Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
71af72b1
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
71af72b1
编写于
7月 03, 2019
作者:
Z
zhoukunsheng
提交者:
Tao Luo
7月 03, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
upgrade hash op to support Tensor and LoDTensor input (#17998)
上级
d3b3443d
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
48 addition
and
58 deletion
+48
-58
paddle/fluid/API.spec
paddle/fluid/API.spec
+1
-1
paddle/fluid/operators/hash_op.cc
paddle/fluid/operators/hash_op.cc
+4
-5
paddle/fluid/operators/hash_op.h
paddle/fluid/operators/hash_op.h
+2
-5
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+12
-23
python/paddle/fluid/tests/unittests/test_hash_op.py
python/paddle/fluid/tests/unittests/test_hash_op.py
+29
-24
未找到文件。
paddle/fluid/API.spec
浏览文件 @
71af72b1
...
...
@@ -238,7 +238,7 @@ paddle.fluid.layers.affine_grid (ArgSpec(args=['theta', 'out_shape', 'name'], va
paddle.fluid.layers.sequence_reverse (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '65c8362e48810b8226e311c5d046db51'))
paddle.fluid.layers.affine_channel (ArgSpec(args=['x', 'scale', 'bias', 'data_layout', 'name', 'act'], varargs=None, keywords=None, defaults=(None, None, 'NCHW', None, None)), ('document', '9f303c67538e468a36c5904a0a3aa110'))
paddle.fluid.layers.similarity_focus (ArgSpec(args=['input', 'axis', 'indexes', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '18ec2e3afeb90e70c8b73d2b71c40fdb'))
paddle.fluid.layers.hash (ArgSpec(args=['input', 'hash_size', 'num_hash', 'name'], varargs=None, keywords=None, defaults=(1, None)), ('document', '
da621ba1363e8f5fe7b702526bbae18f
'))
paddle.fluid.layers.hash (ArgSpec(args=['input', 'hash_size', 'num_hash', 'name'], varargs=None, keywords=None, defaults=(1, None)), ('document', '
a0b73c21be618cec0281e7903039e5e3
'))
paddle.fluid.layers.grid_sampler (ArgSpec(args=['x', 'grid', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '5d16663e096d7f04954c70ce1cc5e195'))
paddle.fluid.layers.log_loss (ArgSpec(args=['input', 'label', 'epsilon', 'name'], varargs=None, keywords=None, defaults=(0.0001, None)), ('document', 'e3993a477c94729526040ff65d95728e'))
paddle.fluid.layers.add_position_encoding (ArgSpec(args=['input', 'alpha', 'beta', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'e399f9436fed5f7ff480d8532e42c937'))
...
...
paddle/fluid/operators/hash_op.cc
浏览文件 @
71af72b1
/* Copyright (c) 201
6
PaddlePaddle Authors. All Rights Reserved.
/* Copyright (c) 201
9
PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
...
...
@@ -46,11 +46,10 @@ class HashOp : public framework::OperatorWithKernel {
class
HashOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"(Tensor) Input tensor of
scale
operator."
);
AddOutput
(
"Out"
,
"(Tensor) Output tensor of
scale
operator."
);
AddInput
(
"X"
,
"(Tensor) Input tensor of
hash
operator."
);
AddOutput
(
"Out"
,
"(Tensor) Output tensor of
hash
operator."
);
AddComment
(
R"DOC(
**Hash Operator**
$$Out = scale * X$$
Execute `num_hash` times xxHash algorithm on all elements on second dimension of input.
)DOC"
);
AddAttr
<
int
>
(
"num_hash"
,
""
).
SetDefault
(
1
);
AddAttr
<
int
>
(
"mod_by"
,
""
).
SetDefault
(
100000
);
...
...
paddle/fluid/operators/hash_op.h
浏览文件 @
71af72b1
/* Copyright (c) 201
6
PaddlePaddle Authors. All Rights Reserved.
/* Copyright (c) 201
9
PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
...
...
@@ -47,10 +47,6 @@ class HashKernel : public framework::OpKernel<T> {
int
num_hash
=
context
.
Attr
<
int
>
(
"num_hash"
);
auto
in_dims
=
in_t
->
dims
();
auto
in_lod
=
in_t
->
lod
();
PADDLE_ENFORCE_EQ
(
static_cast
<
uint64_t
>
(
in_dims
[
0
]),
in_lod
[
0
].
back
(),
"The actual input data's size mismatched with LoD information."
);
std
::
vector
<
int64_t
>
out_dims
;
HashOutputSize
(
in_dims
,
out_dims
,
num_hash
);
...
...
@@ -67,6 +63,7 @@ class HashKernel : public framework::OpKernel<T> {
}
input
+=
last_dim
;
}
out_t
->
set_lod
(
in_t
->
lod
());
}
};
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
71af72b1
...
...
@@ -10810,12 +10810,9 @@ def hash(input, hash_size, num_hash=1, name=None):
Given:
# shape [2, 2]
input.data =
[
input.data =
[[1, 2],
[3, 4]],
]
input.lod = [[0, 2]]
[3, 4]]
hash_size = 10000
...
...
@@ -10833,40 +10830,32 @@ def hash(input, hash_size, num_hash=1, name=None):
[8310, 1327, 1654, 4567]],
]
output.lod = [[0, 2]]
Args:
input (Variable): The input variable which is a one-hot word. The
dimensions of the input variable must be 2.
dimensions of the input variable must be 2.
