Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
e7d44a20
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
e7d44a20
编写于
1月 23, 2018
作者:
Q
Qiao Longfei
提交者:
GitHub
1月 23, 2018
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Nmt model (#7340)
neural machine translation model support beam search with while op
上级
d8b923ab
变更
11
隐藏空白更改
内联
并排
Showing
11 changed file
with
279 addition
and
58 deletion
+279
-58
doc/design/ops/sequence_decoder.md
doc/design/ops/sequence_decoder.md
+2
-2
paddle/framework/executor.cc
paddle/framework/executor.cc
+2
-1
paddle/framework/lod_tensor.cc
paddle/framework/lod_tensor.cc
+4
-3
paddle/operators/beam_search_op.cc
paddle/operators/beam_search_op.cc
+74
-9
paddle/operators/beam_search_op.h
paddle/operators/beam_search_op.h
+6
-8
paddle/operators/sequence_expand_op.h
paddle/operators/sequence_expand_op.h
+1
-0
paddle/operators/top_k_op.h
paddle/operators/top_k_op.h
+4
-3
python/paddle/v2/fluid/layer_helper.py
python/paddle/v2/fluid/layer_helper.py
+2
-1
python/paddle/v2/fluid/layers/control_flow.py
python/paddle/v2/fluid/layers/control_flow.py
+1
-1
python/paddle/v2/fluid/layers/nn.py
python/paddle/v2/fluid/layers/nn.py
+35
-4
python/paddle/v2/fluid/tests/book/test_machine_translation.py
...on/paddle/v2/fluid/tests/book/test_machine_translation.py
+148
-26
未找到文件。
doc/design/ops/sequence_decoder.md
浏览文件 @
e7d44a20
...
...
@@ -22,7 +22,7 @@ The current `LoDTensor` is designed to store levels of variable-length sequences
The integers in each level represent the begin and end (not inclusive) offset of a sequence
**in the underlying tensor**
,
let's call this format the
**absolute-offset LoD**
for clarity.
The
relativ
e-offset LoD can retrieve any sequence very quickly but fails to represent empty sequences, for example, a two-level LoD is as follows
The
absolut
e-offset LoD can retrieve any sequence very quickly but fails to represent empty sequences, for example, a two-level LoD is as follows
```
python
[[
0
,
3
,
9
]
[
0
,
2
,
3
,
3
,
3
,
9
]]
...
...
@@ -119,7 +119,7 @@ def generate():
encoder_ctx_expanded
=
pd
.
lod_expand
(
encoder_ctx
,
target_word
)
decoder_input
=
pd
.
fc
(
act
=
pd
.
activation
.
Linear
(),
input
=
[
target_word
,
encoder_ctx
],
input
=
[
target_word
,
encoder_ctx
_expanded
],
size
=
3
*
decoder_dim
)
gru_out
,
cur_mem
=
pd
.
gru_step
(
decoder_input
,
mem
=
decoder_mem
,
size
=
decoder_dim
)
...
...
paddle/framework/executor.cc
浏览文件 @
e7d44a20
...
...
@@ -116,8 +116,9 @@ void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id,
for
(
auto
&
op_desc
:
block
.
AllOps
())
{
auto
op
=
paddle
::
framework
::
OpRegistry
::
CreateOp
(
*
op_desc
);
VLOG
(
3
)
<<
op
->
DebugStringEx
(
local_scope
);
VLOG
(
4
)
<<
op
->
DebugStringEx
(
local_scope
);
op
->
Run
(
*
local_scope
,
place_
);
VLOG
(
3
)
<<
op
->
DebugStringEx
(
local_scope
);
if
(
FLAGS_do_memory_benchmark
)
{
VLOG
(
2
)
<<
"Memory used after operator "
+
op
->
Type
()
+
" running: "
<<
memory
::
memory_usage
(
place_
);
...
...
paddle/framework/lod_tensor.cc
浏览文件 @
e7d44a20
...
...
