Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
ddb24d48
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ddb24d48
编写于
5月 10, 2019
作者:
S
SunGaofeng
提交者:
GitHub
5月 10, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
test=develop (#17322)
上级
e32c9888
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
44 addition
and
21 deletion
+44
-21
paddle/fluid/API.spec
paddle/fluid/API.spec
+11
-11
python/paddle/fluid/layers/detection.py
python/paddle/fluid/layers/detection.py
+5
-2
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+24
-6
python/paddle/fluid/nets.py
python/paddle/fluid/nets.py
+4
-2
未找到文件。
paddle/fluid/API.spec
浏览文件 @
ddb24d48
...
...
@@ -115,7 +115,7 @@ paddle.fluid.layers.sequence_last_step (ArgSpec(args=['input'], varargs=None, ke
paddle.fluid.layers.sequence_slice (ArgSpec(args=['input', 'offset', 'length', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'fdcea0e8b5bc7d8d4b1b072c521014e6'))
paddle.fluid.layers.dropout (ArgSpec(args=['x', 'dropout_prob', 'is_test', 'seed', 'name', 'dropout_implementation'], varargs=None, keywords=None, defaults=(False, None, None, 'downgrade_in_infer')), ('document', 'f1dd22f7351f7f9853212958e0d8aa7a'))
paddle.fluid.layers.split (ArgSpec(args=['input', 'num_or_sections', 'dim', 'name'], varargs=None, keywords=None, defaults=(-1, None)), ('document', '652625345c2acb900029c78cc75f8aa6'))
paddle.fluid.layers.ctc_greedy_decoder (ArgSpec(args=['input', 'blank', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '
ebbf2adbd79683dc93db03454dfa18c2
'))
paddle.fluid.layers.ctc_greedy_decoder (ArgSpec(args=['input', 'blank', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '
2bc3a59efa9d52b628a6255422d9f0e8
'))
paddle.fluid.layers.edit_distance (ArgSpec(args=['input', 'label', 'normalized', 'ignored_tokens'], varargs=None, keywords=None, defaults=(True, None)), ('document', '97f0262f97602644c83142789d784571'))
paddle.fluid.layers.l2_normalize (ArgSpec(args=['x', 'axis', 'epsilon', 'name'], varargs=None, keywords=None, defaults=(1e-12, None)), ('document', '35c6a241bcc1a1fc89508860d82ad62b'))
paddle.fluid.layers.matmul (ArgSpec(args=['x', 'y', 'transpose_x', 'transpose_y', 'alpha', 'name'], varargs=None, keywords=None, defaults=(False, False, 1.0, None)), ('document', 'b4cbe1ac451005df6dad12e9ffdccca9'))
...
...
@@ -142,12 +142,12 @@ paddle.fluid.layers.squeeze (ArgSpec(args=['input', 'axes', 'name'], varargs=Non
paddle.fluid.layers.unsqueeze (ArgSpec(args=['input', 'axes', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'bbd62da391b1df984a1909d069a759b2'))
paddle.fluid.layers.lod_reset (ArgSpec(args=['x', 'y', 'target_lod'], varargs=None, keywords=None, defaults=(None, None)), ('document', 'f122194c562bd674f6ecdccf33785f99'))
paddle.fluid.layers.lrn (ArgSpec(args=['input', 'n', 'k', 'alpha', 'beta', 'name'], varargs=None, keywords=None, defaults=(5, 1.0, 0.0001, 0.75, None)), ('document', '330241f0bc57e9d16973ec322a6aef71'))
paddle.fluid.layers.pad (ArgSpec(args=['x', 'paddings', 'pad_value', 'name'], varargs=None, keywords=None, defaults=(0.0, None)), ('document', '2f
28153bdd2d5ea6f7bad5867bd03eeb
'))
paddle.fluid.layers.pad_constant_like (ArgSpec(args=['x', 'y', 'pad_value', 'name'], varargs=None, keywords=None, defaults=(0.0, None)), ('document', '
d2e1f45fef51b2c214e3f2aa8976c46c
'))
paddle.fluid.layers.pad (ArgSpec(args=['x', 'paddings', 'pad_value', 'name'], varargs=None, keywords=None, defaults=(0.0, None)), ('document', '2f
