Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
63d322f0
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
63d322f0
编写于
2月 21, 2019
作者:
D
dengkaipeng
提交者:
ceci3
3月 06, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix attr dim calc. test=develop
上级
ca1502c7
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
238 addition
and
43 deletion
+238
-43
paddle/fluid/operators/spectral_norm_op.cc
paddle/fluid/operators/spectral_norm_op.cc
+21
-6
paddle/fluid/operators/spectral_norm_op.h
paddle/fluid/operators/spectral_norm_op.h
+126
-25
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+75
-0
python/paddle/fluid/tests/unittests/test_spectral_norm_op.py
python/paddle/fluid/tests/unittests/test_spectral_norm_op.py
+16
-12
未找到文件。
paddle/fluid/operators/spectral_norm_op.cc
浏览文件 @
63d322f0
...
...
@@ -33,19 +33,34 @@ class SpectralNormOp : public framework::OperatorWithKernel {
"Output(Out) of SpectralNormOp should not be null."
);
auto
dim_weight
=
ctx
->
GetInputDim
(
"Weight"
);
auto
weight_dimsize
=
dim_weight
.
size
();
PADDLE_ENFORCE
(
weight_dimsize
>=
2
&&
weight_dimsize
<=
5
,
"The
size of dims
of Input(Weights) can only be 2, 3,"
auto
rank_weight
=
dim_weight
.
size
();
PADDLE_ENFORCE
(
rank_weight
>=
2
&&
rank_weight
<=
5
,
"The
rank
of Input(Weights) can only be 2, 3,"
"4, 5 for fc, conv1d, conv2d, conv3d layers."
);
int
dim
=
ctx
->
Attrs
().
Get
<
int
>
(
"dim"
);
int
power_iters
=
ctx
->
Attrs
().
Get
<
int
>
(
"power_iters"
);
PADDLE_ENFORCE
(
dim
>=
0
&&
dim
<
weight_dimsize
-
1
,
"Attr(dim) should be larger equal 0 and less then the"
"size of dims of Input(Weights) - 1,"
);
PADDLE_ENFORCE
(
dim
==
0
||
dim
==
1
,
"Attr(dim) can only be 0 or 1"
);
PADDLE_ENFORCE
(
power_iters
>=
0
,
"Attr(power_iters) should be larger equal then 0"
);
int
h
=
dim_weight
[
dim
];
int
w
=
1
;
for
(
int
i
=
0
;
i
<
rank_weight
;
i
++
)
{
if
(
i
!=
dim
)
{
w
*=
dim_weight
[
i
];
}
}
auto
dim_u
=
ctx
->
GetInputDim
(
"U"
);
auto
dim_v
=
ctx
->
GetInputDim
(
"V"
);
PADDLE_ENFORCE_EQ
(
dim_u
[
0
],
h
,
"Input(U) dims[0] should be equal to "
"Input(Weight) dims[Attr(dim)]"
);
PADDLE_ENFORCE_EQ
(
dim_v
[
0
],
w
,
"Input(V) dims[0] should be equal to "
"the product of Input(Weight) dims except dims[Attr(dim)]"
);
ctx
->
SetOutputDim
(
"Out"
,
dim_weight
);
ctx
->
ShareLoD
(
"Weight"
,
/*->*/
"Out"
);
}
...
...
paddle/fluid/operators/spectral_norm_op.h
浏览文件 @
63d322f0
...
...
@@ -10,6 +10,7 @@
limitations under the License. */
#pragma once
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/blas.h"
...
...
@@ -27,17 +28,33 @@ using Array1 = Eigen::DSizes<int64_t, 1>;
using
Array2
=
Eigen
::
DSizes
<
int64_t
,
2
>
;
using
IndexPair
=
Eigen
::
IndexPair
<
int
>
;
static
inline
void
CalcMatrixShape
(
const
Tensor
&
weight
,
const
int
dim
,
int
*
h
,
int
*
w
)
{
auto
weight_dims
=
weight
.
dims
();
*
h
=
1
;
*
w
=
1
;
for
(
int
i
=
0
;
i
<
weight_dims
.
size
();
i
++
)
{
if
(
i
<=
dim
)
{
*
h
*=
weight_dims
[
i
];
}
else
{
*
w
*=
weight_dims
[
i
];
}
template
<
typename
DeviceContext
,
typename
T
>
static
inline
void
TransCompute
(
const
int
rank
,
const
Tensor
&
in
,
Tensor
*
out
,
const
std
::
vector
<
int
>&
perm
,
const
DeviceContext
&
dev_ctx
)
{
if
(
rank
<=
1
||
rank
>
5
)
{
PADDLE_THROW
(
"Invalid weight rank."