@@ -107,9 +107,10 @@ LoD ToAbsOffset(const LoD &in) {
// the lowest level stores relative offsets
if
(
in
.
empty
()
||
in
.
size
()
==
1
)
return
in
;
LoD
result
=
in
;
for
(
int
level
=
result
.
size
()
-
2
;
level
>=
0
;
level
--
)
{
for
(
auto
&
ele
:
result
[
level
])
{
ele
=
result
[
level
+
1
][
ele
];
for
(
auto
level
=
static_cast
<
int
>
(
in
.
size
()
-
2
);
level
>=
0
;
level
--
)
{
for
(
size_t
i
=
0
;
i
<
in
[
level
].
size
();
++
i
)
{
size_t
index
=
in
[
level
][
i
];
result
[
level
][
i
]
=
result
[
level
+
1
][
index
];
}
}
return
result
;
...
...
paddle/operators/beam_search_op.cc
浏览文件 @
e7d44a20
...
...
@@ -24,8 +24,18 @@ namespace operators {
void
BeamSearch
::
operator
()(
const
framework
::
LoDTensor
&
pre_ids
,
framework
::
LoDTensor
*
selected_ids
,
framework
::
LoDTensor
*
selected_scores
)
{
auto
abs_lod
=
framework
::
ToAbsOffset
(
ids_
->
lod
());
auto
&
high_level
=
abs_lod
[
lod_level_
];
auto
items
=
SelectTopBeamSizeItems
();
auto
selected_items
=
ToMap
(
items
);
auto
selected_items
=
ToMap
(
items
,
high_level
.
back
());
VLOG
(
3
)
<<
"selected_items:"
;
for
(
size_t
i
=
0
;
i
<
selected_items
.
size
();
++
i
)
{
VLOG
(
3
)
<<
"offset:"
<<
i
;
for
(
auto
&
item
:
selected_items
[
i
])
{
VLOG
(
3
)
<<
ItemToString
(
item
);
}
}
PruneEndidCandidates
(
pre_ids
,
&
selected_items
);
// calculate the output tensor's height
size_t
num_instances
=
std
::
accumulate
(
...
...
@@ -63,11 +73,12 @@ void BeamSearch::operator()(const framework::LoDTensor &pre_ids,
low_level
.
push_back
(
low_offset
);
// fill lod
auto
abs_lod
=
framework
::
ToAbsOffset
(
ids_
->
lod
());
auto
&
high_level
=
abs_lod
[
lod_level_
];
framework
::
LoD
lod
(
2
);
lod
[
0
].
assign
(
high_level
.
begin
(),
high_level
.
end
());
lod
[
1
].
assign
(
low_level
.
begin
(),
low_level
.
end
());
if
(
!
framework
::
CheckLoD
(
lod
))
{
PADDLE_THROW
(
"lod %s is not right"
,
framework
::
LoDToString
(
lod
));
}
selected_ids
->
set_lod
(
lod
);
selected_scores
->
set_lod
(
lod
);
}
...
...
@@ -90,13 +101,11 @@ int BeamSearch::PruneEndidCandidates(const framework::LoDTensor &pre_ids,
}
std
::
vector
<
std
::
vector
<
BeamSearch
::
Item
>>
BeamSearch
::
ToMap
(
const
std
::
vector
<
std
::
vector
<
Item
>>
&
items
)
{
const
std
::
vector
<
std
::
vector
<
Item
>>
&
items
,
size_t
element_num
)
{
std
::
vector
<
std
::
vector
<
Item
>>
result
;
result
.
resize
(
element_num
);
for
(
auto
&
entries
:
items
)
{
for
(
const
auto
&
item
:
entries
)
{
if
(
item
.
offset
>=
result
.
size
())
{
result
.
resize
(
item
.
offset
+
1
);
}
result
[
item
.
offset
].
push_back
(
item
);
}
}
...
...
@@ -122,6 +131,14 @@ BeamSearch::SelectTopBeamSizeItems() {
}
result
.
emplace_back
(
items
);
}
VLOG
(
3
)
<<
"SelectTopBeamSizeItems result size "
<<
result
.
size
();
for
(
auto
&
items
:
result
)
{
VLOG
(
3
)
<<
"item set:"
;
for
(
auto
&
item
:
items
)
{
VLOG
(
3
)
<<
ItemToString
(
item
);
}
}
return
result
;
}
...
...
