未验证 提交 93152b0b 编写于 作者: C chengduo 提交者: GitHub

Fix the result of unit test (#12520)

* fix the result of unit test

* fix resnext

* compare the result of PE and Exe

* compare the result of reduce and allreduce
上级 4713f0a9
......@@ -265,6 +265,7 @@ function(cc_test TARGET_NAME)
if (${cc_test_SERIAL})
set_property(TEST ${TARGET_NAME} PROPERTY RUN_SERIAL 1)
set_property(TEST ${TARGET_NAME} PROPERTY ENVIRONMENT FLAGS_init_allocated_mem=true)
set_property(TEST ${TARGET_NAME} PROPERTY ENVIRONMENT FLAGS_cudnn_deterministic=true)
endif()
endif()
endfunction(cc_test)
......@@ -330,6 +331,7 @@ function(nv_test TARGET_NAME)
if (nv_test_SERIAL)
set_property(TEST ${TARGET_NAME} PROPERTY RUN_SERIAL 1)
set_property(TEST ${TARGET_NAME} PROPERTY ENVIRONMENT FLAGS_init_allocated_mem=true)
set_property(TEST ${TARGET_NAME} PROPERTY ENVIRONMENT FLAGS_cudnn_deterministic=true)
endif()
endif()
endfunction(nv_test)
......@@ -577,7 +579,8 @@ function(py_test TARGET_NAME)
set(multiValueArgs SRCS DEPS ARGS ENVS)
cmake_parse_arguments(py_test "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
add_test(NAME ${TARGET_NAME}
COMMAND env FLAGS_init_allocated_mem=true PYTHONPATH=${PADDLE_BINARY_DIR}/python ${py_test_ENVS}
COMMAND env FLAGS_init_allocated_mem=true FLAGS_cudnn_deterministic=true
PYTHONPATH=${PADDLE_BINARY_DIR}/python ${py_test_ENVS}
${PYTHON_EXECUTABLE} -u ${py_test_SRCS} ${py_test_ARGS}
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
endif()
......
......@@ -949,6 +949,10 @@ def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
helper = LayerHelper('dropout', **locals())
out = helper.create_tmp_variable(dtype=x.dtype)
mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
seed = helper.main_program.random_seed
helper.append_op(
type='dropout',
inputs={'X': [x]},
......
......@@ -98,16 +98,13 @@ class TestMNIST(TestParallelExecutorBase):
fluid.recordio_writer.convert_reader_to_recordio_file(
MNIST_RECORDIO_FILE, reader, feeder)
def _init_data(self, random=True):
def _init_data(self):
np.random.seed(5)
if random:
img = np.random.random(size=[32, 784]).astype(np.float32)
else:
img = np.ones(shape=[32, 784], dtype='float32')
img = np.random.random(size=[32, 784]).astype(np.float32)
label = np.ones(shape=[32, 1], dtype='int64')
return img, label
def _compare_reduce_and_allreduce(self, model, use_cuda, random_data=True):
def _compare_reduce_and_allreduce(self, model, use_cuda):
if use_cuda and not core.is_compiled_with_cuda():
return
self.check_network_convergence(
......@@ -115,7 +112,7 @@ class TestMNIST(TestParallelExecutorBase):
self.check_network_convergence(
model, use_cuda=use_cuda, allow_op_delay=True, use_reduce=True)
img, label = self._init_data(random_data)
img, label = self._init_data()
all_reduce_first_loss, all_reduce_last_loss = self.check_network_convergence(
model,
......@@ -166,27 +163,27 @@ class TestMNIST(TestParallelExecutorBase):
if use_cuda and not core.is_compiled_with_cuda():
return
img, label = self._init_data(random=False)
img, label = self._init_data()
single_first_loss, single_last_loss = self.check_network_convergence(
method=simple_fc_net,
seed=1000,
seed=1,
feed_dict={"image": img,
"label": label},
use_cuda=use_cuda,
use_parallel_executor=False)
parallel_first_loss, parallel_last_loss = self.check_network_convergence(
method=simple_fc_net,
seed=1000,
seed=1,
feed_dict={"image": img,
"label": label},
use_cuda=use_cuda,
use_parallel_executor=True)
for p_f in parallel_first_loss:
self.assertAlmostEquals(p_f, single_first_loss[0], delta=1e-6)
for p_l in parallel_last_loss:
self.assertAlmostEquals(p_l, single_last_loss[0], delta=1e-6)
self.assertAlmostEquals(
np.mean(parallel_first_loss), single_first_loss, delta=1e-6)
self.assertAlmostEquals(
np.mean(parallel_last_loss), single_last_loss, delta=1e-6)
