op is used to calculate the flow of solution procedure (FSP) matrix of two feature maps.
    Given feature map x with shape [x_channel, h, w] and feature map y with shape
    [y_channel, h, w], we can get the fsp matrix of x and y in two steps:

    1. reshape x into matrix with shape [x_channel, h * w] and reshape and
       transpose y into matrix with shape [h * w, y_channel].
    2. multiply x and y to get fsp matrix with shape [x_channel, y_channel].

    The output is a batch of fsp matrices.

    Args:

        x (Variable): A feature map with shape [batch_size, x_channel, height, width].
        y (Variable): A feature map with shape [batch_size, y_channel, height, width].
                      The y_channel can be different with the x_channel of Input(X)
                      while the other dimensions must be the same with Input(X)'s.

    Returns:

        fsp matrix (Variable): The output of FSP op with shape [batch_size, x_channel, y_channel].
        The x_channel is the channel of x and the y_channel is the channel of y.

    Examples:

        .. code-block:: python

B
Bai Yifan 已提交
11935 11936 11937 11938 11939 11940
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32])
            feature_map_0 = fluid.layers.conv2d(data, num_filters=2,
                                                filter_size=3)
            feature_map_1 = fluid.layers.conv2d(feature_map_0, num_filters=2,
                                                filter_size=1)
11941 11942 11943 11944 11945 11946 11947 11948
            loss = fluid.layers.fsp_matrix(feature_map_0, feature_map_1)

    """
    helper = LayerHelper('fsp_matrix', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype(
        input_param_name='x'))
    helper.append_op(type='fsp', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
H
heqiaozhi 已提交
11949 11950 11951 11952


def continuous_value_model(input, cvm, use_cvm=True):
    """
H
fix doc  
heqiaozhi 已提交
11953

H
heqiaozhi 已提交
11954
    **continuous_value_model layers**
H
fix doc  
heqiaozhi 已提交
11955

H
fix doc  
heqiaozhi 已提交
11956
    continuous value model(cvm). Now, it only considers show and click value in CTR project.
H
fix doc  
heqiaozhi 已提交
11957 11958 11959
    We assume that input is an embedding vector with cvm_feature, whose shape is [N * D] (D is 2 + embedding dim).
    If use_cvm is True, it will log(cvm_feature), and output shape is [N * D].
    If use_cvm is False, it will remove cvm_feature from input, and output shape is [N * (D - 2)].
H
heqiaozhi 已提交
11960
    
H
fix doc  
heqiaozhi 已提交
11961
    This layer accepts a tensor named input which is ID after embedded(lod level is 1), cvm is a show_click info.
H
fix doc  
heqiaozhi 已提交
11962

H
heqiaozhi 已提交
11963
    Args:
H
fix doc  
heqiaozhi 已提交
11964 11965

        input (Variable): a 2-D LodTensor with shape [N x D], where N is the batch size, D is 2 + the embedding dim. lod level = 1.
H
heqiaozhi 已提交
11966 11967
        cvm (Variable):   a 2-D Tensor with shape [N x 2], where N is the batch size, 2 is show and click.
        use_cvm  (bool):  use cvm or not. if use cvm, the output dim is the same as input
H
fix doc  
heqiaozhi 已提交
11968
                          if don't use cvm, the output dim is input dim - 2(remove show and click)
11969
                          (cvm op is a customized op, which input is a sequence has embed_with_cvm default, so we need an op named cvm to decided whever use it or not.)
H
fix doc  
heqiaozhi 已提交
11970

H
heqiaozhi 已提交
11971
    Returns:
H
fix doc  
heqiaozhi 已提交
11972 11973 11974

        Variable: A 2-D LodTensor with shape [N x D], if use cvm, D is equal to input dim, if don't use cvm, D is equal to input dim - 2. 