@@ -159,6 +176,22 @@ bool BeamSearch::NextItemSet(std::vector<BeamSearch::Item> *items) {
return
true
;
}
std
::
ostream
&
operator
<<
(
std
::
ostream
&
os
,
const
BeamSearch
::
Item
&
item
)
{
os
<<
"{"
;
os
<<
"offset: "
<<
item
.
offset
<<
", "
;
os
<<
"id: "
<<
item
.
id
<<
", "
;
os
<<
"score: "
<<
item
.
score
<<
""
;
os
<<
"}"
;
return
os
;
}
std
::
string
ItemToString
(
const
BeamSearch
::
Item
&
item
)
{
std
::
ostringstream
stream
;
stream
<<
item
;
return
stream
.
str
();
}
class
BeamSearchProtoAndCheckerMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
...
...
@@ -186,8 +219,40 @@ class BeamSearchProtoAndCheckerMaker
}
};
class
BeamSearchInferShape
:
public
framework
::
InferShapeBase
{
public:
void
operator
()(
framework
::
InferShapeContext
*
context
)
const
override
{
for
(
const
std
::
string
&
arg
:
std
::
vector
<
std
::
string
>
({
"pre_ids"
,
"ids"
,
"scores"
}))
{
PADDLE_ENFORCE
(
context
->
HasInput
(
arg
),
"BeamSearch need input argument '%s'"
,
arg
);
}
for
(
const
std
::
string
&
arg
:
std
::
vector
<
std
::
string
>
({
"selected_ids"
,
"selected_scores"
}))
{
PADDLE_ENFORCE
(
context
->
HasOutput
(
arg
),
"BeamSearch need output argument '%s'"
,
arg
);
}
}
};
class
BeamSearchInferVarType
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
for
(
auto
&
o
:
op_desc
.
Output
(
"selected_ids"
))
{
block
->
Var
(
o
)
->
SetType
(
framework
::
proto
::
VarDesc
::
LOD_TENSOR
);
}
for
(
auto
&
o
:
op_desc
.
Output
(
"selected_scores"
))
{
block
->
Var
(
o
)
->
SetType
(
framework
::
proto
::
VarDesc
::
LOD_TENSOR
);
}
}
};
}
// namespace operators
}
// namespace paddle
REGISTER_OP_WITHOUT_GRADIENT
(
beam_search
,
paddle
::
operators
::
BeamSearchOp
,
paddle
::
operators
::
BeamSearchProtoAndCheckerMaker
);
REGISTER_OPERATOR
(
beam_search
,
paddle
::
operators
::
BeamSearchOp
,
paddle
::
operators
::
BeamSearchProtoAndCheckerMaker
,
paddle
::
operators
::
BeamSearchInferShape
,
paddle
::
operators
::
BeamSearchInferVarType
,
paddle
::
framework
::
EmptyGradOpMaker
);
paddle/operators/beam_search_op.h
浏览文件 @
e7d44a20
...
...
@@ -136,8 +136,6 @@ class BeamSearch {
void
operator
()(
const
framework
::
LoDTensor
&
pre_ids
,
framework
::
LoDTensor
*
selected_ids
,
framework
::
LoDTensor
*
selected_scores
);
protected:
/*
* The basic items help to sort.
*/
...
...
@@ -155,6 +153,7 @@ class BeamSearch {
score_t
score
;
};
protected:
/*
* Delete all the records that follows the end token.
*/
...
...
@@ -166,7 +165,7 @@ class BeamSearch {
* NOTE low performance
*/
std
::
vector
<
std
::
vector
<
Item
>>
ToMap
(
const
std
::
vector
<
std
::
vector
<
Item
>>&
inputs
);
const
std
::
vector
<
std
::
vector
<
Item
>>&
inputs
,
size_t
element_num
);
/*
* For each source, select top beam_size records.
...
...
@@ -187,6 +186,10 @@ class BeamSearch {
int
end_id_
{
0
};
};
std
::
ostream
&
operator
<<
(
std
::
ostream
&
os
,
const
BeamSearch
::
Item
&
item
);
std
::
string
ItemToString
(
const
BeamSearch
::
Item
&
item
);
class
BeamSearchOp
:
public
framework
::
OperatorBase
{
public:
BeamSearchOp
(
const
std
::
string
&
type
,
...
...
@@ -203,7 +206,6 @@ class BeamSearchOp : public framework::OperatorBase {
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
LOG
(
INFO
)
<<
"run beam search op"
;
auto
ids_var
=
scope
.
FindVar
(
Input
(
"ids"
));
auto
scores_var
=
scope
.
FindVar
(
Input
(
"scores"
));
auto
pre_ids_var
=
scope
.
FindVar
(
Input
(
"pre_ids"
));
...
