提交 175cf6e0 编写于 作者: Y Yu Yang

Add global_step in nn.py

上级 95ea54fd
......@@ -330,9 +330,28 @@ class LayerHelper(object):
return self.main_program.current_block().create_var(*args, **kwargs)
def create_global_variable(self, persistable=False, *args, **kwargs):
"""
create global variable, note that there is no initializer for this global variable.
Args:
persistable(bool): True if it is a checkpoint value.
*args: See create_var's documentation
**kwargs: See create_var's documentation
Returns(Variable): the created variable.
"""
return self.main_program.global_block().create_var(
*args, persistable=persistable, **kwargs)
def create_or_get_global_variable(self, name, *args, **kwargs):
"""
Creates a global variable if not exists and returns the variable and
a boolean flag which is true when it is a new variable.
"""
if self.main_program.global_block().has_var(name):
return self.main_program.global_block().var(name), False
else:
return self.create_global_variable(name=name, *args, **kwargs), True
def set_variable_initializer(self, var, initializer):
assert isinstance(var, Variable)
self.startup_program.global_block().create_var(
......
......@@ -69,6 +69,7 @@ __all__ = [
'softmax_with_cross_entropy',
'smooth_l1',
'one_hot',
'global_step_counter',
]
......@@ -3250,3 +3251,25 @@ def one_hot(input, depth):
attrs={'depth': depth},
outputs={'Out': one_hot_out})
return one_hot_out
def global_step_counter():
"""
Return the run counter of the main program, which is started with 1.
Returns(Variable): The global run counter.
"""
helper = LayerHelper('global_step_counter')
counter_name = '@STEP_COUNTER@'
counter, is_new_var = helper.create_or_get_global_variable(
name=counter_name, dtype='int64', shape=[1], persistable=True)
if is_new_var:
helper.set_variable_initializer(
counter, initializer=Constant(
value=0, force_cpu=True))
helper.main_program.global_block().prepend_op(
type='increment',
inputs={'X': [counter]},
outputs={'Out': [counter]})
counter.stop_gradient = True
return counter
......@@ -30,11 +30,14 @@ strategy according to this module.
"""
def exponential_decay(learning_rate,
global_step,
decay_steps,
decay_rate,
staircase=False):
def float_global_step():
# the first global step is zero in learning rate decay
global_step = layers.global_step_counter() - 1
global_step = layers.cast(global_step, 'float32')
return global_step
def exponential_decay(learning_rate, decay_steps, decay_rate, staircase=False):
"""Applies exponential decay to the learning rate.
```python
......@@ -44,7 +47,6 @@ def exponential_decay(learning_rate,
Args:
learning_rate: A scalar float32 value or a Variable. This
will be the initial learning rate during training
global_step: A Variable that record the training step.
decay_steps: A Python `int32` number.
decay_rate: A Python `float` number.
staircase: Boolean. If set true, decay the learning rate every decay_steps.
......@@ -52,8 +54,7 @@ def exponential_decay(learning_rate,
Returns:
The decayed learning rate
"""
if not isinstance(global_step, Variable):
raise ValueError("global_step is required for exponential_decay.")
global_step = float_global_step()
with init_on_cpu():
# update learning_rate
......@@ -65,23 +66,17 @@ def exponential_decay(learning_rate,
return decayed_lr
def natural_exp_decay(learning_rate,
global_step,
decay_steps,
decay_rate,
staircase=False):
def natural_exp_decay(learning_rate, decay_steps, decay_rate, staircase=False):
"""Applies natural exponential decay to the initial learning rate.
```python
if not staircase:
decayed_learning_rate = learning_rate * exp(- decay_rate * (global_step / decay_steps))
else:
decayed_learning_rate = learning_rate * exp(- decay_rate * (global_step / decay_steps))
```
>>> if not staircase:
>>> decayed_learning_rate = learning_rate * exp(- decay_rate * (global_step / decay_steps))
>>> else:
>>> decayed_learning_rate = learning_rate * exp(- decay_rate * (global_step / decay_steps))
Args:
learning_rate: A scalar float32 value or a Variable. This
will be the initial learning rate during training
global_step: A Variable that record the training step.
decay_steps: A Python `int32` number.
decay_rate: A Python `float` number.
staircase: Boolean. If set true, decay the learning rate every decay_steps.
