Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
b10df8bc
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b10df8bc
编写于
11月 27, 2018
作者:
J
JiabinYang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refine code and add none bias ut, test=develop
上级
81e14576
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
94 addition
and
42 deletion
+94
-42
paddle/fluid/framework/selected_rows.h
paddle/fluid/framework/selected_rows.h
+2
-1
paddle/fluid/operators/hierarchical_sigmoid_op.cc
paddle/fluid/operators/hierarchical_sigmoid_op.cc
+32
-20
paddle/fluid/operators/hierarchical_sigmoid_op.h
paddle/fluid/operators/hierarchical_sigmoid_op.h
+2
-7
paddle/fluid/operators/math/matrix_bit_code.cc
paddle/fluid/operators/math/matrix_bit_code.cc
+2
-2
paddle/fluid/operators/math/matrix_bit_code.h
paddle/fluid/operators/math/matrix_bit_code.h
+1
-1
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+5
-4
python/paddle/fluid/tests/unittests/test_hsigmoid_op.py
python/paddle/fluid/tests/unittests/test_hsigmoid_op.py
+50
-7
未找到文件。
paddle/fluid/framework/selected_rows.h
浏览文件 @
b10df8bc
...
...
@@ -118,7 +118,8 @@ class SelectedRows {
*
* @return index of the key.
*/
int64_t
AutoGrownIndex
(
int64_t
key
,
bool
auto_grown
,
bool
is_test
=
false
)
{
inline
int64_t
AutoGrownIndex
(
int64_t
key
,
bool
auto_grown
,
bool
is_test
=
false
)
{
if
(
is_test
)
{
auto
iter
=
id_to_index_
.
find
(
key
);
if
(
iter
==
id_to_index_
.
end
())
{
...
...
paddle/fluid/operators/hierarchical_sigmoid_op.cc
浏览文件 @
b10df8bc
...
...
@@ -13,8 +13,8 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/hierarchical_sigmoid_op.h"
#include <string>
#include <vector>
namespace
paddle
{
namespace
operators
{
...
...
@@ -109,7 +109,8 @@ class HierarchicalSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"Bias"
,
"(LoDTensor, optional), The bias is a tensor with shape or "
"[non_leaf_num, 1]"
"[num_classes - 1, 1]."
);
"[num_classes - 1, 1]."
)
.
AsDispensable
();
AddOutput
(
"Out"
,
"(LoDTensor, required) The output of hierarchical sigmoid operator."
...
...
@@ -173,31 +174,42 @@ class HierarchicalSigmoidGradOpGradVarTypeInference
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
auto
out_W_var_name
=
op_desc
.
Output
(
framework
::
GradVarName
(
"W"
)).
front
();
auto
out_Bias_var_name
=
op_desc
.
Output
(
framework
::
GradVarName
(
"Bias"
)).
front
();
auto
w_grad_var_name
=
op_desc
.
Output
(
framework
::
GradVarName
(
"W"
)).
front
();
auto
bias_grad_var_name_vec
=
op_desc
.
Output
(
framework
::
GradVarName
(
"Bias"
));
std
::
string
bias_grad_var_name
;
bool
hasBias
=
false
;
if
(
bias_grad_var_name_vec
.
size
())
{
hasBias
=
true
;
bias_grad_var_name
=
op_desc
.
Output
(
framework
::
GradVarName
(
"Bias"
)).
front
();
}
auto
attr
=
op_desc
.
GetAttr
(
"is_sparse"
);
bool
is_sparse
=
boost
::
get
<
bool
>
(
attr
);
if
(
is_sparse
)
{
VLOG
(
3
)
<<
"hierarchical_sigmoid_grad op "
<<
framework
::
GradVarName
(
"W"
)
<<
" is set to SelectedRows"
;
block
->
Var
(
out_W_var_name
)
->
SetType
(
framework
::
proto
::
VarType
::
SELECTED_ROWS
);
VLOG
(
3
)
<<
"hierarchical_sigmoid_grad op "
<<
framework
::
GradVarName
(
"Bias"
)
<<
" is set to SelectedRows"
;
block
->
Var
(
out_Bias_var_name
)
VLOG
(
30
)
<<
"hierarchical_sigmoid_grad op "
<<
framework
::
GradVarName
(
"W"
)
<<
" is set to SelectedRows"
;
block
->
Var
(
w_grad_var_name
)
->
SetType
(
framework
::
proto
::
VarType
::
SELECTED_ROWS
);
if
(
hasBias
)
{
VLOG
(
30
)
<<
"hierarchical_sigmoid_grad op "
<<
framework
::
GradVarName
(
"Bias"
)
<<
" is set to SelectedRows"
;
block
->
Var
(
bias_grad_var_name
)
->
SetType
(
framework
::
proto
::
VarType
::
SELECTED_ROWS
);
}
}
else
{
VLOG
(
3
)
<<
"hierarchical_sigmoid_grad op "
<<
framework
::
GradVarName
(
"W"
)
<<
" is set to LoDTensor"
;
block
->
Var
(
out_W_var_name
)
->
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
VLOG
(
3
)
<<
"hierarchical_sigmoid_grad op "
<<
framework
::
GradVarName
(
"Bias"
)
<<
" is set to LoDTensor"
;
block
->
Var
(
out_Bias_var_name
)
VLOG
(
30
)
<<
"hierarchical_sigmoid_grad op "
<<
framework
::
GradVarName
(
"W"
)
<<
" is set to LoDTensor"
;
block
->
Var
(
w_grad_var_name
)
->
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
if
(
hasBias
)
{
VLOG
(
30
)
<<
"hierarchical_sigmoid_grad op "
<<
framework
::
GradVarName
(
"Bias"
)
<<
" is set to LoDTensor"
;
block
->
Var
(
bias_grad_var_name
)
->
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
}
}
block
->
Var
(
out_W
_var_name
)
->
SetDataType
(
block
->
Var
(
"W"
)
->
GetDataType
());
block
->
Var
(
w_grad
_var_name
)
->
SetDataType
(
block
->
Var
(
"W"
)
->
GetDataType
());
}
};
...