189f8ef61f1c23779e1593b78755c0
'))
paddle.fluid.layers.pad_constant_like (ArgSpec(args=['x', 'y', 'pad_value', 'name'], varargs=None, keywords=None, defaults=(0.0, None)), ('document', '
95aa1972983f30fe9b5a3713e523e20f
'))
paddle.fluid.layers.label_smooth (ArgSpec(args=['label', 'prior_dist', 'epsilon', 'dtype', 'name'], varargs=None, keywords=None, defaults=(None, 0.1, 'float32', None)), ('document', '70c113658102a11cc5d8e3d45145737a'))
paddle.fluid.layers.roi_pool (ArgSpec(args=['input', 'rois', 'pooled_height', 'pooled_width', 'spatial_scale'], varargs=None, keywords=None, defaults=(1, 1, 1.0)), ('document', 'c317aa595deb31649083c8faa91cdb97'))
paddle.fluid.layers.roi_align (ArgSpec(args=['input', 'rois', 'pooled_height', 'pooled_width', 'spatial_scale', 'sampling_ratio', 'name'], varargs=None, keywords=None, defaults=(1, 1, 1.0, -1, None)), ('document', '3d8f4891c1d5e890a4e574371027dd35'))
paddle.fluid.layers.dice_loss (ArgSpec(args=['input', 'label', 'epsilon'], varargs=None, keywords=None, defaults=(1e-05,)), ('document', '
1ba0508d573f65feecf3564dce22aa1d
'))
paddle.fluid.layers.dice_loss (ArgSpec(args=['input', 'label', 'epsilon'], varargs=None, keywords=None, defaults=(1e-05,)), ('document', '
7e8e4bf1f0f8612961ed113e8af8f0c5
'))
paddle.fluid.layers.image_resize (ArgSpec(args=['input', 'out_shape', 'scale', 'name', 'resample', 'actual_shape', 'align_corners', 'align_mode'], varargs=None, keywords=None, defaults=(None, None, None, 'BILINEAR', None, True, 1)), ('document', 'f1bc5eb7198175d2b79197a681d98b43'))
paddle.fluid.layers.image_resize_short (ArgSpec(args=['input', 'out_short_len', 'resample'], varargs=None, keywords=None, defaults=('BILINEAR',)), ('document', '099b9f051e6247ae661e4a7b4fd3f89a'))
paddle.fluid.layers.resize_bilinear (ArgSpec(args=['input', 'out_shape', 'scale', 'name', 'actual_shape', 'align_corners', 'align_mode'], varargs=None, keywords=None, defaults=(None, None, None, None, True, 1)), ('document', '746bf58fdb1bd475f8c5f996b05b0e52'))
...
...
@@ -160,7 +160,7 @@ paddle.fluid.layers.mean_iou (ArgSpec(args=['input', 'label', 'num_classes'], va
paddle.fluid.layers.relu (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'bf1676268df8ef100b8ab01d51336b25'))
paddle.fluid.layers.selu (ArgSpec(args=['x', 'scale', 'alpha', 'name'], varargs=None, keywords=None, defaults=(None, None, None)), ('document', '9044c7fe667b76cb2d9264f2db11f417'))
paddle.fluid.layers.log (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '98247c59d1c9b40af6730001b2aea73d'))
paddle.fluid.layers.crop (ArgSpec(args=['x', 'shape', 'offsets', 'name'], varargs=None, keywords=None, defaults=(None, None, None)), ('document', '
883104791204d3127e24234bb630b2e7
'))
paddle.fluid.layers.crop (ArgSpec(args=['x', 'shape', 'offsets', 'name'], varargs=None, keywords=None, defaults=(None, None, None)), ('document', '
ddf9837ee83e549119210a3d714d5f44
'))
paddle.fluid.layers.rank_loss (ArgSpec(args=['label', 'left', 'right', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'c542e39ac6add24a6bef6e79bf5617e2'))
paddle.fluid.layers.margin_rank_loss (ArgSpec(args=['label', 'left', 'right', 'margin', 'name'], varargs=None, keywords=None, defaults=(0.1, None)), ('document', '99b3fee0daee04911d2bee8871b26435'))
paddle.fluid.layers.elu (ArgSpec(args=['x', 'alpha', 'name'], varargs=None, keywords=None, defaults=(1.0, None)), ('document', '463258ee9f8b60760eb1e26357cc9bfa'))
...