def test_simple_fc_parallel_accuracy(self):
self.check_simple_fc_parallel_accuracy(True)
......
......@@ -21,6 +21,19 @@ from parallel_executor_test_base import TestParallelExecutorBase
import unittest
import math
import os
import numpy as np
# FIXME(zcd): If the neural net has dropout_op, the output of ParallelExecutor
# and Executor is different. Because, for ParallelExecutor, the dropout_op of
# the neural net will be copied N copies(N is the number of device). This will
# lead to the random numbers generated by ParallelExecutor and Executor are different.
# So, if we compare the loss of ParallelExecutor and Executor, we should remove the
# dropout_op.
remove_dropout = False
# FIXME(zcd): If the neural net has batch_norm, the output of ParallelExecutor
# and Executor is different.
remove_bn = False
def squeeze_excitation(input, num_channels, reduction_ratio):
......@@ -53,7 +66,8 @@ def conv_bn_layer(input, num_filters, filter_size, stride=1, groups=1,
groups=groups,
act=None,
bias_attr=False)
return fluid.layers.batch_norm(input=conv, act=act, momentum=0.1)
return conv if remove_bn else fluid.layers.batch_norm(
input=conv, act=act, momentum=0.1)
def shortcut(input, ch_out, stride):
......@@ -92,13 +106,14 @@ def bottleneck_block(input, num_filters, stride, cardinality, reduction_ratio):
return fluid.layers.elementwise_add(x=short, y=scale, act='relu')
def SE_ResNeXt50Small(batch_size=2, use_feed=False):
assert not use_feed, "SE_ResNeXt doesn't support feed yet"
batch_size = 12
img_shape = [3, 224, 224]
img = fluid.layers.fill_constant(
shape=[batch_size, 3, 224, 224], dtype='float32', value=0.0)
label = fluid.layers.fill_constant(
shape=[batch_size, 1], dtype='int64', value=0.0)
def SE_ResNeXt50Small(use_feed):
img = fluid.layers.data(name='image', shape=img_shape, dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
conv = conv_bn_layer(
input=img, num_filters=16, filter_size=3, stride=2, act='relu')
......@@ -127,7 +142,8 @@ def SE_ResNeXt50Small(batch_size=2, use_feed=False):
reshape = fluid.layers.reshape(
x=conv, shape=[-1, shape[1], shape[2] * shape[3]])
pool = fluid.layers.reduce_mean(input=reshape, dim=2)
dropout = fluid.layers.dropout(x=pool, dropout_prob=0.2)
dropout = pool if remove_dropout else fluid.layers.dropout(
x=pool, dropout_prob=0.2, seed=1)
# Classifier layer:
prediction = fluid.layers.fc(input=dropout, size=1000, act='softmax')
loss = fluid.layers.cross_entropy(input=prediction, label=label)
......@@ -135,75 +151,135 @@ def SE_ResNeXt50Small(batch_size=2, use_feed=False):
return loss
class TestResnet(TestParallelExecutorBase):
def check_resnet_convergence_with_learning_rate_decay(self,
use_cuda=True,
use_reduce=False,
iter=20):
def cosine_decay(learning_rate, step_each_epoch, epochs=120):
"""
Applies cosine decay to the learning rate.
lr = 0.05 * (math.cos(epoch * (math.pi / 120)) + 1)
"""
global_step = _decay_step_counter()
if use_cuda and not core.is_compiled_with_cuda():
return
with init_on_cpu():
epoch = ops.floor(global_step / step_each_epoch)
decayed_lr = learning_rate * \
(ops.cos(epoch * (math.pi / epochs)) + 1)/2
return decayed_lr
os.environ['CPU_NUM'] = str(4)
def _cosine_decay(learning_rate, step_each_epoch, epochs=120):
"""
Applies cosine decay to the learning rate.
lr = 0.05 * (math.cos(epoch * (math.pi / 120)) + 1)
"""
global_step = _decay_step_counter()
def optimizer(learning_rate=0.01):
optimizer = fluid.optimizer.Momentum(
learning_rate=cosine_decay(
learning_rate=learning_rate, step_each_epoch=2, epochs=1),
momentum=0.9,
regularization=fluid.regularizer.L2Decay(1e-4))
return optimizer
with init_on_cpu():
epoch = ops.floor(global_step / step_each_epoch)
decayed_lr = learning_rate * \
(ops.cos(epoch * (math.pi / epochs)) + 1)/2
return decayed_lr
def _optimizer(learning_rate=0.01):
optimizer = fluid.optimizer.Momentum(
