Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
a1326cf3
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a1326cf3
编写于
1月 22, 2019
作者:
Q
Qiao Longfei
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add NumpyArrayInitializer and use it to refactor nce op
上级
def70c5c
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
87 addition
and
58 deletion
+87
-58
python/paddle/fluid/initializer.py
python/paddle/fluid/initializer.py
+60
-1
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+16
-11
python/paddle/fluid/layers/tensor.py
python/paddle/fluid/layers/tensor.py
+11
-34
python/paddle/fluid/tests/unittests/test_layers.py
python/paddle/fluid/tests/unittests/test_layers.py
+0
-12
未找到文件。
python/paddle/fluid/initializer.py
浏览文件 @
a1326cf3
...
...
@@ -24,7 +24,8 @@ __all__ = [
'Constant'
,
'Uniform'
,
'Normal'
,
'TruncatedNormal'
,
'Xavier'
,
'Bilinear'
,
'MSRA'
,
'force_init_on_cpu'
,
'init_on_cpu'
,
'ConstantInitializer'
,
'UniformInitializer'
,
'NormalInitializer'
,
'TruncatedNormalInitializer'
,
'XavierInitializer'
,
'BilinearInitializer'
,
'MSRAInitializer'
'XavierInitializer'
,
'BilinearInitializer'
,
'MSRAInitializer'
,
'NumpyArrayInitializer'
]
_force_init_on_cpu_
=
False
...
...
@@ -683,6 +684,64 @@ class BilinearInitializer(Initializer):
return
op
class
NumpyArrayInitializer
(
Initializer
):
"""Init an parameter with an numpy array
Args:
value (numpy): numpy array to initialize the variable
Examples:
.. code-block:: python
fc = fluid.layers.fc(input=x, size=10,
param_attr=fluid.initializer.NumpyArrayInitializer(numpy.array([1,2])))
"""
def
__init__
(
self
,
value
):
import
numpy
assert
isinstance
(
value
,
numpy
.
ndarray
)
super
(
NumpyArrayInitializer
,
self
).
__init__
()
self
.
_value
=
value
def
__call__
(
self
,
var
,
block
):
"""Add constant initialization ops for a variable
Args:
var: Variable that needs to be initialized
block: The block in which initialization ops
should be added
Returns:
the initialization op
"""
assert
isinstance
(
var
,
framework
.
Variable
)
assert
isinstance
(
block
,
framework
.
Block
)
# Initialization Ops should be prepended and not appended
dtype
=
framework
.
convert_np_dtype_to_dtype_
(
self
.
_value
.
dtype
)
if
dtype
==
VarDesc
.
VarType
.
FP32
:
value_name
=
"fp32_values"
values
=
[
float
(
v
)
for
v
in
self
.
_value
.
flat
]
elif
dtype
==
VarDesc
.
VarType
.
INT32
:
value_name
=
"int32_values"
values
=
[
int
(
v
)
for
v
in
self
.
_value
.
flat
]
else
:
raise
ValueError
(
"Unsupported dtype %s"
,
self
.
_value
.
dtype
)
if
self
.
_value
.
size
>
1024
*
1024
*
5
:
raise
ValueError
(
"The size of input is too big. Please consider "
"saving it to file and 'load_op' to load it"
)
op
=
block
.
_prepend_op
(
type
=
'assign_value'
,
outputs
=
{
'Out'
:
var
},
attrs
=
{
'dtype'
:
dtype
,
'shape'
:
list
(
input
.
shape
),
value_name
:
values
},
stop_gradient
=
True
)
var
.
op
=
op
return
op
# We short the class name, since users will use the initializer with the package
# name. The sample code:
#
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
a1326cf3
...
...
@@ -22,7 +22,7 @@ import six
import
os
import
inspect
from
..layer_helper
import
LayerHelper
from
..initializer
import
Normal
,
Constant
from
..initializer
import
Normal
,
Constant
,
NumpyArrayInitializer
from
..framework
import
Variable
,
OpProtoHolder
from
..param_attr
import
ParamAttr
from
.layer_function_generator
import
autodoc
,
templatedoc
,
_generate_doc_string_
...
...