...
@@ -203,14 +203,14 @@ paddle.fluid.layers.logical_and (ArgSpec(args=['x', 'y', 'out', 'name'], varargs
paddle.fluid.layers.logical_or (ArgSpec(args=['x', 'y', 'out', 'name'], varargs=None, keywords=None, defaults=(None, None)), ('document', '0eae3f726a4afe590757552fa3ced012'))
paddle.fluid.layers.logical_xor (ArgSpec(args=['x', 'y', 'out', 'name'], varargs=None, keywords=None, defaults=(None, None)), ('document', 'b0daaa3fa4a0aa62f9b58c43d959eb25'))
paddle.fluid.layers.logical_not (ArgSpec(args=['x', 'out', 'name'], varargs=None, keywords=None, defaults=(None, None)), ('document', 'cd1c8cf31e040427d4e05711044caeb6'))
paddle.fluid.layers.clip (ArgSpec(args=['x', 'min', 'max', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '
b020b7aab59719be98a4ae229a76deba
'))
paddle.fluid.layers.clip (ArgSpec(args=['x', 'min', 'max', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '
0ce33756573c572da67302499455dbcd
'))
paddle.fluid.layers.clip_by_norm (ArgSpec(args=['x', 'max_norm', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'a1ea0bc5a926f427458c4254ca022749'))
paddle.fluid.layers.mean (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'd638d915195ce86a8d7963b81110d4c8'))
paddle.fluid.layers.mul (ArgSpec(args=['x', 'y', 'x_num_col_dims', 'y_num_col_dims', 'name'], varargs=None, keywords=None, defaults=(1, 1, None)), ('document', 'ccd37fa6b53f074adbfb732d738c4c2d'))
paddle.fluid.layers.sigmoid_cross_entropy_with_logits (ArgSpec(args=['x', 'label', 'ignore_index', 'name', 'normalize'], varargs=None, keywords=None, defaults=(-100, None, False)), ('document', '180c284317ea45ef89a460d8d79c0b72'))
paddle.fluid.layers.maxout (ArgSpec(args=['x', 'groups', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '71426e02d240d0daedae81a02ca1c191'))
paddle.fluid.layers.space_to_depth (ArgSpec(args=['x', 'blocksize', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'a9221eaef53884a00654e028551b78e2'))
paddle.fluid.layers.affine_grid (ArgSpec(args=['theta', 'out_shape', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '
51def402b8910e163cbace9d0c0526ed
'))
paddle.fluid.layers.affine_grid (ArgSpec(args=['theta', 'out_shape', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '
f85b263b7b6698d000977529a28f202b
'))
paddle.fluid.layers.sequence_reverse (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '77a6d80aa5551ca70324fc975c44507f'))
paddle.fluid.layers.affine_channel (ArgSpec(args=['x', 'scale', 'bias', 'data_layout', 'name', 'act'], varargs=None, keywords=None, defaults=(None, None, 'NCHW', None, None)), ('document', 'ab84fdc6dc60f3ad9aa397e6007e3bf9'))
paddle.fluid.layers.similarity_focus (ArgSpec(args=['input', 'axis', 'indexes', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '6f90d6ff76bf4f5e592332c1ef28494e'))
...
