Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
3e7ce583
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
3e7ce583
编写于
5月 28, 2018
作者:
F
fengjiayi
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
stash
上级
85a41df3
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
210 addition
and
166 deletion
+210
-166
paddle/fluid/operators/random_crop_op.cc
paddle/fluid/operators/random_crop_op.cc
+32
-16
paddle/fluid/operators/random_crop_op.h
paddle/fluid/operators/random_crop_op.h
+88
-80
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+56
-70
python/paddle/fluid/tests/unittests/test_random_crop_op.py
python/paddle/fluid/tests/unittests/test_random_crop_op.py
+34
-0
未找到文件。
paddle/fluid/operators/random_crop_op.cc
浏览文件 @
3e7ce583
...
...
@@ -12,36 +12,52 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/random_crop_op.h"
#include <vector>
namespace
paddle
{
namespace
operators
{
class
RandomCropOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
)
->
type
()),
ctx
.
device_context
());
}
};
class
RandomCropOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
""
);
AddOutput
(
"
Y
"
,
""
);
AddOutput
(
"
Out
"
,
""
);
AddInput
(
"Seed"
,
""
);
AddOutput
(
"SeedOut"
,
""
).
AsDispensable
();
AddAttr
<
std
::
vector
<
int
>>
(
"shape"
,
""
);
AddComment
(
""
);
}
};
class
RandomCropOpInferShape
:
public
framework
::
InferShapeBase
{
public:
void
operator
()(
framework
::
InferShapeContext
*
context
)
const
override
{
auto
shape
=
context
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"shape"
);
auto
x_dim
=
context
->
GetInputDim
(
"X"
);
PADDLE_ENFORCE_EQ
(
x_dim
.
size
(),
static_cast
<
int64_t
>
(
shape
.
size
()));
for
(
size_t
i
=
0
;
i
<
shape
.
size
();
++
i
)
{
if
(
shape
[
i
]
==
-
1
)
{
shape
[
i
]
=
static_cast
<
int
>
(
x_dim
[
i
]);
}
else
{
PADDLE_ENFORCE_GE
(
x_dim
[
i
],
shape
[
i
]);
}
void
operator
()(
framework
::
InferShapeContext
*
ctx
)
const
override
{
auto
seed_dim
=
ctx
->
GetInputDim
(
"Seed"
);
PADDLE_ENFORCE
(
seed_dim
.
size
()
==
1
&&
seed_dim
[
0
]
==
1
);
auto
shape
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"shape"
);
auto
x_dim
=
ctx
->
GetInputDim
(
"X"
);
PADDLE_ENFORCE_GT
(
x_dim
.
size
(),
static_cast
<
int64_t
>
(
shape
.
size
()));
auto
out_dim
=
framework
::
vectorize2int
(
x_dim
);
for
(
size_t
i
=
1
;
i
<=
shape
.
size
();
++
i
)
{
size_t
x_i
=
x_dim
.
size
()
-
i
;
size_t
shape_i
=
shape
.
size
()
-
i
;
PADDLE_ENFORCE_GE
(
x_dim
[
x_i
],
shape
[
shape_i
]);
out_dim
[
x_i
]
=
shape
[
shape_i
];
}
c
ontext
->
SetOutputDim
(
"Y"
,
framework
::
make_ddim
(
shape
));
c
ontext
->
SetOutputDim
(
"SeedOut"
,
framework
::
make_ddim
({
1
}));
c
tx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
(
out_dim
));
c
tx
->
SetOutputDim
(
"SeedOut"
,
framework
::
make_ddim
({
1
}));
}
};
...
...
@@ -50,8 +66,8 @@ class RandomCropOpInferShape : public framework::InferShapeBase {
namespace
ops
=
paddle
::
operators
;
namespace
f
=
paddle
::
framework
;
REGISTER_OPERATOR
(
random_crop
,
f
::
OperatorWithKernel
,
ops
::
RandomCropOpMaker
,
ops
::
RandomCropOpInferShape
);
REGISTER_OPERATOR
(
random_crop
,
ops
::
RandomCropOp
,
ops
::
RandomCropOpMaker
,
ops
::
RandomCropOpInferShape
,
f
::
EmptyGradOpMaker
);
template
<
typename
T
>
using
Kernel
=
ops
::
RandomCropKernel
<
paddle
::
platform
::
CPUDeviceContext
,
T
>
;
...
...
paddle/fluid/operators/random_crop_op.h
浏览文件 @
3e7ce583
...