);
}
switch
(
rank
)
{
case
2
:
math
::
Transpose
<
DeviceContext
,
T
,
2
>
trans2
;
trans2
(
dev_ctx
,
in
,
out
,
perm
);
break
;
case
3
:
math
::
Transpose
<
DeviceContext
,
T
,
3
>
trans3
;
trans3
(
dev_ctx
,
in
,
out
,
perm
);
break
;
case
4
:
math
::
Transpose
<
DeviceContext
,
T
,
4
>
trans4
;
trans4
(
dev_ctx
,
in
,
out
,
perm
);
break
;
case
5
:
math
::
Transpose
<
DeviceContext
,
T
,
5
>
trans5
;
trans5
(
dev_ctx
,
in
,
out
,
perm
);
break
;
default:
break
;
}
}
...
...
@@ -83,6 +100,7 @@ template <typename DeviceContext, typename T>
class
SpectralNormKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
auto
weight
=
ctx
.
Input
<
Tensor
>
(
"Weight"
);
auto
u
=
ctx
.
Input
<
Tensor
>
(
"U"
);
auto
v
=
ctx
.
Input
<
Tensor
>
(
"V"
);
...
...
@@ -92,10 +110,32 @@ class SpectralNormKernel : public framework::OpKernel<T> {
int
power_iters
=
ctx
.
Attr
<
int
>
(
"power_iters"
);
float
eps
=
ctx
.
Attr
<
float
>
(
"eps"
);
const
int
h
=
u
->
dims
()[
0
];
const
int
w
=
v
->
dims
()[
0
];
Tensor
weight_mat
;
int
h
,
w
;
CalcMatrixShape
(
*
weight
,
dim
,
&
h
,
&
w
);
TensorCopySync
(
*
weight
,
ctx
.
GetPlace
(),
&
weight_mat
);
auto
dims
=
weight
->
dims
();
const
int
rank
=
dims
.
size
();
std
::
vector
<
int
>
real_dims
;
if
(
dim
!=
0
)
{
std
::
vector
<
int
>
perm
;
perm
.
push_back
(
dim
);
real_dims
.
push_back
(
dims
[
dim
]);
for
(
int
i
=
0
;
i
<
rank
;
i
++
)
{
if
(
i
!=
dim
)
{
perm
.
push_back
(
i
);
real_dims
.
push_back
(
dims
[
i
]);
}
}
weight_mat
.
mutable_data
<
T
>
(
framework
::
make_ddim
(
real_dims
),
ctx
.
GetPlace
());
TransCompute
<
DeviceContext
,
T
>
(
rank
,
*
weight
,
&
weight_mat
,
perm
,
dev_ctx
);
}
else
{
for
(
int
i
=
0
;
i
<
rank
;
i
++
)
{
real_dims
.
push_back
(
i
);
}
TensorCopySync
(
*
weight
,
ctx
.
GetPlace
(),
&
weight_mat
);
}
weight_mat
=
weight_mat
.
Resize
({
h
,
w
});
Tensor
sigma
;
...
...
@@ -106,7 +146,25 @@ class SpectralNormKernel : public framework::OpKernel<T> {
CalcMatrixSigmaAndNormWeight
<
DeviceContext
,
T
>
(
&
sigma
,
&
(
uu
.
Resize
({
h
,
1
})),
&
(
vv
.
Resize
({
w
,
1
})),
&
weight_mat
,
power_iters
,
eps
,
ctx
);
TensorCopySync
(
weight_mat
.
Resize
(
out
->
dims
()),
ctx
.