...
@@ -217,10 +219,8 @@ class BeamSearchOp : public framework::OperatorBase {
size_t
level
=
Attr
<
int
>
(
"level"
);
size_t
beam_size
=
Attr
<
int
>
(
"beam_size"
);
int
end_id
=
Attr
<
int
>
(
"end_id"
);
LOG
(
INFO
)
<<
"init beam search"
;
BeamSearch
alg
(
ids
,
scores
,
level
,
beam_size
,
end_id
);
LOG
(
INFO
)
<<
"after beam search"
;
auto
selected_ids_var
=
scope
.
FindVar
(
Output
(
"selected_ids"
));
auto
selected_scores_var
=
scope
.
FindVar
(
Output
(
"selected_scores"
));
PADDLE_ENFORCE_NOT_NULL
(
selected_ids_var
);
...
...
@@ -229,9 +229,7 @@ class BeamSearchOp : public framework::OperatorBase {
*
selected_ids_var
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
&
selected_scores_tensor
=
*
selected_scores_var
->
GetMutable
<
framework
::
LoDTensor
>
();
LOG
(
INFO
)
<<
"run beam search"
;
alg
(
pre_ids
,
&
selected_ids_tensor
,
&
selected_scores_tensor
);
LOG
(
INFO
)
<<
"finish beam search"
;
}
};
...
...
paddle/operators/sequence_expand_op.h
浏览文件 @
e7d44a20
...
...
@@ -32,6 +32,7 @@ class SequenceExpandKernel : public framework::OpKernel<T> {
const
T
*
x_data
=
x
->
data
<
T
>
();
auto
x_dims
=
x
->
dims
();
auto
*
y
=
context
.
Input
<
LoDTensor
>
(
"Y"
);
PADDLE_ENFORCE
(
!
y
->
lod
().
empty
(),
"y should have lod"
);
PADDLE_ENFORCE_EQ
(
static_cast
<
size_t
>
(
x_dims
[
0
]),
y
->
lod
().
back
().
size
()
-
1
,
"The size of last lod level in Input(Y)"
...
...
paddle/operators/top_k_op.h
浏览文件 @
e7d44a20
...
...
@@ -22,6 +22,7 @@ namespace paddle {
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
...
...
@@ -33,9 +34,9 @@ class TopkKernel : public framework::OpKernel<T> {
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
// Get the top k elements of each row of input tensor
// FIXME: only deal with matrix(2d tensor).
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
output
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
auto
*
indices
=
ctx
.
Output
<
Tensor
>
(
"Indices"
);
auto
*
input
=
ctx
.
Input
<
LoD
Tensor
>
(
"X"
);
auto
*
output
=
ctx
.
Output
<
LoD
Tensor
>
(
"Out"
);
auto
*
indices
=
ctx
.
Output
<
LoD
Tensor
>
(
"Indices"
);
// k is determined by Attr
const
size_t
k
=
static_cast
<
int
>
(
ctx
.
Attr
<
int
>
(
"k"
));
...
...
python/paddle/v2/fluid/layer_helper.py
浏览文件 @
e7d44a20
...
...
@@ -100,7 +100,8 @@ class LayerHelper(object):
if
dtype
is
None
:
dtype
=
each
.
dtype
elif
dtype
!=
each
.
dtype
:
raise
ValueError
(
"Data Type mismatch"
)
raise
ValueError
(
"Data Type mismatch: %d to %d"
%
(
dtype
,
each
.
dtype
))
return
dtype
def
create_parameter
(
self
,
...
...
python/paddle/v2/fluid/layers/control_flow.py
浏览文件 @
e7d44a20
...
...
@@ -769,7 +769,7 @@ def topk(input, k):
array = fluid.layers.topk(x, k)
"""
helper
=
LayerHelper
(
'topk'
,
**
locals
())
topk_out
=
helper
.
create_tmp_variable
(
dtype
=
input
.
d
ata_
type
)
topk_out
=
helper
.
create_tmp_variable
(
dtype
=
input
.
dtype
)
topk_indices
=
helper
.
create_tmp_variable
(
dtype
=
'int64'
)
helper
.
append_op
(
type
=
'top_k'
,
...
...
python/paddle/v2/fluid/layers/nn.py
浏览文件 @
e7d44a20
...
...
@@ -61,6 +61,7 @@ __all__ = [
'transpose'
,
'im2sequence'
,
'nce'
,
'beam_search'
,
]
...