...
@@ -14,11 +14,14 @@
#pragma once
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detail/safe_ref.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/for_range.h"
#include "thrust/random.h"
#ifdef PADDLE_WITH_CUDA
#include <thrust/random.h>
#endif
namespace
paddle
{
namespace
operators
{
...
...
@@ -34,6 +37,7 @@ struct Random<platform::CPUDeviceContext> {
using
UniformIntDist
=
std
::
uniform_int_distribution
<
T
>
;
};
#ifdef PADDLE_WITH_CUDA
template
<
>
struct
Random
<
platform
::
CUDADeviceContext
>
{
using
Engine
=
thrust
::
minstd_rand
;
...
...
@@ -41,29 +45,31 @@ struct Random<platform::CUDADeviceContext> {
template
<
typename
T
>
using
UniformIntDist
=
thrust
::
uniform_int_distribution
<
T
>
;
};
#endif
template
<
typename
T
>
HOSTDEVICE
inline
void
RandomCropImpl
(
const
T
*
x
,
size_t
*
x_dim
,
T
*
out
,
size_t
*
out_dim
,
int
i
,
int
rank
,
int64_t
prod_x_remain
,
int64_t
prod_out_remain
,
size_t
*
offset
)
{
size_t
x_length
=
x_dim
[
rank
];
size_t
out_length
=
out_dim
[
rank
];
int64_t
x_stride
=
prod_x_remain
/
x_length
;
int64_t
out_stride
=
prod_out_remain
/
out_length
;
size_t
offset_i
=
offset
[
i
];
if
(
x_stride
==
1
&&
out_stride
==
1
)
{
// In the final stage, copy from offset.
HOSTDEVICE
inline
void
StridedMemcpy
(
const
T
*
x
,
const
size_t
*
x_dims
,
T
*
out
,
const
size_t
*
out_dims
,
int
i
,
int
rank
,
size_t
prod_x_remain
,
size_t
prod_out_remain
,
const
size_t
*
offsets
)
{
size_t
x_dim_i
=
x_dims
[
i
];
size_t
out_dim_i
=
out_dims
[
i
];
size_t
x_stride
=
prod_x_remain
/
x_dim_i
;
size_t
out_stride
=
prod_out_remain
/
out_dim_i
;
size_t
offset_i
=
offsets
[
i
];
if
(
i
==
rank
-
1
)
{
PADDLE_ENFORCE
(
x_stride
==
1
&&
out_stride
==
1
);
x
+=
offset_i
;
for
(
size_t
i
=
0
;
i
<
out_length
;
++
i
)
{
for
(
size_t
j
=
0
;
j
<
out_dim_i
;
++
j
)
{
*
out
++
=
*
x
++
;
}
}
else
{
x
+=
offset_i
*
x_stride
;
for
(
size_t
i
=
0
;
i
<
out_length
;
++
i
)
{
RandomCropImpl
<
T
>
(
x
,
x_dim
,
out
,
out_dim
,
i
+
1
,
rank
,
x_stride
,
out_stride
,
offset
);
for
(
size_t
j
=
0
;
j
<
x_dim_i
;
++
j
)
{
StridedMemcpy
<
T
>
(
x
,
x_dims
,
out
,
out_dims
,
i
+
1
,
rank
,
x_stride
,
out_stride
,
offsets
);
x
+=
x_stride
;
out
+=
out_stride
;
}
...
...
@@ -74,94 +80,96 @@ template <typename DeviceContext, typename T>
struct
RandomCropFunctor
{
const
T
*
x_
;
T
*
out_
;
size_t
x_dim_
[
9
];
size_t
out_dim_
[
9
];
size_t
prod_same_dim_
;
size_t
prod_x_dim_
;
size_t
prod_out_dim_
;
int
num_same_dim_
;
size_t
x_dims_
[
9
];
size_t
out_dims_
[
9
];
int
num_batchsize_dims_
;
int
rank_
;
int64_t
seed_
;
RandomCropFunctor
(
const
T
*
x
,
T
*
out
,
int64_t
seed
)
size_t
prod_x_dims_
;
size_t
prod_out_dims_
;
size_t
prod_batchsize_dims_
;
size_t
prod_x_ins_dims_
;
size_t
prod_out_ins_dims_
;
RandomCropFunctor
(
const
T
*
x
,
T
*
out
,
const
framework
::
DDim
&
x_dims
,
const
framework
::
DDim
&
out_dims
,
int
num_batchsize_dims
,
int64_t
seed
)
:
x_
(
x
),
out_
(
out
),
prod_same_dim_
(
1
),
prod_x_dim_
(
1
),
prod_out_dim_
(
1
),
num_batchsize_dims_
(
num_batchsize_dims
),
rank_
(
x_dims
.
