Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
4b7bf06e
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
4b7bf06e
编写于
2月 27, 2019
作者:
C
ceci3
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
test=develop
上级
454f4f21
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
175 addition
and
0 deletion
+175
-0
paddle/fluid/API.spec
paddle/fluid/API.spec
+1
-0
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+50
-0
python/paddle/fluid/tests/unittests/test_npair_loss_op.py
python/paddle/fluid/tests/unittests/test_npair_loss_op.py
+124
-0
未找到文件。
paddle/fluid/API.spec
浏览文件 @
4b7bf06e
...
...
@@ -220,6 +220,7 @@ paddle.fluid.layers.psroi_pool ArgSpec(args=['input', 'rois', 'output_channels',
paddle.fluid.layers.teacher_student_sigmoid_loss ArgSpec(args=['input', 'label', 'soft_max_up_bound', 'soft_max_lower_bound'], varargs=None, keywords=None, defaults=(15.0, -15.0))
paddle.fluid.layers.huber_loss ArgSpec(args=['input', 'label', 'delta'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.tree_conv ArgSpec(args=['nodes_vector', 'edge_set', 'output_size', 'num_filters', 'max_depth', 'act', 'param_attr', 'bias_attr', 'name'], varargs=None, keywords=None, defaults=(1, 2, 'tanh', None, None, None))
paddle.fluid.layers.npair_loss ArgSpec(args=['anchor', 'positive', 'labels', 'l2_reg'], varargs=None, keywords=None, defaults=(0.002,))
paddle.fluid.layers.data ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True))
paddle.fluid.layers.open_files ArgSpec(args=['filenames', 'shapes', 'lod_levels', 'dtypes', 'thread_num', 'buffer_size', 'pass_num', 'is_test'], varargs=None, keywords=None, defaults=(None, None, 1, None))
paddle.fluid.layers.read_file ArgSpec(args=['reader'], varargs=None, keywords=None, defaults=None)
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
4b7bf06e
...
...
@@ -186,6 +186,7 @@ __all__ = [
'teacher_student_sigmoid_loss'
,
'huber_loss'
,
'tree_conv'
,
'npair_loss'
,
]
kIgnoreIndex
=
-
100
...
...
@@ -10560,3 +10561,52 @@ def tree_conv(nodes_vector,
else
:
pre_activation
=
out
return
helper
.
append_activation
(
pre_activation
)
def
npair_loss
(
anchor
,
positive
,
labels
,
l2_reg
=
0.002
):
'''
**Npair Loss Layer**
see http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf
Npair loss requires paired data. Npair loss has two parts, the first part is L2
regularizer on the embedding vector, the second part is cross entropy loss which
takes the similarity matrix of anchor and positive as logits.
Args:
anchor(Variable): embedding vector for the anchor image. shape=[batch_size, embedding_dims]
positive(Variable): embedding vector for the positive image. shape=[batch_size, embedding_dims]
labels(Varieble): 1-D tensor. shape=[batch_size]
l2_res(float32): L2 regularization term on embedding vector, default: 0.02
Returns:
npair loss(Variable): return npair loss, shape=[1]
Examples:
.. code-block:: python
npair_loss = fluid.layers.npair_loss(anchor, positive, labels, l2_reg)
'''
Beta
=
0.25
batch_size
=
labels
.
shape
[
0
]
labels
=
reshape
(
labels
,
shape
=
[
batch_size
,
1
],
inplace
=
True
)
labels
=
expand
(
labels
,
expand_times
=
[
1
,
batch_size
])
from
.control_flow
import
equal
from
.ops
import
square
labels
=
equal
(
labels
,
transpose
(
labels
,
perm
=
[
1
,
0
])).
astype
(
'float32'
)
labels
=
labels
/
reduce_sum
(
labels
,
dim
=
1
,
keep_dim
=
True
)
l2loss
=
reduce_mean
(
reduce_sum
(
square
(
anchor
),
1
))
\
+
reduce_mean
(
reduce_sum
(
square
(
positive
),
1
))
l2loss
=
l2loss
*
Beta
*
l2_reg
similarity_matrix
=
matmul
(
anchor
,
positive
,
transpose_x
=
False
,
transpose_y
=
True
)
softmax_value
=
softmax
(
similarity_matrix
)
cross_entropy
=
-
1
*
reduce_sum
(
labels
*
log
(
softmax_value
),
0
)
celoss
=
reduce_mean
(
cross_entropy
)
return
l2loss
+
celoss
python/paddle/fluid/tests/unittests/test_npair_loss_op.py
0 → 100644
浏览文件 @
4b7bf06e
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
import
numpy
as
np
def
npairloss
(
anchor
,
positive
,
labels
,
l2_reg
=
0.002
):
def
softmax_cross_entropy_with_logits
(
logits
,
labels
):
logits
=
np
.