...
@@ -163,10 +164,8 @@ def fc(input,
tmp
=
helper
.
create_tmp_variable
(
dtype
)
helper
.
append_op
(
type
=
"mul"
,
inputs
=
{
"X"
:
input_var
,
"Y"
:
w
,
},
inputs
=
{
"X"
:
input_var
,
"Y"
:
w
},
outputs
=
{
"Out"
:
tmp
},
attrs
=
{
"x_num_col_dims"
:
num_flatten_dims
,
"y_num_col_dims"
:
1
})
...
...
@@ -1551,6 +1550,38 @@ def sequence_expand(x, y, name=None):
return
tmp
def
beam_search
(
pre_ids
,
ids
,
scores
,
beam_size
,
end_id
,
level
=
0
):
'''
This function implements the beam search algorithm.
'''
helper
=
LayerHelper
(
'beam_search'
,
**
locals
())
score_type
=
scores
.
dtype
id_type
=
ids
.
dtype
selected_scores
=
helper
.
create_tmp_variable
(
dtype
=
score_type
)
selected_ids
=
helper
.
create_tmp_variable
(
dtype
=
id_type
)
helper
.
append_op
(
type
=
'beam_search'
,
inputs
=
{
'pre_ids'
:
pre_ids
,
'ids'
:
ids
,
'scores'
:
scores
,
},
outputs
=
{
'selected_ids'
:
selected_ids
,
'selected_scores'
:
selected_scores
,
},
attrs
=
{
# TODO(ChunweiYan) to assure other value support
'level'
:
level
,
'beam_size'
:
beam_size
,
'end_id'
:
end_id
,
})
return
selected_ids
,
selected_scores
def
lstm_unit
(
x_t
,
hidden_t_prev
,
cell_t_prev
,
...
...
python/paddle/v2/fluid/tests/book/test_machine_translation.py
浏览文件 @
e7d44a20
...
...
@@ -17,7 +17,7 @@ import paddle.v2 as paddle
import
paddle.v2.fluid
as
fluid
import
paddle.v2.fluid.core
as
core
import
paddle.v2.fluid.framework
as
framework
import
paddle.v2.fluid.layers
as
layers
import
paddle.v2.fluid.layers
as
pd
from
paddle.v2.fluid.executor
import
Executor
dict_size
=
30000
...
...
@@ -26,53 +26,136 @@ src_dict, trg_dict = paddle.dataset.wmt14.get_dict(dict_size)
hidden_dim
=
32
word_dim
=
16
IS_SPARSE
=
True
batch_size
=
10
max_length
=
50
batch_size
=
2
max_length
=
8
topk_size
=
50
trg_dic_size
=
10000
beam_size
=
2
decoder_size
=
hidden_dim
place
=
core
.
CPUPlace
()
def
encoder_decoder
():
def
encoder
():
# encoder
src_word_id
=
layers
.
data
(
src_word_id
=
pd
.
data
(
name
=
"src_word_id"
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
src_embedding
=
layers
.
embedding
(
src_embedding
=
pd
.
embedding
(
input
=
src_word_id
,
size
=
[
dict_size
,
word_dim
],
dtype
=
'float32'
,
is_sparse
=
IS_SPARSE
,
param_attr
=
fluid
.
ParamAttr
(
name
=
'vemb'
))
fc1
=
fluid
.
layers
.
fc
(
input
=
src_embedding
,
size
=
hidden_dim
*
4
,
act
=
'tanh'
)
lstm_hidden0
,
lstm_0
=
layers
.
dynamic_lstm
(
input
=
fc1
,
size
=
hidden_dim
*
4
)
encoder_out
=
layers
.
sequence_last_step
(
input
=
lstm_hidden0
)
fc1
=
pd
.
fc
(
input
=
src_embedding
,
size
=
hidden_dim
*
4
,
act
=
'tanh'
)
lstm_hidden0
,
lstm_0
=
pd
.
dynamic_lstm
(
input
=
fc1
,
size
=
hidden_dim
*
4
)
encoder_out
=
pd
.
sequence_last_step
(
input
=
lstm_hidden0
)
return
encoder_out
def
decoder_train
(
context
):
# decoder
trg_language_word
=
layers
.
data
(
trg_language_word
=
pd
.
data
(
name
=
"target_language_word"
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
trg_embedding
=
layers
.
embedding
(
trg_embedding
=
pd
.
embedding
(
input
=
trg_language_word
,
size
=
[
dict_size
,
word_dim
],
dtype
=
'float32'
,
is_sparse
=
IS_SPARSE
,
param_attr
=
fluid
.