size
()),
seed_
(
seed
)
{
std
::
fill
(
x_dim_
,
x_dim_
+
sizeof
(
x_dim_
)
/
sizeof
(
size_t
),
0
);
std
::
fill
(
out_dim_
,
out_dim_
+
sizeof
(
out_dim_
)
/
sizeof
(
size_t
),
0
);
PADDLE_ENFORCE_EQ
(
x_dims
.
size
(),
out_dims
.
size
());
PADDLE_ENFORCE_GT
(
rank_
,
num_batchsize_dims_
);
prod_batchsize_dims_
=
1
;
prod_x_ins_dims_
=
1
;
prod_out_ins_dims_
=
1
;
for
(
size_t
i
=
0
;
i
<
rank_
;
++
i
)
{
size_t
x_dim_i
=
x_dims
[
i
];
size_t
out_dim_i
=
out_dims
[
i
];
x_dims_
[
i
]
=
x_dim_i
;
out_dims_
[
i
]
=
out_dim_i
;
if
(
i
<
num_batchsize_dims_
)
{
PADDLE_ENFORCE_EQ
(
x_dim_i
,
out_dim_i
);
prod_batchsize_dims_
*=
x_dim_i
;
}
else
{
prod_x_ins_dims_
*=
x_dim_i
;
prod_out_ins_dims_
*=
out_dim_i
;
}
}
prod_x_dims_
=
prod_batchsize_dims_
*
prod_x_ins_dims_
;
prod_out_dims_
=
prod_batchsize_dims_
*
prod_out_ins_dims_
;
}
HOSTDEVICE
void
operator
()(
size_t
i
)
{
HOSTDEVICE
void
operator
()(
size_t
i
ns_idx
)
{
typename
Random
<
DeviceContext
>::
Engine
engine
(
seed_
);
engine
.
discard
(
i
*
(
rank_
-
num_same_dim_
));
int64_t
prod_x_unsame
=
(
prod_x_dim_
/
prod_same_dim_
);
int64_t
prod_out_unsame
=
(
prod_out_dim_
/
prod_same_dim_
);
const
T
*
x
=
x_
+
i
*
prod_x_unsame
;
T
*
out
=
out_
+
i
*
prod_out_unsame
;
size_t
offset
[
9
];
for
(
int
i
=
num_same_dim_
;
i
<
rank_
;
++
i
)
{
engine
.
discard
(
ins_idx
*
(
rank_
-
num_batchsize_dims_
));
size_t
offsets
[
9
];
for
(
int
i
=
num_batchsize_dims_
;
i
<
rank_
;
++
i
)
{
typename
Random
<
DeviceContext
>::
template
UniformIntDist
<
size_t
>
dist
(
0
,
x_dim
_
[
i
]
-
out_dim
_
[
i
]);
offset
[
i
]
=
dist
(
engine
);
0
,
x_dim
s_
[
i
]
-
out_dims
_
[
i
]);
offset
s
[
i
]
=
dist
(
engine
);
}
RandomCropImpl
<
T
>
(
x
,
x_dim_
,
out
,
out_dim_
,
num_same_dim_
,
rank_
,
prod_x_unsame
,
prod_out_unsame
,
offset
);
const
T
*
x
=
x_
+
ins_idx
*
prod_x_ins_dims_
;
T
*
out
=
out_
+
ins_idx
*
prod_out_ins_dims_
;
StridedMemcpy
<
T
>
(
x
,
x_dims_
+
num_batchsize_dims_
,
out
,
out_dims_
+
num_batchsize_dims_
,
0
,
rank_
-
num_batchsize_dims_
,
prod_x_ins_dims_
,
prod_out_ins_dims_
,
offsets
);
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
RandomCropKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
virtual
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
{
int64_t
seed
=
*
context
.
Input
<
framework
::
LoDTensor
>
(
"Seed"
)
->
data
<
int64_t
>
();
auto
&
x
=
detail
::
Ref
(
context
.
Input
<
framework
::
LoDTensor
>
(
"X"
));
auto
&
out
=
detail
::
Ref
(
context
.
