提交 d4b67e16 编写于 作者: Z zhoukunsheng 提交者: Tao Luo

Add Where Op(#16793)

上级 1bfff020
......@@ -234,6 +234,7 @@ paddle.fluid.layers.npair_loss (ArgSpec(args=['anchor', 'positive', 'labels', 'l
paddle.fluid.layers.pixel_shuffle (ArgSpec(args=['x', 'upscale_factor'], varargs=None, keywords=None, defaults=None), ('document', '132b6e74ff642a392bd6b14c10aedc65'))
paddle.fluid.layers.fsp_matrix (ArgSpec(args=['x', 'y'], varargs=None, keywords=None, defaults=None), ('document', 'b76ccca3735bea4a58a0dbf0d77c5393'))
paddle.fluid.layers.continuous_value_model (ArgSpec(args=['input', 'cvm', 'use_cvm'], varargs=None, keywords=None, defaults=(True,)), ('document', 'a07a44c2bacdcd09c1f5f35a96a0514e'))
paddle.fluid.layers.where (ArgSpec(args=['condition'], varargs=None, keywords=None, defaults=None), ('document', '3126e3039e752ce26077f1efaca355c6'))
paddle.fluid.layers.data (ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True)), ('document', 'adf285346e23316097f7789b572491e9'))
paddle.fluid.layers.open_files (ArgSpec(args=['filenames', 'shapes', 'lod_levels', 'dtypes', 'thread_num', 'buffer_size', 'pass_num', 'is_test'], varargs=None, keywords=None, defaults=(None, None, 1, None)), ('document', 'cf12066a3139026119f97f9d4381a1bd'))
paddle.fluid.layers.read_file (ArgSpec(args=['reader'], varargs=None, keywords=None, defaults=None), ('document', 'b0a1c2fc51c27a106da28f3308c41f5e'))
......
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/where_op.h"
namespace paddle {
namespace operators {
class WhereOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("Condition"),
"Input(Condition) of WhereOp should not be null.");
PADDLE_ENFORCE(
ctx->GetInputDim("Condition").size() >= 1,
"Input(Condition) should have number of dimension at least 1");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output(OUt) of WhereOp should not be null.");
ctx->SetOutputDim("Out", {-1, ctx->GetInputDim("Condition").size()});
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
auto output_type = framework::proto::VarType::INT64;
return framework::OpKernelType(output_type, ctx.device_context());
}
};
class WhereOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("Condition", "A bool tensor whose rank is at least 1");
AddOutput("Out", "An int64 tensor of rank 2");
AddComment(R"DOC(
Return a int64 tensor with rank 2, specifying the coordinate of true element in `Condition`.
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(where, ops::WhereOp, ops::WhereOpMaker);
REGISTER_OP_CPU_KERNEL(where, ops::CPUWhereKernel<int64_t>);
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <thrust/device_vector.h>
#include "paddle/fluid/framework/ddim.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/where_op.h"
#include "paddle/fluid/platform/cuda_primitives.h"
#include "paddle/fluid/platform/for_range.h"
namespace paddle {
namespace operators {
using CUDADeviceContext = paddle::platform::CUDADeviceContext;
template <typename T>
class CUDAWhereKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* condition = context.Input<framework::Tensor>("Condition");
auto* out = context.Output<framework::Tensor>("Out");
// TODO(zhoukunsheng): Should optimize to ensure GPU is faster than CPU.
framework::Tensor cond_cpu;
framework::TensorCopy(*condition, platform::CPUPlace(), &cond_cpu);
const bool* cond_data = cond_cpu.data<bool>();
int64_t numel = cond_cpu.numel();
auto dims = cond_cpu.dims();
int rank = dims.size();
thrust::host_vector<int> h_true_index;
for (int64_t i = 0; i < numel; i++) {
if (cond_data[i]) {
h_true_index.push_back(i);
}
}
thrust::device_vector<int> d_true_index = h_true_index;
int* ptr_true_index = thrust::raw_pointer_cast(d_true_index.data());
size_t true_num = h_true_index.size();
out->Resize(framework::make_ddim({static_cast<int64_t>(true_num), rank}));
auto out_ptr = out->mutable_data<T>(context.GetPlace());
if (true_num == 0) {
return;
}
thrust::host_vector<int> h_stride(rank, 0);
h_stride[rank - 1] = 1;
for (int i = rank - 2; i >= 0; i--) {
h_stride[i] = h_stride[i + 1] * dims[i + 1];
}
thrust::device_vector<int> d_stride = h_stride;
int* ptr_stride = thrust::raw_pointer_cast(d_stride.data());
auto& dev_ctx = context.template device_context<CUDADeviceContext>();
WhereFunctor<int*> functor(ptr_true_index, true_num, ptr_stride, rank,
out_ptr);
platform::ForRange<CUDADeviceContext> for_range(dev_ctx, true_num);
for_range(functor);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(where, ops::CUDAWhereKernel<int64_t>);
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <functional>
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/for_range.h"
namespace paddle {
namespace operators {