......@@ -89,8 +84,7 @@ def natural_exp_decay(learning_rate,
Returns:
The decayed learning rate
"""
if not isinstance(global_step, Variable):
raise ValueError("global_step is required for natural_exp_decay.")
global_step = float_global_step()
with init_on_cpu():
div_res = global_step / decay_steps
......@@ -101,23 +95,17 @@ def natural_exp_decay(learning_rate,
return decayed_lr
def inverse_time_decay(learning_rate,
global_step,
decay_steps,
decay_rate,
staircase=False):
def inverse_time_decay(learning_rate, decay_steps, decay_rate, staircase=False):
"""Applies inverse time decay to the initial learning rate.
```python
if staircase:
decayed_learning_rate = learning_rate / (1 + decay_rate * floor(global_step / decay_step))
else:
decayed_learning_rate = learning_rate / (1 + decay_rate * global_step / decay_step)
```
>>> if staircase:
>>> decayed_learning_rate = learning_rate / (1 + decay_rate * floor(global_step / decay_step))
>>> else:
>>> decayed_learning_rate = learning_rate / (1 + decay_rate * global_step / decay_step)
Args:
learning_rate: A scalar float32 value or a Variable. This
will be the initial learning rate during training
global_step: A Variable that record the training step.
will be the initial learning rate during training.
decay_steps: A Python `int32` number.
decay_rate: A Python `float` number.
staircase: Boolean. If set true, decay the learning rate every decay_steps.
......@@ -125,8 +113,7 @@ def inverse_time_decay(learning_rate,
Returns:
The decayed learning rate
"""
if not isinstance(global_step, Variable):
raise ValueError("global_step is required for inverse_time_decay.")
global_step = float_global_step()
with init_on_cpu():
div_res = global_step / decay_steps
......@@ -139,26 +126,22 @@ def inverse_time_decay(learning_rate,
def polynomial_decay(learning_rate,
global_step,
decay_steps,
end_learning_rate=0.0001,
power=1.0,
cycle=False):
"""Applies polynomial decay to the initial learning rate.
```python
if cycle:
decay_steps = decay_steps * ceil(global_step / decay_steps)
else:
global_step = min(global_step, decay_steps)
decayed_learning_rate = (learning_rate - end_learning_rate) *
(1 - global_step / decay_steps) ^ power +
end_learning_rate
```
>>> if cycle:
>>> decay_steps = decay_steps * ceil(global_step / decay_steps)
>>> else:
>>> global_step = min(global_step, decay_steps)
>>> decayed_learning_rate = (learning_rate - end_learning_rate) *
>>> (1 - global_step / decay_steps) ^ power +
>>> end_learning_rate
Args:
learning_rate: A scalar float32 value or a Variable. This
will be the initial learning rate during training
global_step: A Variable that record the training step.
decay_steps: A Python `int32` number.
end_learning_rate: A Python `float` number.
power: A Python `float` number
......@@ -167,8 +150,7 @@ def polynomial_decay(learning_rate,
Returns:
The decayed learning rate
"""
if not isinstance(global_step, Variable):
raise ValueError("global_step is required for inverse_time_decay.")
global_step = float_global_step()
with init_on_cpu():
if cycle:
......@@ -193,27 +175,24 @@ def polynomial_decay(learning_rate,
return decayed_lr
def piecewise_decay(global_step, boundaries, values):
def piecewise_decay(boundaries, values):
"""Applies piecewise decay to the initial learning rate.
```python
boundaries = [10000, 20000]
values = [1.0, 0.5, 0.1]
if step < 10000:
learning_rate = 1.0
elif step >= 10000 and step < 20000:
learning_rate = 0.5
else:
learning_rate = 0.1
```
>>> boundaries = [10000, 20000]
>>> values = [1.0, 0.5, 0.1]
>>>
>>> if step < 10000:
>>> learning_rate = 1.0
>>> elif 10000 <= step < 20000:
>>> learning_rate = 0.5
>>> else:
>>> learning_rate = 0.1
"""
if len(values) - len(boundaries) != 1:
raise ValueError("len(values) - len(boundaries) should be 1")
if not isinstance(global_step, Variable):
raise ValueError("global_step is required for piecewise_decay.")
global_step = float_global_step()
with init_on_cpu():
lr = layers.create_global_var(
......