Output
<
framework
::
LoDTensor
>
(
"Out"
));
RandomCropFunctor
<
DeviceContext
,
T
>
functor
{
x
.
data
<
T
>
(),
out
.
mutable_data
<
T
>
(
context
.
GetPlace
()),
seed
};
auto
&
out_dim
=
out
.
dims
();
auto
&
x_dim
=
x
.
dims
();
auto
rank
=
x_dim
.
size
();
while
(
rank
--
>
0
)
{
functor
.
x_dim_
[
rank
]
=
x_dim
[
rank
];
functor
.
out_dim_
[
rank
]
=
out_dim
[
rank
];
functor
.
prod_x_dim_
*=
x_dim
[
rank
];
functor
.
prod_out_dim_
*=
out_dim
[
rank
];
if
(
x_dim
[
rank
]
!=
out_dim
[
rank
])
{
PADDLE_ENFORCE_EQ
(
functor
.
prod_same_dim_
,
1
);
functor
.
num_same_dim_
=
rank
;
}
else
{
functor
.
prod_same_dim_
*=
out_dim
[
rank
];
}
}
functor
.
rank_
=
x_dim
.
size
();
virtual
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
int64_t
seed
=
*
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Seed"
)
->
data
<
int64_t
>
();
auto
shape
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"shape"
);
auto
&
x
=
detail
::
Ref
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
));
auto
&
out
=
detail
::
Ref
(
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out"
));
int
num_batchsize_dims
=
x
.
dims
().
size
()
-
shape
.
size
();
RandomCropFunctor
<
DeviceContext
,
T
>
functor
(
x
.
data
<
T
>
(),
out
.
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
x
.
dims
(),
out
.
dims
(),
num_batchsize_dims
,
seed
);
platform
::
ForRange
<
DeviceContext
>
for_range
(
c
ontext
.
template
device_context
<
DeviceContext
>(),
functor
.
prod_
same_dim
_
);
c
tx
.
template
device_context
<
DeviceContext
>(),
functor
.
prod_
batchsize_dims
_
);
for_range
(
functor
);
Random
<
platform
::
CPUDeviceContext
>::
Engine
engine
(
seed
);
engine
.
discard
(
functor
.
prod_same_dim_
*
(
functor
.
rank_
-
functor
.
num_same_dim_
));
*
context
.
Output
<
framework
::
LoDTensor
>
(
"SeedOut"
)
->
mutable_data
<
int64_t
>
(
engine
.
discard
(
functor
.
prod_batchsize_dims_
*
(
functor
.
rank_
-
functor
.
num_batchsize_dims_
));
*
ctx
.
Output
<
framework
::
LoDTensor
>
(
"SeedOut"
)
->
mutable_data
<
int64_t
>
(
platform
::
CPUPlace
())
=
engine
();
}
};
// TODO(fengjiayi): Backward of random crop op
}
// namespace operators
}
// namespace paddle
python/paddle/fluid/layers/nn.py
浏览文件 @
3e7ce583
...
...
@@ -24,64 +24,19 @@ from tensor import concat
import
utils
__all__
=
[
'fc'
,
'embedding'
,
'dynamic_lstm'
,
'dynamic_lstmp'
,
'dynamic_gru'
,
'gru_unit'
,
'linear_chain_crf'
,
'crf_decoding'
,
'cos_sim'
,
'cross_entropy'
,
'square_error_cost'
,
'chunk_eval'
,
'sequence_conv'
,
'conv2d'
,
'sequence_pool'
,
'sequence_softmax'
,
'softmax'
,
'pool2d'
,
'batch_norm'
,
'beam_search_decode'
,
'conv2d_transpose'
,
'sequence_expand'
,
'lstm_unit'
,
'reduce_sum'
,
'reduce_mean'
,
'reduce_max'
,
'reduce_min'
,
'reduce_prod'
,
'sequence_first_step'
,
'sequence_last_step'
,
'dropout'
,
'split'
,
'ctc_greedy_decoder'
,
'edit_distance'
,
'l2_normalize'
,
'matmul'
,
'topk'
,
'warpctc'
,
'sequence_reshape'
,
'transpose'
,
'im2sequence'
,
'nce'
,
'beam_search'
,
'row_conv'
,
'multiplex'
,
'layer_norm'
,
'softmax_with_cross_entropy'
,
'smooth_l1'
,
'one_hot'
,
'autoincreased_step_counter'
,
'reshape'
,
'lod_reset'
,
'lrn'
,
'pad'
,
'label_smooth'
,
'roi_pool'
,
'dice_loss'
,