...
@@ -225,7 +225,7 @@ paddle.fluid.layers.lstm (ArgSpec(args=['input', 'init_h', 'init_c', 'max_len',
paddle.fluid.layers.shuffle_channel (ArgSpec(args=['x', 'group', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '2fa6782d43d02ae64482d21235a82949'))
paddle.fluid.layers.temporal_shift (ArgSpec(args=['x', 'seg_num', 'shift_ratio', 'name'], varargs=None, keywords=None, defaults=(0.25, None)), ('document', 'fe4481fb31363b09cfdd228fc6776ddf'))
paddle.fluid.layers.py_func (ArgSpec(args=['func', 'x', 'out', 'backward_func', 'skip_vars_in_backward_input'], varargs=None, keywords=None, defaults=(None, None)), ('document', '8404e472ac12b4a30a505d3d3a3e5fdb'))
paddle.fluid.layers.psroi_pool (ArgSpec(args=['input', 'rois', 'output_channels', 'spatial_scale', 'pooled_height', 'pooled_width', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '
1546136806fef5c08f6918544bd9151d
'))
paddle.fluid.layers.psroi_pool (ArgSpec(args=['input', 'rois', 'output_channels', 'spatial_scale', 'pooled_height', 'pooled_width', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '
42d5155374f69786300d90d751956998
'))
paddle.fluid.layers.teacher_student_sigmoid_loss (ArgSpec(args=['input', 'label', 'soft_max_up_bound', 'soft_max_lower_bound'], varargs=None, keywords=None, defaults=(15.0, -15.0)), ('document', '2f6ff96864054a31aa4bb659c6722c99'))
paddle.fluid.layers.huber_loss (ArgSpec(args=['input', 'label', 'delta'], varargs=None, keywords=None, defaults=None), ('document', '431a4301c35032166ec029f7432c80a7'))
paddle.fluid.layers.kldiv_loss (ArgSpec(args=['x', 'target', 'reduction', 'name'], varargs=None, keywords=None, defaults=('mean', None)), ('document', '776d536cac47c89073abc7ee524d5aec'))
...
...
@@ -343,7 +343,7 @@ paddle.fluid.layers.ssd_loss (ArgSpec(args=['location', 'confidence', 'gt_box',
paddle.fluid.layers.detection_map (ArgSpec(args=['detect_res', 'label', 'class_num', 'background_label', 'overlap_threshold', 'evaluate_difficult', 'has_state', 'input_states', 'out_states', 'ap_version'], varargs=None, keywords=None, defaults=(0, 0.3, True, None, None, None, 'integral')), ('document', '1467d91b50c22cd52103b4aa1ee9d0a1'))
paddle.fluid.layers.rpn_target_assign (ArgSpec(args=['bbox_pred', 'cls_logits', 'anchor_box', 'anchor_var', 'gt_boxes', 'is_crowd', 'im_info', 'rpn_batch_size_per_im', 'rpn_straddle_thresh', 'rpn_fg_fraction', 'rpn_positive_overlap', 'rpn_negative_overlap', 'use_random'], varargs=None, keywords=None, defaults=(256, 0.0, 0.5, 0.7, 0.3, True)), ('document', '1dddef3eb4b3cbd4df8e03ac480dbf97'))
paddle.fluid.layers.anchor_generator (ArgSpec(args=['input', 'anchor_sizes', 'aspect_ratios', 'variance', 'stride', 'offset', 'name'], varargs=None, keywords=None, defaults=(None, None, [0.1, 0.1, 0.2, 0.2], None, 0.5, None)), ('document', '82b2aefeeb1b706bc4afec70928a259a'))
paddle.fluid.layers.roi_perspective_transform (ArgSpec(args=['input', 'rois', 'transformed_height', 'transformed_width', 'spatial_scale'], varargs=None, keywords=None, defaults=(1.0,)), ('document', '
5761f9ed83654314416e24372b33bb84
'))
paddle.fluid.layers.roi_perspective_transform (ArgSpec(args=['input', 'rois', 'transformed_height', 'transformed_width', 'spatial_scale'], varargs=None, keywords=None, defaults=(1.0,)), ('document', '
9307c12b1d4e554279b9708f787cd019
'))