ParamAttr
(
name
=
'vemb'
))
rnn
=
fluid
.
layers
.
DynamicRNN
()
rnn
=
pd
.
DynamicRNN
()
with
rnn
.
block
():
current_word
=
rnn
.
step_input
(
trg_embedding
)
mem
=
rnn
.
memory
(
init
=
encoder_ou
t
)
fc1
=
fluid
.
layers
.
fc
(
input
=
[
current_word
,
mem
],
pre_state
=
rnn
.
memory
(
init
=
contex
t
)
current_state
=
pd
.
fc
(
input
=
[
current_word
,
pre_state
],
size
=
decoder_size
,
act
=
'tanh'
)
out
=
fluid
.
layers
.
fc
(
input
=
fc1
,
size
=
target_dict_dim
,
act
=
'softmax'
)
rnn
.
update_memory
(
mem
,
fc1
)
rnn
.
output
(
out
)
current_score
=
pd
.
fc
(
input
=
current_state
,
size
=
target_dict_dim
,
act
=
'softmax'
)
rnn
.
update_memory
(
pre_state
,
current_state
)
rnn
.
output
(
current_score
)
return
rnn
()
def
decoder_decode
(
context
):
init_state
=
context
array_len
=
pd
.
fill_constant
(
shape
=
[
1
],
dtype
=
'int64'
,
value
=
max_length
)
counter
=
pd
.
zeros
(
shape
=
[
1
],
dtype
=
'int64'
)
# fill the first element with init_state
state_array
=
pd
.
create_array
(
'float32'
)
pd
.
array_write
(
init_state
,
array
=
state_array
,
i
=
counter
)
# ids, scores as memory
ids_array
=
pd
.
create_array
(
'int64'
)
scores_array
=
pd
.
create_array
(
'float32'
)
init_ids
=
pd
.
data
(
name
=
"init_ids"
,
shape
=
[
1
],
dtype
=
"int64"
,
lod_level
=
2
)
init_scores
=
pd
.
data
(
name
=
"init_scores"
,
shape
=
[
1
],
dtype
=
"float32"
,
lod_level
=
2
)
pd
.
array_write
(
init_ids
,
array
=
ids_array
,
i
=
counter
)
pd
.
array_write
(
init_scores
,
array
=
scores_array
,
i
=
counter
)
cond
=
pd
.
less_than
(
x
=
counter
,
y
=
array_len
)
while_op
=
pd
.
While
(
cond
=
cond
)
with
while_op
.
block
():
pre_ids
=
pd
.
array_read
(
array
=
ids_array
,
i
=
counter
)
pre_state
=
pd
.
array_read
(
array
=
state_array
,
i
=
counter
)
pre_score
=
pd
.
array_read
(
array
=
scores_array
,
i
=
counter
)
# expand the lod of pre_state to be the same with pre_score
pre_state_expanded
=
pd
.
sequence_expand
(
pre_state
,
pre_score
)
pre_ids_emb
=
pd
.
embedding
(
input
=
pre_ids
,
size
=
[
dict_size
,
word_dim
],
dtype
=
'float32'
,
is_sparse
=
IS_SPARSE
)
# use rnn unit to update rnn
current_state
=
pd
.
fc
(
input
=
[
pre_ids_emb
,
pre_state_expanded
],
size
=
decoder_size
,
act
=
'tanh'
)
# use score to do beam search
current_score
=
pd
.
fc
(
input
=
current_state
,
size
=
target_dict_dim
,
act
=
'softmax'
)
topk_scores
,
topk_indices
=
pd
.
topk
(
current_score
,
k
=
50
)
selected_ids
,
selected_scores
=
pd
.
beam_search
(
pre_ids
,
topk_indices
,
topk_scores
,
beam_size
,
end_id
=
10
,
level
=
0
)
pd
.
increment
(
x
=
counter
,
value
=
1
,
in_place
=
True
)
# update the memories
pd
.
array_write
(
current_state
,
array
=
state_array
,
i
=
counter
)
pd
.
array_write
(
selected_ids
,
array
=
ids_array
,
i
=
counter
)
pd
.
array_write
(
selected_scores
,
array
=
scores_array
,
i
=
counter
)
pd
.
less_than
(
x
=
counter
,
y
=
array_len
,
cond
=
cond
)
translation_ids
,
translation_scores
=
pd
.
beam_search_decode
(
ids
=
ids_array
,
scores
=
scores_array
)
# return init_ids, init_scores
return
translation_ids
,
translation_scores
def
set_init_lod
(
data
,
lod
,
place
):
res
=
core
.