H
heqiaozhi 已提交
11975
    Examples:
H
fix doc  
heqiaozhi 已提交
11976

H
heqiaozhi 已提交
11977
        .. code-block:: python
H
fix doc  
heqiaozhi 已提交
11978

11979
          import paddle.fluid as fluid
H
heqiaozhi 已提交
11980 11981 11982 11983 11984 11985 11986 11987 11988 11989
          input = fluid.layers.data(name="input", shape=[-1, 1], lod_level=1, append_batch_size=False, dtype="int64")#, stop_gradient=False)
          label = fluid.layers.data(name="label", shape=[-1, 1], append_batch_size=False, dtype="int64")
          embed = fluid.layers.embedding(
                            input=input,
                            size=[100, 11],
                            dtype='float32')
          ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype="int64", value=1)
          show_clk = fluid.layers.cast(fluid.layers.concat([ones, label], axis=1), dtype='float32')
          show_clk.stop_gradient = True
          input_with_cvm = fluid.layers.continuous_value_model(embed, show_clk, True)
H
fix doc  
heqiaozhi 已提交
11990

H
heqiaozhi 已提交
11991 11992 11993 11994 11995 11996 11997 11998 11999
    """
    helper = LayerHelper('cvm', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='cvm',
        inputs={'X': [input],
                'CVM': [cvm]},
        outputs={'Y': [out]},
        attrs={"use_cvm": use_cvm})
H
heqiaozhi 已提交
12000
    return out
Z
zhoukunsheng 已提交
12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018


def where(condition):
    """
    Return an int64 tensor with rank 2, specifying the coordinate of true element in `condition`.

    Output's first dimension is the number of true element, second dimension is rank(number of dimension) of `condition`.
    If there is zero true element, then an empty tensor will be generated.  

    Args:
        condition(Variable): A bool tensor with rank at least 1.

    Returns:
        Variable: The tensor variable storing a 2-D tensor. 

    Examples:
        .. code-block:: python

12019
             import paddle.fluid as fluid
12020 12021 12022
             import paddle.fluid.layers as layers
             import numpy as np

Z
zhoukunsheng 已提交
12023
             # condition is a tensor [True, False, True]
12024 12025 12026
             condition = layers.assign(np.array([1, 0, 1], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[0], [2]]
Z
zhoukunsheng 已提交
12027 12028

             # condition is a tensor [[True, False], [False, True]]
12029 12030 12031
             condition = layers.assign(np.array([[1, 0], [0, 1]], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[0, 0], [1, 1]]
Z
zhoukunsheng 已提交
12032 12033

             # condition is a tensor [False, False, False]
12034 12035 12036 12037
             condition = layers.assign(np.array([0, 0, 0], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[]]

Z
zhoukunsheng 已提交
12038 12039 12040 12041 12042 12043 12044 12045 12046
    """
    helper = LayerHelper("where", **locals())

    out = helper.create_variable_for_type_inference(
        dtype=core.VarDesc.VarType.INT64)

    helper.append_op(
        type='where', inputs={'Condition': condition}, outputs={'Out': [out]})
    return out
Z
zhoukunsheng 已提交
12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063


def sign(x):
    """
    **sign**

    This function returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.

    Args:
        x(Variable|numpy.ndarray): The input tensor.

    Returns:
        Variable: The output sign tensor with identical shape and dtype to `x`.

    Examples:
        .. code-block:: python

12064 12065 12066
          import paddle.fluid as fluid
          import numpy as np

Z
zhoukunsheng 已提交
12067
          # [1, 0, -1]
12068 12069
          data = fluid.layers.sign(np.array([3, 0, -2], dtype='int32')) 

Z
zhoukunsheng 已提交
12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081
    """

    helper = LayerHelper("sign", **locals())

    if not isinstance(x, Variable):
        x = assign(x)

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out
12082 12083


Z
zhoukunsheng 已提交
12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122
def unique(x, dtype='int32'):
    """
    **unique** 

    Return a unique tensor for `x` and an index tensor pointing to this unique tensor.

    Args:
        x(Variable): A 1-D input tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): The type of index tensor: int32, int64.