template <typename T>
struct WhereFunctor {
WhereFunctor(const T& true_index, int true_num, const T& stride, int rank,
int64_t* out)
: true_index_(true_index),
true_num_(true_num),
stride_(stride),
rank_(rank),
out_ptr_(out) {}
HOSTDEVICE void operator()(size_t idx) const {
int index = true_index_[idx];
for (int j = 0; j < rank_; j++) {
out_ptr_[idx * rank_ + j] = index / stride_[j];
index -= out_ptr_[idx * rank_ + j] * stride_[j];
}
}
const T true_index_;
int true_num_;
const T stride_;
int rank_;
int64_t* out_ptr_;
};
using CPUDeviceContext = paddle::platform::CPUDeviceContext;
template <typename T>
class CPUWhereKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* condition = context.Input<framework::Tensor>("Condition");
auto* out = context.Output<framework::Tensor>("Out");
const bool* cond_data = condition->data<bool>();
auto numel = condition->numel();
auto dims = condition->dims();
const int rank = dims.size();
std::vector<int> true_index;
for (auto i = 0; i < numel; i++) {
if (cond_data[i]) {
true_index.push_back(i);
}
}
auto true_num = true_index.size();
out->Resize(framework::make_ddim({static_cast<int64_t>(true_num), rank}));
auto out_ptr = out->mutable_data<T>(context.GetPlace());
if (true_num == 0) {
return;
}
std::vector<int> stride(rank);
stride[rank - 1] = 1;
for (int i = rank - 2; i >= 0; i--) {
stride[i] = stride[i + 1] * dims[i + 1];
}
auto& dev_ctx = context.template device_context<CPUDeviceContext>();
WhereFunctor<int*> functor(true_index.data(), true_num, stride.data(), rank,
out_ptr);
platform::ForRange<CPUDeviceContext> for_range(dev_ctx, true_num);
for_range(functor);
}
};
} // namespace operators
} // namespace paddle
......@@ -200,6 +200,7 @@ __all__ = [
'pixel_shuffle',
'fsp_matrix',
'continuous_value_model',
'where',
]
kIgnoreIndex = -100
......@@ -11341,3 +11342,38 @@ def continuous_value_model(input, cvm, use_cvm=True):
outputs={'Y': [out]},
attrs={"use_cvm": use_cvm})
return out
def where(condition):
"""
Return an int64 tensor with rank 2, specifying the coordinate of true element in `condition`.
Output's first dimension is the number of true element, second dimension is rank(number of dimension) of `condition`.
If there is zero true element, then an empty tensor will be generated.
Args:
condition(Variable): A bool tensor with rank at least 1.
Returns:
Variable: The tensor variable storing a 2-D tensor.
Examples:
.. code-block:: python
# condition is a tensor [True, False, True]
out = fluid.layers.where(condition) # [[0], [2]]
# condition is a tensor [[True, False], [False, True]]
out = fluid.layers.where(condition) # [[0, 0], [1, 1]]
# condition is a tensor [False, False, False]
out = fluid.layers.where(condition) # [[]]
"""
helper = LayerHelper("where", **locals())
out = helper.create_variable_for_type_inference(
dtype=core.VarDesc.VarType.INT64)
helper.append_op(
type='where', inputs={'Condition': condition}, outputs={'Out': [out]})
return out
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
import paddle.fluid.core as core
from paddle.fluid.op import Operator
class TestWhereOp(OpTest):
def setUp(self):
self.op_type = "where"
self.init_config()
def test_check_output(self):
self.check_output()
def init_config(self):
self.inputs = {'Condition': np.array([True, False, True]), }
self.outputs = {'Out': np.array([[0], [2]], dtype='int64')}
class TestAllFalse(unittest.TestCase):
def setUp(self):
self.op_type = "where"
self.init_config()
def check_with_place(self, place):
scope = core.Scope()
condition = scope.var('Condition').get_tensor()
condition.set(self.cond_data, place)
out = scope.var("Out").get_tensor()
out.set(np.full(self.shape, 0).astype('int64'), place)
op = Operator("where", Condition="Condition", Out="Out")
op.run(scope, place)
out_array = np.array(out)
self.assertTrue((out_array == self.out_data).all())
def init_config(self):
self.cond_data = np.array([False, False, False])
self.shape = (3, 1)
self.out_data = np.array([], dtype='int64')
def test_all_false(self):
self.check_with_place(core.CPUPlace())
if core.is_compiled_with_cuda():
self.check_with_place(core.CUDAPlace(0))
class TestRank2(TestWhereOp):
def init_config(self):
self.inputs = {'Condition': np.array([[True, False], [False, True]]), }
self.outputs = {'Out': np.array([[0, 0], [1, 1]], dtype='int64')}
class TestRank3(TestWhereOp):
def init_config(self):
self.inputs = {
'Condition': np.array([[[True, False], [False, True]],
[[False, True], [True, False]],
[[False, False], [False, True]]]),
}
self.outputs = {
'Out': np.array(
[[0, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 0], [2, 1, 1]],
dtype='int64')
}
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册