'bilinear_interp'
,
'fc'
,
'embedding'
,
'dynamic_lstm'
,
'dynamic_lstmp'
,
'dynamic_gru'
,
'gru_unit'
,
'linear_chain_crf'
,
'crf_decoding'
,
'cos_sim'
,
'cross_entropy'
,
'square_error_cost'
,
'chunk_eval'
,
'sequence_conv'
,
'conv2d'
,
'sequence_pool'
,
'sequence_softmax'
,
'softmax'
,
'pool2d'
,
'batch_norm'
,
'beam_search_decode'
,
'conv2d_transpose'
,
'sequence_expand'
,
'lstm_unit'
,
'reduce_sum'
,
'reduce_mean'
,
'reduce_max'
,
'reduce_min'
,
'reduce_prod'
,
'sequence_first_step'
,
'sequence_last_step'
,
'dropout'
,
'split'
,
'ctc_greedy_decoder'
,
'edit_distance'
,
'l2_normalize'
,
'matmul'
,
'topk'
,
'warpctc'
,
'sequence_reshape'
,
'transpose'
,
'im2sequence'
,
'nce'
,
'beam_search'
,
'row_conv'
,
'multiplex'
,
'layer_norm'
,
'softmax_with_cross_entropy'
,
'smooth_l1'
,
'one_hot'
,
'autoincreased_step_counter'
,
'reshape'
,
'lod_reset'
,
'lrn'
,
'pad'
,
'label_smooth'
,
'roi_pool'
,
'dice_loss'
,
'bilinear_interp'
,
'random_crop'
]
...
...
@@ -154,7 +109,8 @@ def fc(input,
Examples:
.. code-block:: python
data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
data = fluid.layers.data(
name="data", shape=[32, 32], dtype="float32")
fc = fluid.layers.fc(input=data, size=1000, act="tanh")
"""
...
...
@@ -349,7 +305,8 @@ def dynamic_lstm(input,
cell_activation(str): The activation for cell output. Choices = ["sigmoid",
"tanh", "relu", "identity"], default "tanh".
candidate_activation(str): The activation for candidate hidden state.
Choices = ["sigmoid", "tanh", "relu", "identity"],
Choices = ["sigmoid", "tanh",
"relu", "identity"],
default "tanh".
dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
name(str|None): A name for this layer(optional). If set None, the layer
...
...
@@ -516,10 +473,12 @@ def dynamic_lstmp(input,
cell_activation(str): The activation for cell output. Choices = ["sigmoid",
"tanh", "relu", "identity"], default "tanh".
candidate_activation(str): The activation for candidate hidden state.
Choices = ["sigmoid", "tanh", "relu", "identity"],
Choices = ["sigmoid", "tanh",
"relu", "identity"],
default "tanh".
proj_activation(str): The activation for projection output.
Choices = ["sigmoid", "tanh", "relu", "identity"],
Choices = ["sigmoid", "tanh",
"relu", "identity"],
default "tanh".
dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
name(str|None): A name for this layer(optional). If set None, the layer
...
...
@@ -2171,7 +2130,8 @@ def reduce_mean(input, dim=None, keep_dim=False, name=None):
fluid.layers.reduce_mean(x) # [0.4375]
fluid.layers.reduce_mean(x, dim=0) # [0.15, 0.25, 0.55, 0.8]
fluid.layers.reduce_mean(x, dim=-1) # [0.475, 0.4]
fluid.layers.reduce_mean(x, dim=1, keep_dim=True) # [[0.475], [0.4]]
fluid.layers.reduce_mean(
x, dim=1, keep_dim=True) # [[0.475], [0.4]]
# x is a Tensor variable with shape [2, 2, 2] and elements as below:
# [[[1.0, 2.0], [3.0, 4.0]],
...
...
@@ -2390,7 +2350,8 @@ def split(input, num_or_sections, dim=-1, name=None):
x0.shape # [3, 3, 5]
x1.shape # [3, 3, 5]
x2.shape # [3, 3, 5]
x0, x1, x2 = fluid.layers.split(x, num_or_sections=[2, 3, 4], dim=1)
x0, x1, x2 = fluid.layers.split(
x, num_or_sections=[2, 3, 4], dim=1)
x0.shape # [3, 2, 5]
x1.shape # [3, 3, 5]
x2.shape # [3, 4, 5]
...