GetPlace
(),
out
);
if
(
dim
!=
0
)
{
std
::
vector
<
int
>
perm
;
for
(
int
i
=
0
;
i
<
rank
;
i
++
)
{
if
(
i
<
dim
)
{
perm
.
push_back
(
i
+
1
);
}
else
if
(
i
==
dim
)
{
perm
.
push_back
(
0
);
}
else
{
perm
.
push_back
(
i
);
}
}
out
->
mutable_data
<
T
>
(
dims
,
ctx
.
GetPlace
());
TransCompute
<
DeviceContext
,
T
>
(
rank
,
weight_mat
.
Resize
(
framework
::
make_ddim
(
real_dims
)),
out
,
perm
,
dev_ctx
);
}
else
{
TensorCopySync
(
weight_mat
.
Resize
(
dims
),
ctx
.
GetPlace
(),
out
);
}
}
};
...
...
@@ -115,6 +173,7 @@ class SpectralNormGradKernel : public framework::OpKernel<T> {
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
&
place
=
*
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
auto
blas
=
math
::
GetBlas
<
DeviceContext
,
T
>
(
ctx
);
auto
weight
=
ctx
.
Input
<
Tensor
>
(
"Weight"
);
auto
u
=
ctx
.
Input
<
Tensor
>
(
"U"
);
...
...
@@ -126,11 +185,37 @@ class SpectralNormGradKernel : public framework::OpKernel<T> {
int
power_iters
=
ctx
.
Attr
<
int
>
(
"power_iters"
);
float
eps
=
ctx
.
Attr
<
float
>
(
"eps"
);
const
int
h
=
u
->
dims
()[
0
];
const
int
w
=
v
->
dims
()[
0
];
Tensor
weight_mat
,
out_grad_mat
;
int
h
,
w
;
CalcMatrixShape
(
*
weight
,
dim
,
&
h
,
&
w
);
TensorCopySync
(
*
weight
,
ctx
.
GetPlace
(),
&
weight_mat
);
TensorCopySync
(
*
out_grad
,
ctx
.
GetPlace
(),
&
out_grad_mat
);
auto
dims
=
weight
->
dims
();
const
int
rank
=
dims
.
size
();
std
::
vector
<
int
>
real_dims
;
if
(
dim
!=
0
)
{
std
::
vector
<
int
>
perm
;
perm
.
push_back
(
dim
);
real_dims
.
push_back
(
dims
[
dim
]);
for
(
int
i
=
0
;
i
<
rank
;
i
++
)
{
if
(
i
!=
dim
)
{
perm
.
push_back
(
i
);
real_dims
.
push_back
(
dims
[
i
]);
}
}
weight_mat
.
mutable_data
<
T
>
(
framework
::
make_ddim
(
real_dims
),
ctx
.
GetPlace
());
out_grad_mat
.
mutable_data
<
T
>
(
framework
::
make_ddim
(
real_dims
),
ctx
.
GetPlace
());
TransCompute
<
DeviceContext
,
T
>
(
rank
,
*
weight
,
&
weight_mat
,
perm
,
dev_ctx
);
TransCompute
<
DeviceContext
,
T
>
(
rank
,
*
out_grad
,
&
out_grad_mat
,
perm
,
dev_ctx
);
}
else
{
for
(
int
i
=
0
;
i
<
rank
;
i
++
)
{
real_dims
.
push_back
(
i
);
}
TensorCopySync
(
*
weight
,
ctx
.
GetPlace
(),
&
weight_mat
);
TensorCopySync
(
*
out_grad
,
ctx
.
GetPlace
(),
&
out_grad_mat
);
}
weight_mat
=
weight_mat
.
Resize
({
h
,
w
});
out_grad_mat
=
out_grad_mat
.
Resize
({
h
,
w
});
...
...
@@ -148,21 +233,37 @@ class SpectralNormGradKernel : public framework::OpKernel<T> {
blas
.
MatMul
(
uu
.
Resize
({
h
,
1
}),
false
,
vv
.
Resize
({
w
,
1
}),
false
,
T
(
1
),
&
uv
,
T
(
0
));
Tensor
weight_grad_mat
,
ones
;
Tensor
weight_grad_mat
;
weight_grad_mat
.
mutable_data
<
T
>
({
h
,
w
},
ctx
.
GetPlace
());
ones
.
mutable_data
<
T
>
({
h
,
w
},
ctx
.