...
paddle/fluid/operators/hierarchical_sigmoid_op.h
浏览文件 @
b10df8bc
...
...
@@ -33,7 +33,6 @@ using platform::Transform;
std
::
vector
<
int64_t
>
cal_rows
(
const
framework
::
LoDTensor
&
path
)
{
std
::
set
<
int64_t
>
tmp
;
std
::
vector
<
int64_t
>
rows
;
rows
.
clear
();
for
(
size_t
i
=
0
;
i
<
static_cast
<
size_t
>
(
path
.
dims
()[
0
]);
i
++
)
{
for
(
size_t
j
=
0
;
j
<
static_cast
<
size_t
>
(
path
.
dims
()[
1
]);
j
++
)
{
int64_t
temp
=
...
...
@@ -63,8 +62,6 @@ class HierarchicalSigmoidOpKernel : public framework::OpKernel<T> {
bool
is_custom
=
false
;
if
(
path
)
{
is_custom
=
true
;
}
else
{
is_custom
=
false
;
}
int64_t
code_length
=
path
?
path
->
dims
()[
1
]
:
math
::
FindLastSet
(
num_classes
-
1
);
...
...
@@ -96,7 +93,7 @@ class HierarchicalSigmoidOpKernel : public framework::OpKernel<T> {
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
out_mat
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
out
);
if
(
bias
)
{
bit_code
->
Add
(
pre_out
,
*
bias
);
bit_code
->
Add
(
*
bias
,
pre_out
);
}
bit_code
->
Mul
(
pre_out
,
*
w
,
*
in
);
// clip to [-40, 40]
...
...
@@ -145,8 +142,6 @@ class HierarchicalSigmoidGradOpKernel : public framework::OpKernel<T> {
bool
is_custom
=
false
;
if
(
path
)
{
is_custom
=
true
;
}
else
{
is_custom
=
false
;
}
std
::
unique_ptr
<
math
::
MatrixBitCodeFunctor
<
T
>>
bit_code
;
...
...
@@ -192,7 +187,7 @@ class HierarchicalSigmoidGradOpKernel : public framework::OpKernel<T> {
auto
*
w_grad
=
ctx
.
Output
<
framework
::
SelectedRows
>
(
framework
::
GradVarName
(
"W"
));
w_grad
->
set_rows
(
real_rows
);
//
build ids -> rows index map
//
Build a map of id -> row_index to speed up finding the index of one id
w_grad
->
SyncIndex
();
w_grad
->
set_height
(
w
->
dims
()[
0
]);
auto
*
w_grad_value
=
w_grad
->
mutable_value
();
...
...
paddle/fluid/operators/math/matrix_bit_code.cc
浏览文件 @
b10df8bc
...
...
@@ -19,8 +19,8 @@ namespace operators {
namespace
math
{
template
<
typename
T
>
void
MatrixBitCodeFunctor
<
T
>::
Add
(
framework
::
LoDTensor
*
tmat
,
const
framework
::
LoDTensor
&
vec
)
{
void
MatrixBitCodeFunctor
<
T
>::
Add
(
const
framework
::
LoDTensor
&
vec
,
framework
::
LoDTensor
*
tmat
)
{
size_t
batch_size
=
tmat
->
dims
()[
0
];
size_t
width
=
tmat
->
dims
()[
1
];
for
(
size_t
i
=
0
;
i
<
batch_size
;
++
i
)
{
...
...
paddle/fluid/operators/math/matrix_bit_code.h
浏览文件 @
b10df8bc
...
...
@@ -234,7 +234,7 @@ class MatrixBitCodeFunctor {
/* For j < code_length
tmat(i, j) += vec(0, index(i, j))
*/
void
Add
(
framework
::
LoDTensor
*
tmat
,
const
framework
::
LoDTensor
&
vec
);
void
Add
(
const
framework
::
LoDTensor
&
vec
,
framework
::
LoDTensor
*
tmat
);
/* For j < code_length
vec(0, index(i, j)) += tmat(i, j)
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
b10df8bc
...
...