    Returns:
        tuple: (out, index). `out` is the unique tensor for `x`, with identical dtype to `x`, and \
            `index` is an index tensor pointing to `out`, by which user can recover the original `x` tensor.

    Examples:
        .. code-block:: python

             import numpy as np
             import paddle.fluid as fluid
             x = fluid.assign(np.array([2, 3, 3, 1, 5, 3], dtype='int32'))
             out, index = fluid.layers.unique(x) # out is [2, 3, 1, 5]; index is [0, 1, 1, 2, 3, 1]
    """

    helper = LayerHelper("unique", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    index = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='unique',
        inputs={'X': x},
        attrs={'dtype': convert_np_dtype_to_dtype_(dtype)},
        outputs={'Out': [out],
                 'Index': [index]})

    return out, index


12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224
def deformable_conv(input,
                    offset,
                    mask,
                    num_filters,
                    filter_size,
                    stride=1,
                    padding=0,
                    dilation=1,
                    groups=None,
                    deformable_groups=None,
                    im2col_step=None,
                    param_attr=None,
                    bias_attr=None,
                    name=None):
    """
    **Deformable Convolution Layer**

    Compute 2-D deformable convolution on 4-D input.
    Given input image x, output feature map y, the deformable convolution operation can be expressed as follow:
    
    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k) * \Delta m_k}
    
    Where :math:`\Delta p_k` and :math:`\Delta m_k` are the learnable offset and modulation scalar for the k-th location, respectively.
    Refer to `Deformable ConvNets v2: More Deformable, Better Results
    <https://arxiv.org/abs/1811.11168v2>`_ .
    
    Example:
        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

          Offset shape: :math:`(N, 2 * deformable\_groups * H_f * H_w, H_{in}, W_{in})`

          Mask shape: :math:`(N, deformable\_groups * H_f * H_w, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

    Args:
        input (Variable): The input image with [N, C, H, W] format.
        offset (Variable): The input coord offset of deformable convolution layer.
        Mask (Variable): The input mask of deformable covolution layer.
        num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the deformable conv layer. According to
            grouped convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
        deformable_groups (int): The number of deformable group partitions.
            Default: deformable_groups = 1.
        im2col_step (int): Maximum number of images per im2col computation; 
            The total batch size should be divisable by this value or smaller
            than this value; if you face out of memory problem, you can try
            to use a smaller value here.
            Default: im2col_step = 64.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of deformable conv. If it is set to None or one attribute of ParamAttr,
            deformable conv will create ParamAttr as param_attr.
            If the Initializer of the param_attr is not set, the parameter is
            initialized with :math:`Normal(0.0, std)`, and the 
            :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of
            deformable conv layer. If it is set to False, no bias will be added
            to the output units. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None
    Returns:
        Variable: The tensor variable storing the deformable convolution \
                  result.
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
    Examples:
        .. code-block:: python

12225
          import paddle.fluid as fluid
12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          offset = fluid.layers.data(name='offset', shape=[18, 32, 32], dtype='float32')
          mask = fluid.layers.data(name='mask', shape=[9, 32, 32], dtype='float32')
          out = fluid.layers.deformable_conv(input=data, offset=offset, mask=mask,
                                             num_filters=2, filter_size=3, padding=1)
    """

    num_channels = input.shape[1]
    assert param_attr is not False, "param_attr should not be False here."

    helper = LayerHelper('deformable_conv', **locals())
    dtype = helper.input_dtype()

    if not isinstance(input, Variable):
        raise TypeError("Input of deformable_conv must be Variable")
    if not isinstance(offset, Variable):
        raise TypeError("Input Offset of deformable_conv must be Variable")
    if not isinstance(mask, Variable):
        raise TypeError("Input Mask of deformable_conv must be Variable")

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels // groups

    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')

    input_shape = input.shape
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size

    def _get_default_param_initializer():
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='deformable_conv',
        inputs={
            'Input': input,
            'Filter': filter_param,
            'Offset': offset,
            'Mask': mask,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'deformable_groups': deformable_groups,
            'im2col_step': im2col_step,
        })

    output = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    return output
12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403


def unfold(x, kernel_sizes, strides=1, paddings=0, dilations=1, name=None):
    """

    This function returns a col buffer of sliding local blocks of input x, also known
    as im2col for batched 2D image tensors. For each block under the convolution filter,
    all element will be rearranged as a column. While the convolution filter silding over
    the input feature map, a series of such columns will be formed.