paddle.fluid.layers.generate_proposal_labels (ArgSpec(args=['rpn_rois', 'gt_classes', 'is_crowd', 'gt_boxes', 'im_info', 'batch_size_per_im', 'fg_fraction', 'fg_thresh', 'bg_thresh_hi', 'bg_thresh_lo', 'bbox_reg_weights', 'class_nums', 'use_random'], varargs=None, keywords=None, defaults=(256, 0.25, 0.25, 0.5, 0.0, [0.1, 0.1, 0.2, 0.2], None, True)), ('document', '87863717edeb7fe87a1268976cbc015d'))
paddle.fluid.layers.generate_proposals (ArgSpec(args=['scores', 'bbox_deltas', 'im_info', 'anchors', 'variances', 'pre_nms_top_n', 'post_nms_top_n', 'nms_thresh', 'min_size', 'eta', 'name'], varargs=None, keywords=None, defaults=(6000, 1000, 0.5, 0.1, 1.0, None)), ('document', '57ab49f3f324f310b7eed322e7c1057a'))
paddle.fluid.layers.generate_mask_labels (ArgSpec(args=['im_info', 'gt_classes', 'is_crowd', 'gt_segms', 'rois', 'labels_int32', 'num_classes', 'resolution'], varargs=None, keywords=None, defaults=None), ('document', 'f73706a65468e9ca3e0bee4a31521b0a'))
...
...
@@ -432,8 +432,8 @@ paddle.fluid.transpiler.RoundRobin.__init__ (ArgSpec(args=['self', 'pserver_endp
paddle.fluid.transpiler.RoundRobin.dispatch (ArgSpec(args=['self', 'varlist'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.transpiler.RoundRobin.reset (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.transpiler.DistributeTranspilerConfig.__init__
paddle.fluid.nets.simple_img_conv_pool (ArgSpec(args=['input', 'num_filters', 'filter_size', 'pool_size', 'pool_stride', 'pool_padding', 'pool_type', 'global_pooling', 'conv_stride', 'conv_padding', 'conv_dilation', 'conv_groups', 'param_attr', 'bias_attr', 'act', 'use_cudnn'], varargs=None, keywords=None, defaults=(0, 'max', False, 1, 0, 1, 1, None, None, None, True)), ('document', '
e0f67f35abf27f666f81003113b90244
'))
paddle.fluid.nets.sequence_conv_pool (ArgSpec(args=['input', 'num_filters', 'filter_size', 'param_attr', 'act', 'pool_type', 'bias_attr'], varargs=None, keywords=None, defaults=(None, 'sigmoid', 'max', None)), ('document', '
48c434dd7bb827f69d90e5135d77470
f'))
paddle.fluid.nets.simple_img_conv_pool (ArgSpec(args=['input', 'num_filters', 'filter_size', 'pool_size', 'pool_stride', 'pool_padding', 'pool_type', 'global_pooling', 'conv_stride', 'conv_padding', 'conv_dilation', 'conv_groups', 'param_attr', 'bias_attr', 'act', 'use_cudnn'], varargs=None, keywords=None, defaults=(0, 'max', False, 1, 0, 1, 1, None, None, None, True)), ('document', '
13f01ff80e8dfbd3427d90cf49bc62eb
'))
paddle.fluid.nets.sequence_conv_pool (ArgSpec(args=['input', 'num_filters', 'filter_size', 'param_attr', 'act', 'pool_type', 'bias_attr'], varargs=None, keywords=None, defaults=(None, 'sigmoid', 'max', None)), ('document', '
d6a1e527b53f5cc15594fee307dfc5c
f'))
paddle.fluid.nets.glu (ArgSpec(args=['input', 'dim'], varargs=None, keywords=None, defaults=(-1,)), ('document', '6486b2595300fc3305b5a1f0ac363dce'))
paddle.fluid.nets.scaled_dot_product_attention (ArgSpec(args=['queries', 'keys', 'values', 'num_heads', 'dropout_rate'], varargs=None, keywords=None, defaults=(1, 0.0)), ('document', '921714c9bfb351b41403418265393203'))
paddle.fluid.nets.img_conv_group (ArgSpec(args=['input', 'conv_num_filter', 'pool_size', 'conv_padding', 'conv_filter_size', 'conv_act', 'param_attr', 'conv_with_batchnorm', 'conv_batchnorm_drop_rate', 'pool_stride', 'pool_type', 'use_cudnn'], varargs=None, keywords=None, defaults=(1, 3, None, None, False, 0.0, 1, 'max', True)), ('document', '5178bc1b4d302192597a5efbae13d902'))
...