@@ -4535,12 +4535,12 @@ def nce(input,
def
hsigmoid
(
input
,
label
,
num_classes
=
None
,
non_leaf_num
=
None
,
ptable
=
None
,
pcode
=
None
,
param_attr
=
None
,
bias_attr
=
None
,
name
=
None
,
non_leaf_num
=
None
,
ptable
=
None
,
pcode
=
None
,
is_costum
=
False
,
is_sparse
=
False
):
"""
...
...
@@ -4583,7 +4583,8 @@ def hsigmoid(input,
will be named automatically. Default: None.
is_costum: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
set you need to set ptable/pcode/non_leaf_num, otherwise num_classes should be set
is_sparse: (bool|False)using sparse update instead of dense update
is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
of W and input will be sparse.
Returns:
Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
...
...
python/paddle/fluid/tests/unittests/test_hsigmoid_op.py
浏览文件 @
b10df8bc
...
...
@@ -110,12 +110,13 @@ def hsigmoidWithCustomTree(x, w, ptable, pcode, label, bias, num_classes):
pre_output
=
np
.
zeros
((
batch_size
,
code_length
))
pre_sum
=
np
.
zeros
((
batch_size
,
1
))
out
=
np
.
zeros
((
batch_size
,
1
)).
astype
(
"float32"
)
for
i
in
range
(
batch_size
):
code_table
=
CodeTableWithCustomTree
(
ptable
,
pcode
,
i
)
length
=
code_table
.
get_length
()
for
j
in
range
(
length
):
idx
=
code_table
.
cal_index
(
j
)
pre_output
[
i
][
j
]
+=
bias
[
idx
][
0
]
if
isinstance
(
bias
,
np
.
ndarray
):
for
i
in
range
(
batch_size
):
code_table
=
CodeTableWithCustomTree
(
ptable
,
pcode
,
i
)
length
=
code_table
.
get_length
()
for
j
in
range
(
length
):
idx
=
code_table
.
cal_index
(
j
)
pre_output
[
i
][
j
]
+=
bias
[
idx
][
0
]
for
i
in
range
(
batch_size
):
code_table
=
CodeTableWithCustomTree
(
ptable
,
pcode
,
i
)
length
=
code_table
.
get_length
()
...
...
@@ -215,11 +216,11 @@ class TestHSigmoidOpWithSparseGrad(unittest.TestCase):
cost
=
fluid
.
layers
.
hsigmoid
(
input
=
emb
,
label
=
label
,
bias_attr
=
True
,
non_leaf_num
=
3
,
ptable
=
ptable
,
pcode
=
pcode
,
is_costum
=
True
,
bias_attr
=
True
,
is_sparse
=
is_sparse
)
avg_cost
=
fluid
.
layers
.
reduce_mean
(
cost
)
...
...
@@ -299,5 +300,47 @@ class TestHSigmoidOpWithCostumTree(OpTest):
self
.
check_grad
([
'Bias'
,
'X'
,
'W'
],
[
'Out'
],
no_grad_set
=
set
(
'Label'
))
class
TestHSigmoidOpWithCostumTreeWithoutBias
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"hierarchical_sigmoid"
num_classes
=
6
#using 1,2,3,4,5,6 to build a huffman tree and select 1,2,5,6 as sample
feature_size
=
8
batch_size
=
4
x
=
np
.
random
.
random
((
batch_size
,
feature_size
)).
astype
(
"float32"
)
*
2
w
=
np
.
random
.
random
(
(
num_classes
-
1
,
feature_size
)).
astype
(
"float32"
)
*
2
label
=
np
.
array
([
0
,
1
,
4
,
5
])
ptable
=
np
.
array
(
[(
0
,
2
,
-
1
,
-
1
,
-
1
),
(
0
,
1
,
3
,
-
1
,
-
1
),
(
0
,
1
,
4
,
-
1
,
-
1
),
(
0
,
2
,
-
1
,
-
1
,
-
1
)])
#np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
pcode
=
np
.
array
([(
0
,
0
,
-
1
,
-
1
,
-
1
),
(
1
,
1
,
1
,
-
1
,
-
1
),
(
1
,
0
,
0
,
-
1
,
-
1
),
(
0
,
1
,
-
1
,
-
1
,
-
1
)])
#np.array to store
# bias = np.random.random((num_classes - 1, 1)).astype("float32")
self
.
attrs
=
{
'num_classes'
:
num_classes
,
'is_sparse'
:
False
}
self
.
inputs
=
{
'X'
:
x
,
'W'
:
w
,
'PTable'
:
ptable
,
'PCode'
:
pcode
,
'Label'
:
label
,
}
pre_output
,
out
=
hsigmoidWithCustomTree
(
x
=
x
,
w
=
w
,
ptable
=
ptable
,
pcode
=
pcode
,
label
=
label
,
bias
=
None
,
num_classes
=
num_classes
)
self
.
outputs
=
{
'PreOut'
:
pre_output
,
'Out'
:
out
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
,
'W'
],
[
'Out'
],
no_grad_set
=
set
(
'Label'
))
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录