......@@ -35,9 +35,8 @@ class Optimizer(object):
but need to use one of it's implementation.
"""
def __init__(self, learning_rate, global_step=None, regularization=None):
def __init__(self, learning_rate, regularization=None):
assert learning_rate is not None
self._global_step = global_step
self.regularization = regularization
self._global_learning_rate = learning_rate
# Dictionary of accumulators. Some optimizer subclasses need to
......@@ -144,26 +143,6 @@ class Optimizer(object):
format(name, param.name))
return self._accumulators[name][param.name]
def _increment_global_step(self, block):
"""Increment the global step by 1 after every iteration
Args:
block: the block in which the loss variable is present
Returns:
list with global_step increment op as its only element
"""
assert isinstance(block, framework.Block)
assert self._global_step is not None
# create the increment op
increment_op = block.append_op(
type="increment",
inputs={"X": self._global_step},
outputs={"Out": self._global_step},
attrs={"step": 1.0})
return increment_op
def create_optimization_pass(self,
parameters_and_grads,
loss,
......@@ -210,8 +189,6 @@ class Optimizer(object):
# FIXME: Need to fix this once we figure out how to handle dependencies
self._finish_update(loss.block)
if self._global_step is not None:
self._increment_global_step(loss.block)
end = len(global_block.ops)
return global_block.slice_ops(start, end)
......
......@@ -168,16 +168,12 @@ def train(use_cuda, save_dirname=None):
# TODO(qiao)
# check other optimizers and check why out will be NAN
global_step = fluid.layers.create_global_var(
shape=[1], value=0, dtype='float32', force_cpu=True, persistable=True)
sgd_optimizer = fluid.optimizer.SGD(
learning_rate=fluid.learning_rate_decay.exponential_decay(
learning_rate=0.0001,
global_step=global_step,
decay_steps=100000,
decay_rate=0.5,
staircase=True),
global_step=global_step)
staircase=True))
sgd_optimizer.minimize(avg_cost)
# TODO(qiao)
......
......@@ -28,7 +28,7 @@ def exponential_decay(learning_rate,
decay_steps,
decay_rate,
staircase=False):
exponent = float(global_step) / float(decay_steps)
exponent = global_step / decay_steps
if staircase:
exponent = math.floor(exponent)
return learning_rate * decay_rate**exponent
......@@ -83,22 +83,25 @@ def piecewise_decay(global_step, boundaries, values):
class TestLearningRateDecay(unittest.TestCase):
def check_decay(self, python_decay_fn, fluid_decay_fn, kwargs):
global_step = layers.create_global_var(
shape=[1], value=0.0, dtype='float32', persistable=True)
decayed_lr = fluid_decay_fn(global_step=global_step, **kwargs)
layers.increment(global_step, 1.0)
decayed_lr = fluid_decay_fn(**kwargs)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
for step in range(10):
step_val, lr_val = exe.run(fluid.default_main_program(),
feed=[],
fetch_list=[global_step, decayed_lr])
python_decayed_lr = python_decay_fn(global_step=step, **kwargs)
self.assertAlmostEqual(python_decayed_lr, lr_val[0])
step_val, lr_val = exe.run(
fluid.default_main_program(),
feed=[],
fetch_list=[fluid.layers.global_step_counter(), decayed_lr])
python_decayed_lr = python_decay_fn(
global_step=float(step), **kwargs)
self.assertAlmostEqual(
python_decayed_lr,
lr_val[0],
msg='Failed fn is {0}, Python result is {1}, Fluid result is {2}'.
format(python_decay_fn.__name__,
str(python_decayed_lr), str(lr_val[0])))
def test_decay(self):
common_kwargs_true = {
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册