learning_rate=_cosine_decay(
learning_rate=learning_rate, step_each_epoch=2, epochs=1),
momentum=0.9,
regularization=fluid.regularizer.L2Decay(1e-4))
return optimizer
class TestResnet(TestParallelExecutorBase):
@classmethod
def setUpClass(cls):
os.environ['CPU_NUM'] = str(4)
global remove_dropout
global remove_bn
remove_dropout = False
remove_bn = False
def _init_data(self, batch_size=2, random=True):
np.random.seed(5)
if random:
img = np.random.random(
size=[batch_size] + img_shape).astype(np.float32)
else:
img = np.ones(shape=[batch_size] + img_shape, dtype='float32')
label = [np.random.randint(0, 999) for _ in range(batch_size)]
label = np.array(label).astype(np.int64).reshape(-1, 1)
return img, label
def _compare_reduce_and_allreduce(self,
model,
use_cuda,
iter=20,
delta2=1e-4):
if use_cuda and not core.is_compiled_with_cuda():
return
import functools
global remove_bn
remove_bn = True
batch_size = 2
img, label = self._init_data(batch_size=batch_size)
all_reduce_first_loss, all_reduce_last_loss = self.check_network_convergence(
model,
feed_dict={"image": img,
"label": label},
iter=iter,
batch_size=batch_size,
use_cuda=use_cuda,
use_reduce=False,
optimizer=optimizer)
reduce_first_loss, reduce_last_loss = self.check_network_convergence(
model,
feed_dict={"image": img,
"label": label},
iter=iter,
batch_size=batch_size,
use_cuda=use_cuda,
use_reduce=True,
optimizer=optimizer)
for loss in zip(all_reduce_first_loss, reduce_first_loss):
self.assertAlmostEquals(loss[0], loss[1], delta=1e-6)
for loss in zip(all_reduce_last_loss, reduce_last_loss):
self.assertAlmostEquals(loss[0], loss[1], delta=delta2)
def _check_resnet_convergence(self,
model,
use_cuda=True,
use_reduce=False,
iter=20,
delta2=1e-6):
if use_cuda and not core.is_compiled_with_cuda():
return
global remove_dropout
global remove_bn
remove_dropout = True
remove_bn = True
img, label = self._init_data(batch_size=batch_size)
single_first_loss, single_last_loss = self.check_network_convergence(
functools.partial(
SE_ResNeXt50Small, batch_size=batch_size),
model,
feed_dict={"image": img,
"label": label},
iter=iter,
batch_size=batch_size,
use_cuda=use_cuda,
use_reduce=use_reduce,
optimizer=_optimizer,
optimizer=optimizer,
use_parallel_executor=False)
parallel_first_loss, parallel_last_loss = self.check_network_convergence(
functools.partial(
SE_ResNeXt50Small, batch_size=batch_size),
model,
feed_dict={"image": img,
"label": label},
iter=iter,
batch_size=batch_size,
use_cuda=use_cuda,
use_reduce=use_reduce,
optimizer=_optimizer)
optimizer=optimizer)
for p_f in parallel_first_loss:
self.assertAlmostEquals(p_f, single_first_loss[0], delta=1e-6)
for p_l in parallel_last_loss:
self.assertAlmostEquals(p_l, single_last_loss[0], delta=1e-6)
self.assertAlmostEquals(
np.mean(parallel_first_loss), single_first_loss[0], delta=1e-6)
self.assertAlmostEquals(
np.mean(parallel_last_loss), single_last_loss[0], delta=delta2)
def test_seresnext_with_learning_rate_decay(self):
self.check_resnet_convergence_with_learning_rate_decay(True, False)
self.check_resnet_convergence_with_learning_rate_decay(
False, False, iter=5)
def test_seresnext_with_new_strategy_with_learning_rate_decay(self):
self.check_resnet_convergence_with_learning_rate_decay(True, True)
self.check_resnet_convergence_with_learning_rate_decay(
False, True, iter=5)
self._check_resnet_convergence(model=SE_ResNeXt50Small, use_cuda=True)
self._check_resnet_convergence(
model=SE_ResNeXt50Small, use_cuda=False, iter=2, delta2=1e-3)
def test_seresnext_with_new_strategy(self):
# self._compare_reduce_and_allreduce(
# model=SE_ResNeXt50Small, use_cuda=True)
self._compare_reduce_and_allreduce(
model=SE_ResNeXt50Small, use_cuda=False, iter=5, delta2=1e-2)
if __name__ == '__main__':
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册