LoDTensor
()
res
.
set
(
data
,
place
)
res
.
set_lod
(
lod
)
return
res
def
to_lodtensor
(
data
,
place
):
seq_lens
=
[
len
(
seq
)
for
seq
in
data
]
cur_len
=
0
...
...
@@ -88,12 +171,13 @@ def to_lodtensor(data, place):
return
res
def
main
():
rnn_out
=
encoder_decoder
()
label
=
layers
.
data
(
def
train_main
():
context
=
encoder
()
rnn_out
=
decoder_train
(
context
)
label
=
pd
.
data
(
name
=
"target_language_next_word"
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
cost
=
layers
.
cross_entropy
(
input
=
rnn_out
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
cost
=
pd
.
cross_entropy
(
input
=
rnn_out
,
label
=
label
)
avg_cost
=
pd
.
mean
(
x
=
cost
)
optimizer
=
fluid
.
optimizer
.
Adagrad
(
learning_rate
=
1e-4
)
optimizer
.
minimize
(
avg_cost
)
...
...
@@ -103,13 +187,12 @@ def main():
paddle
.
dataset
.
wmt14
.
train
(
dict_size
),
buf_size
=
1000
),
batch_size
=
batch_size
)
place
=
core
.
CPUPlace
()
exe
=
Executor
(
place
)
exe
.
run
(
framework
.
default_startup_program
())
batch_id
=
0
for
pass_id
in
xrange
(
2
):
for
pass_id
in
xrange
(
1
):
for
data
in
train_data
():
word_data
=
to_lodtensor
(
map
(
lambda
x
:
x
[
0
],
data
),
place
)
trg_word
=
to_lodtensor
(
map
(
lambda
x
:
x
[
1
],
data
),
place
)
...
...
@@ -125,9 +208,48 @@ def main():
print
(
'pass_id='
+
str
(
pass_id
)
+
' batch='
+
str
(
batch_id
)
+
" avg_cost="
+
str
(
avg_cost_val
))
if
batch_id
>
3
:
exit
(
0
)
break
batch_id
+=
1
def
decode_main
():
context
=
encoder
()
translation_ids
,
translation_scores
=
decoder_decode
(
context
)
exe
=
Executor
(
place
)
exe
.
run
(
framework
.
default_startup_program
())
init_ids_data
=
np
.
array
([
1
for
_
in
range
(
batch_size
)],
dtype
=
'int64'
)
init_scores_data
=
np
.
array
(
[
1.
for
_
in
range
(
batch_size
)],
dtype
=
'float32'
)
init_ids_data
=
init_ids_data
.
reshape
((
batch_size
,
1
))
init_scores_data
=
init_scores_data
.
reshape
((
batch_size
,
1
))
init_lod
=
[
i
for
i
in
range
(
batch_size
)]
+
[
batch_size
]
init_lod
=
[
init_lod
,
init_lod
]
train_data
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
wmt14
.
train
(
dict_size
),
buf_size
=
1000
),
batch_size
=
batch_size
)
for
_
,
data
in
enumerate
(
train_data
()):
init_ids
=
set_init_lod
(
init_ids_data
,
init_lod
,
place
)
init_scores
=
set_init_lod
(
init_scores_data
,
init_lod
,
place
)
src_word_data
=
to_lodtensor
(
map
(
lambda
x
:
x
[
0
],
data
),
place
)
result_ids
,
result_scores
=
exe
.
run
(
framework
.
default_main_program
(),
feed
=
{
'src_word_id'
:
src_word_data
,
'init_ids'
:
init_ids
,
'init_scores'
:
init_scores
},
fetch_list
=
[
translation_ids
,
translation_scores
],
return_numpy
=
False
)
print
result_ids
.
lod
()
break
if
__name__
==
'__main__'
:
main
()
# train_main()
decode_main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录