@@ -5181,16 +5181,21 @@ def nce(input,
alias_probs_
[
little
[
0
]]
=
1.0
alias_
[
little
[
0
]]
=
-
1
probs
=
assign
(
input
=
np
.
array
(
custom_dist
).
astype
(
'float32'
),
init_once
=
True
)
custom_alias
=
assign
(
input
=
np
.
array
(
alias_
).
astype
(
'int32'
),
init_once
=
True
)
custom_alias_probs
=
assign
(
input
=
np
.
array
(
alias_probs_
).
astype
(
'float32'
),
init_once
=
True
)
inputs
[
'CustomDistProbs'
]
=
probs
inputs
[
'CustomDistAlias'
]
=
custom_alias
inputs
[
'CustomDistAliasProbs'
]
=
custom_alias_probs
def
_init_by_numpy_array
(
numpy_array
):
ret
=
helper
.
create_parameter
(
attr
=
ParamAttr
(),
shape
=
numpy_array
.
shape
,
dtype
=
numpy_array
.
dtype
,
default_initializer
=
NumpyArrayInitializer
(
numpy_array
))
ret
.
stop_gradient
=
True
return
ret
inputs
[
'CustomDistProbs'
]
=
_init_by_numpy_array
(
np
.
array
(
custom_dist
).
astype
(
'float32'
))
inputs
[
'CustomDistAlias'
]
=
_init_by_numpy_array
(
np
.
array
(
alias_
).
astype
(
'int32'
))
inputs
[
'CustomDistAliasProbs'
]
=
_init_by_numpy_array
(
np
.
array
(
alias_probs_
).
astype
(
'float32'
))
sampler
=
2
else
:
raise
Exception
(
"Unsupported sampler type."
)
...
...
python/paddle/fluid/layers/tensor.py
浏览文件 @
a1326cf3
...
...
@@ -291,7 +291,7 @@ def sums(input, out=None):
return
out
def
assign
(
input
,
output
=
None
,
init_once
=
False
):
def
assign
(
input
,
output
=
None
):
"""
**Assign**
...
...
@@ -300,7 +300,6 @@ def assign(input, output=None, init_once=False):
Args:
input(Variable|numpy.ndarray): The source variable
output(Variable|None): The destination variable
init_once(bool|false): assign value into global var only in startup program.
Returns:
Variable: The destination variable that was supplied as the *output*.
...
...
@@ -314,22 +313,10 @@ def assign(input, output=None, init_once=False):
"""
helper
=
LayerHelper
(
'assign'
,
**
locals
())
if
output
is
None
:
if
init_once
:
output
=
helper
.
create_parameter
(
attr
=
ParamAttr
(),
shape
=
input
.
shape
,
dtype
=
input
.
dtype
,
default_initializer
=
Constant
(
0.0
))
output
.
stop_gradient
=
True
else
:
output
=
helper
.
create_variable_for_type_inference
(
dtype
=
input
.
dtype
)
output
=
helper
.
create_variable_for_type_inference
(
dtype
=
input
.
dtype
)
if
isinstance
(
input
,
Variable
):
if
init_once
:
raise
ValueError
(
"init once only support numpy assign!"
)
helper
.
append_op
(
type
=
'assign'
,
inputs
=
{
'X'
:
[
input
]},
outputs
=
{
'Out'
:
[
output
]})
elif
isinstance
(
input
,
numpy
.
ndarray
):
dtype
=
convert_np_dtype_to_dtype_
(
input
.
dtype
)
if
dtype
==
VarDesc
.
VarType
.
FP32
:
...
...
@@ -340,28 +327,18 @@ def assign(input, output=None, init_once=False):
values
=
[
int
(
v
)
for
v
in
input
.
flat
]
else
:
raise
ValueError
(
"Unsupported dtype %s"
,
input
.
dtype
)
if
input
.
size
>
1024
*
1024
*
5
:
if
input
.
size
>
1024
*
1024
:
raise
ValueError
(
"The size of input is too big. Please consider "
"saving it to file and 'load_op' to load it"
)
if
init_once
:
helper
.
startup_program
.
global_block
().
append_op
(
type
=
'assign_value'
,
outputs
=
{
'Out'
:
[
output
]},
attrs
=
{
'dtype'
:
dtype
,
'shape'
:
list
(
input
.
shape
),
value_name
:
values
})
else
:
helper
.
append_op
(
type
=
'assign_value'
,
outputs
=
{
'Out'
:
[
output
]},
attrs
=
{
'dtype'
:
dtype
,
'shape'
:
list
(
input
.
shape
),
value_name
:
values
})
helper
.
append_op
(
type
=
'assign_value'
,
outputs
=
{
'Out'
:
[
output
]},
attrs
=
{
'dtype'
:
dtype
,
'shape'
:
list
(
input
.
shape
),
value_name
:
values
})
else
:
raise
ValueError
(
"Wrong type for assign input: %s"
%
type
(
input
))
...
...
python/paddle/fluid/tests/unittests/test_layers.py
浏览文件 @
a1326cf3
...
...
@@ -1023,18 +1023,6 @@ class TestBook(unittest.TestCase):
print
(
str
(
program
))
def
test_assign
(
self
):
import
numpy
as
np
startup
=
Program
()
main
=
Program
()
with
program_guard
(
main
,
startup
):
probs
=
layers
.
assign
(
input
=
np
.
random
.
random
([
1
,
2
]).
astype
(
'float32'
),
init_once
=
True
)
print
(
str
(
main
))
print
(
str
(
startup
))
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录