GetPlace
());
auto
weight_grad_mat_t
=
EigenTensor
<
T
,
2
>::
From
(
weight_grad_mat
);
auto
weight_mat_t
=
EigenTensor
<
T
,
2
>::
From
(
weight_mat
);
auto
out_grad_mat_t
=
EigenTensor
<
T
,
2
>::
From
(
out_grad_mat
);
auto
sigma_t
=
EigenTensor
<
T
,
2
>::
From
(
sigma
);
auto
uv_t
=
EigenTensor
<
T
,
2
>::
From
(
uv
);
auto
ones_t
=
EigenTensor
<
T
,
2
>::
From
(
ones
).
setConstant
((
T
)
1
);
weight_mat_t
.
device
(
place
)
=
weight_mat_t
.
sum
().
eval
().
reshape
(
Array2
(
1
,
1
)).
broadcast
(
Array2
(
h
,
w
));
weight_grad_mat_t
.
device
(
place
)
=
out_grad_mat_t
*
(
ones_t
-
uv_t
*
weight_mat_t
)
/
sigma_t
;
TensorCopySync
(
weight_grad_mat
.
Resize
(
weight_grad
->
dims
()),
ctx
.
GetPlace
(),
weight_grad
);
out_grad_mat_t
*
(
out_grad_mat_t
.
constant
(
1.0
)
-
uv_t
*
weight_mat_t
)
/
sigma_t
;
if
(
dim
!=
0
)
{
std
::
vector
<
int
>
perm
;
for
(
int
i
=
0
;
i
<
rank
;
i
++
)
{
if
(
i
<
dim
)
{
perm
.
push_back
(
i
+
1
);
}
else
if
(
i
==
dim
)
{
perm
.
push_back
(
0
);
}
else
{
perm
.
push_back
(
i
);
}
}
weight_grad
->
mutable_data
<
T
>
(
dims
,
ctx
.
GetPlace
());
TransCompute
<
DeviceContext
,
T
>
(
rank
,
weight_grad_mat
.
Resize
(
framework
::
make_ddim
(
real_dims
)),
weight_grad
,
perm
,
dev_ctx
);
}
else
{
TensorCopySync
(
weight_grad_mat
.
Resize
(
dims
),
ctx
.
GetPlace
(),
weight_grad
);
}
}
};
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
63d322f0
...
...
@@ -94,6 +94,7 @@ __all__ = [
'multiplex'
,
'layer_norm'
,
'group_norm'
,
'spectral_norm'
,
'softmax_with_cross_entropy'
,
'smooth_l1'
,
'one_hot'
,
...
...
@@ -3347,6 +3348,80 @@ def group_norm(input,
return
helper
.
append_activation
(
group_norm_out
)
@
templatedoc
()
def
spectral_norm
(
weight
,
dim
=
0
,
power_iters
=
1
,
eps
=
1e-12
,
u_attr
=
None
,
v_attr
=
None
,
name
=
None
):
"""
**Spectral Normalization Layer**
Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .
Args:
weight(${weight_type}): ${weight_comment}
dim(${dim_type}): ${dim_comment}
eps(${eps_type}): ${eps_comment}
u_attr(ParamAttr|None): The parameter attribute for vector u in
spectral calculatings, set None to use default attribute, which
generates random values in normal distribution N(0, 1). Default: None.
v_attr(ParamAttr|None): The parameter attribute for vector v in
spectral calculatings, set None to use default attribute, which
generates random values in normal distribution N(0, 1). Default: None.
name (str): The name of this layer. It is optional.
Returns:
Variable: A tensor variable of weight after spetral normalization.