...
python/paddle/fluid/layers/detection.py
浏览文件 @
ddb24d48
...
...
@@ -1820,7 +1820,7 @@ def roi_perspective_transform(input,
coordinates, and (x3, y3) is the bottom right coordinates,
and (x4, y4) is the bottom left coordinates.
transformed_height (integer): The height of transformed output.
transformed_
height
(integer): The width of transformed output.
transformed_
width
(integer): The width of transformed output.
spatial_scale (float): Spatial scale factor to scale ROI coords. Default: 1.0
Returns:
...
...
@@ -1830,7 +1830,10 @@ def roi_perspective_transform(input,
Examples:
.. code-block:: python
out = fluid.layers.roi_perspective_transform(input, rois, 7, 7, 1.0)
import paddle.fluid as fluid
x = fluid.layers.data(name='x', shape=[256, 28, 28], dtype='float32')
rois = fluid.layers.data(name='rois', shape=[8], lod_level=1, dtype='float32')
out = fluid.layers.roi_perspective_transform(x, rois, 7, 7, 1.0)
"""
helper
=
LayerHelper
(
'roi_perspective_transform'
,
**
locals
())
dtype
=
helper
.
input_dtype
()
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
ddb24d48
...
...
@@ -5305,8 +5305,8 @@ def ctc_greedy_decoder(input, blank, name=None):
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.layers.data(name='x', shape=[8], dtype='float32')
cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
"""
helper
=
LayerHelper
(
"ctc_greedy_decoder"
,
**
locals
())
...
...
@@ -6899,6 +6899,8 @@ def pad(x, paddings, pad_value=0., name=None):
.. code-block:: python
# x is a rank 2 tensor variable.
import paddle.fluid as fluid
x = fluid.layers.data(name='data', shape=[224], dtype='float32')
out = fluid.layers.pad(
x=x, paddings=[0, 1, 1, 2], pad_value=0.)
"""
...
...
@@ -6978,6 +6980,9 @@ def pad_constant_like(x, y, pad_value=0., name=None):
# x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
# y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
import paddle.fluid as fluid
x = fluid.layers.data(name='x', shape=[2,3,2,3], dtype='float32')
y = fluid.layers.data(name='y', shape=[1,3,1,3], dtype='float32')
out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
# out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
"""
...
...
@@ -7176,8 +7181,11 @@ def dice_loss(input, label, epsilon=0.00001):
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.layers.data(name='data', shape = [3, 224, 224, 2], dtype='float32')
label = fluid.layers.data(name='label', shape=[3, 224, 224, 1], dtype='float32')
predictions = fluid.layers.softmax(x)
loss = fluid.layers.dice_loss(input=predictions, label=label
, 2
)
loss = fluid.layers.dice_loss(input=predictions, label=label)
"""
label
=
one_hot
(
label
,
depth
=
input
.
shape
[
-
1
])
reduce_dim
=
list
(
range
(
1
,
len
(
input
.
shape
)))
...