...
@@ -3300,7 +3261,8 @@ def softmax_with_cross_entropy(logits, label, soft_label=False):
data = fluid.layers.data(name='data', shape=[128], dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
fc = fluid.layers.fc(input=data, size=100)
out = fluid.layers.softmax_with_cross_entropy(logits=fc, label=label)
out = fluid.layers.softmax_with_cross_entropy(
logits=fc, label=label)
"""
helper
=
LayerHelper
(
'softmax_with_cross_entropy'
,
**
locals
())
softmax
=
helper
.
create_tmp_variable
(
dtype
=
logits
.
dtype
)
...
...
@@ -3347,7 +3309,8 @@ def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
.. code-block:: python
data = fluid.layers.data(name='data', shape=[128], dtype='float32')
label = fluid.layers.data(name='label', shape=[100], dtype='float32')
label = fluid.layers.data(
name='label', shape=[100], dtype='float32')
fc = fluid.layers.fc(input=data, size=100)
out = fluid.layers.smooth_l1(x=fc, y=label)
"""
...
...
@@ -3669,7 +3632,8 @@ def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
Examples:
.. code-block:: python
data = fluid.layers.data(name="data", shape=[3, 112, 112], dtype="float32")
data = fluid.layers.data(
name="data", shape=[3, 112, 112], dtype="float32")
lrn = fluid.layers.lrn(input=data)
"""
helper
=
LayerHelper
(
'lrn'
,
**
locals
())
...
...
@@ -3922,10 +3886,10 @@ def bilinear_interp(input, out_h, out_w, name=None):
Bilinear interpolation is an extension of linear interpolation for
interpolating functions of two variables (e.g. H-direction and
W-direction in this layer) on a rectilinear 2D grid.
For details, please refer to Wikipedia:
https://en.wikipedia.org/wiki/Bilinear_interpolation
Args:
input (Variable): The input tensor of bilinear interpolation,
This is a 4-D tensor of the shape
...
...
@@ -3938,7 +3902,7 @@ def bilinear_interp(input, out_h, out_w, name=None):
Returns:
out (Variable): The output is a 4-D tensor of the shape
(num_batches, channls, out_h, out_w).
Examples:
.. code-block:: python
...
...
@@ -3954,3 +3918,25 @@ def bilinear_interp(input, out_h, out_w, name=None):
attrs
=
{
"out_h"
:
out_h
,
"out_w"
:
out_w
})
return
out
def
random_crop
(
input
,
shape
,
seed
=
0
):
helper
=
LayerHelper
(
"random_crop"
,
**
locals
())
dtype
=
helper
.
input_dtype
()
out
=
helper
.
create_tmp_variable
(
dtype
)
if
isinstance
(
seed
,
int
):
seed
=
helper
.
create_global_variable
(
persistable
=
True
,
shape
=
[
1
],
dtype
=
"int32"
)
helper
.
set_variable_initializer
(
var
=
seed
,
initializer
=
Constant
(
value
=
seed
))
elif
not
isinstance
(
seed
,
Variable
):
raise
ValueError
(
"'seed' must be a Variable or an int."
)
seed_out
=
helper
.
create_tmp_variable
(
dtype
=
"int32"
)
helper
.
append_op
(
type
=
"random_crop"
,
inputs
=
{
"X"
:
input
,
"Seed"
:
seed
},
outputs
=
{
"Out"
:
out
,
"SeedOut"
:
seed_out
},
attrs
=
{
"shape"
:
shape
})
return
out
python/paddle/fluid/tests/unittests/test_random_crop_op.py
0 → 100644
浏览文件 @
3e7ce583
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
as
np
import
paddle.fluid.core
as
core
from
op_test
import
OpTest
class
TestRandomCropOp
(
OpTest
):
def
setUp
(
self
):
to_crop
=
np
.
random
.
random
((
1
,
10
,
15
)).
astype
(
"float32"
)
self
.
op_type
=
"random_crop"
self
.
inputs
=
{
'X'
:
to_crop
,
'Seed'
:
np
.
array
([
10
])}
self
.
outputs
=
{
'Out'
:
np
.
array
([
1
,
2
,
3
]),
'SeedOut'
:
np
.
array
([
2
])}
self
.
attrs
=
{
'shape'
:
[
5
,
5
]}
def
test_check_output
(
self
):
self
.
check_output
()
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录