    For each input :math:`X` with shape [N, C, H, W], the output shape [N, Cout, Lout]
    can be calculated as following.

    .. math::

        dkernel[0] &= dilations[0] \\times (kernel\_sizes[0] - 1) + 1

        dkernel[1] &= dilations[1] \\times (kernel\_sizes[1] - 1) + 1

        hout &= \\frac{H + paddings[0] + paddings[2] - dkernel[0]}{strides[0]} + 1

        wout &= \\frac{W + paddings[1] + paddings[3] - dkernel[1]}{strides[1]} + 1

        Cout &= C \\times kernel\_sizes[0] \\times kernel\_sizes[1]

        Lout &= hout \\times wout


    Args:
        x(Varaible):              The input tensor of format [N, C, H, W].
        kernel_sizes(int|list):   The size of convolution kernel, should be [k_h, k_w]
                                  or an integer k treated as [k, k].
        strides(int|list):        The strides, should be [stride_h, stride_w]
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
        paddings(int|list):       The paddings of each dimension, should be
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
        dilations(int|list):      the dilations of convolution kernel, shold be
                                  [dilation_h, dilation_w], or an integer dialtion treated as
                                  [dilation, dilation]. For default, it will be [1, 1].

    
    Returns:
        Variable: The tensor variable corresponding to the sliding local blocks. The output shape is [N, Cout, Lout] as decribled above. Cout is the  total number of values within each block, and Lout is the total number of such blocks.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name = 'data', shape = [3, 224, 224], dtype = 'float32')
            y = fluid.layers.unfold(x, [3, 3], 1, 1, 1)
    """

    helper = LayerHelper("unfold", **locals())

    assert len(x.shape) == 4, \
            "input should be the format of [N, C, H, W]"

    if isinstance(kernel_sizes, int):
        kernel_sizes = [kernel_sizes, kernel_sizes]
    else:
        assert isinstance(kernel_sizes, list) and (len(kernel_sizes) == 2), \
            "kernel_sizes should either be an integer or a list of two integers"

    if isinstance(strides, int):
        strides = [strides, strides]
    else:
        assert isinstance(strides, list) and (len(strides) == 2), \
            "strides should either be an integer or a list of two integers"

    if isinstance(dilations, int):
        dilations = [dilations, dilations]
    else:
        assert isinstance(dilations, list) and (len(dilations) == 2), \
            "dilations should either be an integer or a list of two integers"

    if isinstance(paddings, int):
        paddings = [paddings] * 4
    elif isinstance(paddings, list):
        if len(paddings) == 2:
            paddings = paddings * 2
        elif len(paddings) == 4:
            pass
        else:
            raise ValueError(
                "paddings should either be an integer or a list of 2 or 4 integers"
            )
    else:
        raise ValueError(
            "Unexpected type of paddings, it should be either an integer or a list"
            "of 2 or 4 integers")

    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="unfold",
        inputs={"X": x},
        outputs={"Y": out},
        attrs={
            "kernel_sizes": kernel_sizes,
            "strides": strides,
            "paddings": paddings,
            "dilations": dilations
        })
    return out
C
cjt222 已提交
12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456


def deformable_roi_pooling(input,
                           rois,
                           trans,
                           no_trans=False,
                           spatial_scale=1.0,
                           group_size=[1, 1],
                           pooled_height=1,
                           pooled_width=1,
                           part_size=None,
                           sample_per_part=1,
                           trans_std=0.1,
                           position_sensitive=False,
                           name=None):
    """
    Deformable PSROI Pooling Layer
    