...
@@ -8048,9 +8056,9 @@ def crop(x, shape=None, offsets=None, name=None):
is suitable for the case that the output shape may be changed each
iteration. If a list/tupe of integer, it's length must be the same
as the rank of `x`
offsets (Variable|list/tuple of integer|None): Specifies the copping
offsets (Variable|list/tuple of integer|None): Specifies the c
r
opping
offsets at each dimension. It can be a Variable or or a list/tupe
of integer. If a tensor Variable, it's rank must be the same as `x`.
of integer
s
. If a tensor Variable, it's rank must be the same as `x`.
This way is suitable for the case that the offsets may be changed
each iteration. If a list/tupe of integer, it's length must be the
same as the rank of `x`. If None, the offsets are 0 at each
...
...
@@ -8068,6 +8076,7 @@ def crop(x, shape=None, offsets=None, name=None):
.. code-block:: python
import paddle.fluid as fluid
x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
crop = fluid.layers.crop(x, shape=y)
...
...
@@ -8192,6 +8201,7 @@ def affine_grid(theta, out_shape, name=None):
.. code-block:: python
import paddle.fluid as fluid
theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
data = fluid.layers.affine_grid(theta, out_shape)
...
...
@@ -9698,6 +9708,7 @@ def clip(x, min, max, name=None):
Examples:
.. code-block:: python
import paddle.fluid as fluid
input = fluid.layers.data(
name='data', shape=[1], dtype='float32')
reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
...
...
@@ -10925,7 +10936,11 @@ def psroi_pool(input,
Args:
input (Variable): ${x_comment}
rois (Variable): ROIs (Regions of Interest) to pool over.
rois (Variable): ROIs (Regions of Interest) to pool over.It should be
a 2-D LoDTensor of shape (num_rois, 4), the lod level
is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
the top left coordinates, and (x2, y2) is the bottom
right coordinates.
output_channels (integer): ${output_channels_comment}
spatial_scale (float): ${spatial_scale_comment} Default: 1.0
pooled_height (integer): ${pooled_height_comment} Default: 1
...
...
@@ -10938,7 +10953,10 @@ def psroi_pool(input,
Examples:
.. code-block:: python
pool_out = fluid.layers.psroi_pool(input=x, rois=rois, 490, 1.0, 7, 7)
import paddle.fluid as fluid
x = fluid.layers.data(name='x', shape=[490, 28, 28], dtype='float32')
rois = fluid.layers.data(name='rois', shape=[4], lod_level=1, dtype='float32')
pool_out = fluid.layers.psroi_pool(x, rois, 10, 1.0, 7, 7)
"""
helper
=
LayerHelper
(
'psroi_pool'
,
**
locals
())
# check attrs
...
...
python/paddle/fluid/nets.py
浏览文件 @
ddb24d48
...
...
@@ -100,6 +100,7 @@ def simple_img_conv_pool(input,
Examples:
.. code-block:: python
import paddle.fluid as fluid
img = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32')
conv_pool = fluid.nets.simple_img_conv_pool(input=img,
filter_size=5,
...
...
@@ -278,10 +279,11 @@ def sequence_conv_pool(input,
Examples:
.. code-block:: python
input_dim = len(word_dict)
import paddle.fluid as fluid
input_dim = 100 #len(word_dict)
emb_dim = 128
hid_dim = 512
data = fluid.layers.data(
ame="words", shape=[1], dtype="int64", lod_level=1)
data = fluid.layers.data(
n
ame="words", shape=[1], dtype="int64", lod_level=1)
emb = fluid.layers.embedding(input=data, size=[input_dim, emb_dim], is_sparse=True)
seq_conv = fluid.nets.sequence_conv_pool(input=emb,
num_filters=hid_dim,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录