exp
(
logits
)
logits
=
logits
/
np
.
sum
(
logits
,
axis
=
1
).
reshape
(
-
1
,
1
)
return
np
.
mean
(
-
np
.
sum
(
labels
*
np
.
log
(
logits
),
axis
=
1
),
dtype
=
np
.
float32
)
batch_size
=
labels
.
shape
[
0
]
labels
=
np
.
reshape
(
labels
,
(
batch_size
,
1
))
labels
=
np
.
equal
(
labels
,
labels
.
transpose
()).
astype
(
float
)
labels
=
labels
/
np
.
sum
(
labels
,
axis
=
1
,
keepdims
=
True
)
l2loss
=
np
.
mean
(
np
.
sum
(
np
.
power
(
anchor
,
2
),
1
))
+
np
.
mean
(
np
.
sum
(
np
.
power
(
positive
,
2
),
1
))
l2loss
=
(
l2loss
*
0.25
*
l2_reg
).
astype
(
np
.
float32
)
similarity_matrix
=
np
.
matmul
(
anchor
,
positive
.
transpose
())
celoss
=
np
.
mean
(
softmax_cross_entropy_with_logits
(
similarity_matrix
,
labels
))
return
l2loss
+
celoss
def
create_or_get_tensor
(
scope
,
var_name
,
var
,
place
):
tensor
=
scope
.
var
(
var_name
).
get_tensor
()
if
var
is
not
None
:
assert
isinstance
(
var
,
np
.
ndarray
)
tensor
.
set_recursive_sequence_lengths
([])
tensor
.
set
(
var
,
place
)
return
tensor
class
TestNpairLossOp
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
dtype
=
np
.
float32
def
__assert_close
(
self
,
tensor
,
np_array
,
msg
,
atol
=
1e-4
):
self
.
assertTrue
(
np
.
allclose
(
np
.
array
(
tensor
),
np_array
,
atol
=
atol
),
msg
)
def
check_with_place
(
self
,
place
,
dtype
,
shape
):
reg_lambda
=
0.002
num_data
,
feat_dim
,
num_classes
=
shape
[
0
],
shape
[
1
],
shape
[
2
]
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
embeddings_anchor
=
np
.
random
.
rand
(
num_data
,
feat_dim
).
astype
(
np
.
float32
)
embeddings_positive
=
np
.
random
.
rand
(
num_data
,
feat_dim
).
astype
(
np
.
float32
)
labels
=
np
.
random
.
randint
(
0
,
num_classes
,
size
=
(
num_data
)).
astype
(
np
.
float32
)
out_loss
=
npairloss
(
embeddings_anchor
,
embeddings_positive
,
labels
,
l2_reg
=
reg_lambda
)
anchor_tensor
=
fluid
.
layers
.
data
(
name
=
'anchor'
,
shape
=
[
num_data
,
feat_dim
],
dtype
=
self
.
dtype
,
append_batch_size
=
False
)
positive_tensor
=
fluid
.
layers
.
data
(
name
=
'positive'
,
shape
=
[
num_data
,
feat_dim
],
dtype
=
self
.
dtype
,
append_batch_size
=
False
)
labels_tensor
=
fluid
.
layers
.
data
(
name
=
'labels'
,
shape
=
[
num_data
],
dtype
=
self
.
dtype
,
append_batch_size
=
False
)
npair_loss_op
=
fluid
.
layers
.
npair_loss
(
anchor
=
anchor_tensor
,
positive
=
positive_tensor
,
labels
=
labels_tensor
,
l2_reg
=
reg_lambda
)
out_tensor
=
exe
.
run
(
feed
=
{
'anchor'
:
embeddings_anchor
,
'positive'
:
embeddings_positive
,
'labels'
:
labels
},
fetch_list
=
[
npair_loss_op
.
name
])
self
.
__assert_close
(
out_tensor
,
out_loss
,
"inference output are different at "
+
str
(
place
)
+
", "
+
str
(
np
.
dtype
(
dtype
))
+
str
(
np
.
array
(
out_tensor
))
+
str
(
out_loss
),
atol
=
1e-3
)
def
test_check_output
(
self
):
places
=
[
core
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
()
and
core
.
ops_support_gpu
(
"npair_loss"
):
places
.
append
(
core
.
CUDAPlace
(
0
))
for
place
in
places
:
self
.
check_with_place
(
place
,
self
.
dtype
,
[
18
,
6
,
3
])
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录