    Args:
       input (Variable):The input of Deformable PSROIPooling.The shape of input tensor is 
                        [N,C,H,W]. Where N is batch size,C is number of input channels,H 
                        is height of the feature, and W is the width of the feature.
       rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                        a 2-D LoDTensor of shape (num_rois, 4), the lod level
                        is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                        the top left coordinates, and (x2, y2) is the bottom
                        right coordinates.
       trans (Variable): Offset of features on ROIs while pooling.The format is NCHW, where 
                         N is number of ROIs, C is number of channels, which indicate the offset distance 
                         in the x and y directions, H is pooled height, and W is pooled width.
       no_trans (bool): Whether to add offset to get new value or not while roi pooling, which 
                          value is True or False. Default: False.
       spatial_scale (float): Ratio of input feature map height (or width) to raw image height (or width).
                             Equals the reciprocal of total stride in convolutional layers, Default: 1.0.
       group_size (list|tuple): The number of groups which input channels are divided.(eg.number of input channels 
                         is k1*k2*(C+1), which k1 and k2 are group width and height and C+1 is number of output
                         chanels. eg.(4, 6), which 4 is height of group and 6 is width of group. Default: [1, 1].
       pooled_height (integer): The pooled output height. Default: 1.
       pooled_width (integer): The pooled output width. Default: 1.
       part_size (list|tuple): The height and width of offset, eg.(4, 6), which height is 4 and width is 6, Default: 
                        if None, default value is [pooled_height, pooled_width].
       sample_per_part (integer): The number of samples in each bin. Default: 1.
       trans_std (float): Coefficient of offset. Default: 0.1.
       position_sensitive (bool): Whether to choose deformable psroi pooling mode or not. Default: False.
       name (str): Name of layer. Default: None.
    Returns:
        Variable: The tensor variable storing the deformable psroi pooling \
                  result.


    Examples:
      .. code-block:: python

12457
        import paddle.fluid as fluid
C
cjt222 已提交
12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518
        input = fluid.layers.data(name="input",
                                  shape=[2, 192, 64, 64], 
                                  dtype='float32', 
                                  append_batch_size=False)                   
        rois = fluid.layers.data(name="rois",
                                 shape=[4],
                                 dtype='float32', 
                                 lod_level=1)
        trans = fluid.layers.data(name="trans",
                                  shape=[2, 384, 64, 64], 
                                  dtype='float32', 
                                  append_batch_size=False) 
        x = fluid.layers.nn.deformable_roi_pooling(input=input, 
                                                     rois=rois, 
                                                     trans=trans, 
                                                     no_trans=False,
                                                     spatial_scale=1.0, 
                                                     group_size=(1, 1),
                                                     pooled_height=8,
                                                     pooled_width=8,
                                                     part_size=(8, 8),
                                                     sample_per_part=4, 
                                                     trans_std=0.1,
                                                     position_sensitive=False)
    """

    input_channels = input.shape[1]
    if position_sensitive == False:
        output_channels = input_channels
    else:
        output_channels = input_channels / pooled_height / pooled_width

    if part_size is None:
        part_height = pooled_height
        part_width = pooled_width
        part_size = [part_height, part_width]
    part_size = utils.convert_to_list(part_size, 2, 'part_size')
    group_size = utils.convert_to_list(group_size, 2, 'group_size')
    helper = LayerHelper('deformable_psroi_pooling', **locals())
    dtype = helper.input_dtype()
    output = helper.create_variable_for_type_inference(dtype)
    top_count = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="deformable_psroi_pooling",
        inputs={"Input": input,
                "ROIs": rois,
                "Trans": trans},
        outputs={"Output": output,
                 "TopCount": top_count},
        attrs={
            "no_trans": no_trans,
            "spatial_scale": spatial_scale,
            "output_dim": output_channels,
            "group_size": group_size,
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "part_size": part_size,
            "sample_per_part": sample_per_part,
            "trans_std": trans_std
        })
    return output