Examples:
>>> weight = fluid.layers.data(name='weight', shape=[8, 32, 32],
>>> dtype='float32')
>>> x = fluid.layers.spectral_norm(weight=data, dim=1, power_iters=2)
"""
helper
=
LayerHelper
(
'spectral_norm'
,
**
locals
())
dtype
=
helper
.
input_dtype
()
# create intput and parameters
inputs
=
{
'Weight'
:
weight
}
input_shape
=
input
.
shape
if
data_layout
!=
'NCHW'
:
raise
ValueError
(
"unsupported data layout:"
+
data_layout
)
param_shape
=
[
input_shape
[
1
]]
if
param_attr
:
scale
=
helper
.
create_parameter
(
attr
=
helper
.
param_attr
,
shape
=
param_shape
,
dtype
=
dtype
,
default_initializer
=
Constant
(
1.0
))
inputs
[
'Scale'
]
=
scale
if
bias_attr
:
bias
=
helper
.
create_parameter
(
attr
=
helper
.
bias_attr
,
shape
=
param_shape
,
dtype
=
dtype
,
is_bias
=
True
)
inputs
[
'Bias'
]
=
bias
# create output
mean_out
=
helper
.
create_variable
(
dtype
=
dtype
,
stop_gradient
=
True
)
variance_out
=
helper
.
create_variable
(
dtype
=
dtype
,
stop_gradient
=
True
)
group_norm_out
=
helper
.
create_variable
(
dtype
=
dtype
)
helper
.
append_op
(
type
=
"group_norm"
,
inputs
=
inputs
,
outputs
=
{
"Y"
:
group_norm_out
,
"Mean"
:
mean_out
,
"Variance"
:
variance_out
,
},
attrs
=
{
"epsilon"
:
epsilon
,
"groups"
:
groups
})
return
helper
.
append_activation
(
group_norm_out
)
def
conv2d_transpose
(
input
,
num_filters
,
output_size
=
None
,
...
...
python/paddle/fluid/tests/unittests/test_spectral_norm_op.py
浏览文件 @
63d322f0
...
...
@@ -22,13 +22,17 @@ from paddle.fluid import core
def
spectral_norm
(
weight
,
u
,
v
,
dim
,
power_iters
,
eps
):
h
=
w
=
1
for
i
,
d
in
enumerate
(
weight
.
shape
):
if
i
<=
dim
:
h
*=
d
else
:
w
*=
d
weight_mat
=
weight
.
reshape
((
h
,
w
))
shape
=
weight
.
shape
weight_mat
=
weight
.
copy
()
h
=
shape
[
dim
]
w
=
np
.
prod
(
shape
)
//
h
if
dim
!=
0
:
perm
=
[
dim
]
+
[
d
for
d
in
range
(
len
(
shape
))
if
d
!=
dim
]
weight_mat
=
weight_mat
.
transpose
(
perm
)
real_shape
=
weight_mat
.
shape
else
:
real_shape
=
shape
weight_mat
=
weight_mat
.
reshape
((
h
,
w
))
u
=
u
.
reshape
((
h
,
1
))
v
=
v
.
reshape
((
w
,
1
))
...
...
@@ -41,7 +45,7 @@ def spectral_norm(weight, u, v, dim, power_iters, eps):
u
=
u
/
(
u_norm
+
eps
)
sigma
=
(
u
*
np
.
matmul
(
weight_mat
,
v
)).
sum
()
return
(
weight_mat
/
sigma
).
reshape
(
weight
.
shape
)
return
weight
/
sigma
class
TestSpectralNormOpNoGrad
(
OpTest
):
...
...
@@ -83,8 +87,8 @@ class TestSpectralNormOpNoGrad(OpTest):
class
TestSpectralNormOpNoGrad2
(
TestSpectralNormOpNoGrad
):
def
initTestCase
(
self
):
self
.
weight_shape
=
(
2
,
3
,
3
,
3
)
self
.
u_shape
=
(
6
,
)
self
.
v_shape
=
(
9
,
)
self
.
u_shape
=
(
3
,
)
self
.
v_shape
=
(
18
,
)
self
.
dim
=
1
self
.
power_iters
=
10
self
.
eps
=
1e-12
...
...
@@ -110,8 +114,8 @@ class TestSpectralNormOp(TestSpectralNormOpNoGrad):
class
TestSpectralNormOp2
(
TestSpectralNormOp
):
def
initTestCase
(
self
):
self
.
weight_shape
=
(
2
,
3
,
3
,
3
)
self
.
u_shape
=
(
6
,
)
self
.
v_shape
=
(
9
,
)
self
.
u_shape
=
(
3
,
)
self
.
v_shape
=
(
18
,
)
self
.
dim
=
1
self
.
power_iters
=
0
self
.
eps
=
1e-12
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录