Both Tensor and LoDTensor are supported.
hash_size (int): The space size for hash algorithm. The output value
will keep in the range:math:`[0, hash_size - 1]`.
num_hash (int): The times of hash, default 1.
name (str, default None): The name of this layer.
Returns:
Variable: The hash result variable
which is a LoDTensor
.
Variable: The hash result variable
, which the same variable type as `input`
.
Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import numpy as np
titles = fluid.layers.data(name='titles', shape=[1], dtype='int32', lod_level=1)
hash_r = fluid.layers.hash(name='hash_x', input=titles, num_hash=1, hash_size=1000)
place = fluid.core.CPUPlace()
exece = fluid.Executor(place)
exece.run(fluid.default_startup_program())
# titles has shape [batch, 1]
titles = fluid.layers.data(name='titles', shape=[1], dtype='int32', lod_level=0)
# hash_r has shape [batch, 2]
hash_r = fluid.layers.hash(name='hash_x', input=titles, num_hash=2, hash_size=1000)
# Init Tensor
tensor = fluid.core.LoDTensor()
tensor.set(np.random.randint(0, 10, (3, 1)).astype("int32"), place)
# Set LoD
tensor.set_recursive_sequence_lengths([[1, 1, 1]])
out = exece.run(feed={'titles': tensor}, fetch_list=[hash_r], return_numpy=False)
# titles has shape [batch, 1] and lod information
titles = fluid.layers.data(name='titles', shape=[1], dtype='int32', lod_level=1)
# hash_r has shape [batch, 2] and inherits lod information from titles
hash_r = fluid.layers.hash(name='hash_x', input=titles, num_hash=2, hash_size=1000)
"""
helper
=
LayerHelper
(
'hash'
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
...
...
python/paddle/fluid/tests/unittests/test_hash_op.py
浏览文件 @
71af72b1
# Copyright (c) 201
8
PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 201
9
PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
...
...
@@ -17,36 +17,41 @@ import numpy as np
from
op_test
import
OpTest
class
Test
Scale
Op
(
OpTest
):
class
Test
Hash
Op
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"hash"
self
.
init_test_case
()
self
.
inputs
=
{
'X'
:
(
self
.
in_seq
,
self
.
lod
)}
self
.
attrs
=
{
'num_hash'
:
4
,
'mod_by'
:
10000
}
self
.
attrs
=
{
'num_hash'
:
2
,
'mod_by'
:
10000
}
self
.
outputs
=
{
'Out'
:
(
self
.
out_seq
,
self
.
lod
)}
def
init_test_case
(
self
):
np
.
random
.
seed
=
1
self
.
in_seq
=
np
.
random
.
randint
(
0
,
10
,
(
30
,
1
)).
astype
(
"int32"
)
self
.
lod
=
[[
9
,
4
,
11
,
6
]]
# self.out_seq = np.ones([30, 4, 1], dtype=np.int32)
self
.
out_seq
=
[
[[
9662
],
[
9217
],
[
1129
],
[
8487
]],
[[
9662
],
[
9217
],
[
1129
],
[
8487
]],
[[
8310
],
[
1327
],
[
1654
],
[
4567
]],
[[
6897
],
[
3218
],
[
2013
],
[
1241
]],
[[
9407
],
[
6715
],
[
6949
],
[
8094
]],
[[
8473
],
[
694
],
[
5142
],
[
2479
]],
[[
8310
],
[
1327
],
[
1654
],
[
4567
]],
[[
6897
],
[
3218
],
[
2013
],
[
1241
]],
[[
4372
],
[
9456
],
[
8204
],
[
6695
]],
[[
6897
],
[
3218
],
[
2013
],
[
1241
]],
[[
8473
],
[
694
],
[
5142
],
[
2479
]],
[[
4372
],
[
9456
],
[
8204
],
[
6695
]],
[[
4372
],
[
9456
],
[
8204
],
[
6695
]],
[[
8473
],
[
694
],
[
5142
],
[
2479
]],
[[
9407
],
[
6715
],
[
6949
],
[
8094
]],
[[
9369
],
[
4525
],
[
8935
],
[
9210
]],
[[
4372
],
[
9456
],
[
8204
],
[
6695
]],
[[
4372
],
[
9456
],
[
8204
],
[
6695
]],
[[
9369
],
[
4525
],
[
8935
],
[
9210
]],
[[
6897
],
[
3218
],
[
2013
],
[
1241
]],
[[
9038
],
[
7951
],
[
5953
],
[
8657
]],
[[
9407
],
[
6715
],
[
6949
],
[
8094
]],
[[
9662
],
[
9217
],
[
1129
],
[
8487
]],
[[
9369
],
[
4525
],
[
8935
],
[
9210
]],
[[
9038
],
[
7951
],
[
5953
],
[
8657
]],
[[
9662
],
[
9217
],
[
1129
],
[
8487
]],
[[
9369
],
[
4525
],
[
8935
],
[
9210
]],
[[
1719
],
[
5986
],
[
9919
],
[
3421
]],
[[
4372
],
[
9456
],
[
8204
],
[
6695
]],
[[
9038
],
[
7951
],
[
5953
],
[
8657
]]
]
np
.
random
.
seed
(
1
)
self
.
in_seq
=
np
.
random
.
randint
(
0
,
10
,
(
8
,
1
)).
astype
(
"int32"
)
self
.
lod
=
[[
2
,
6
]]
self
.
out_seq
=
[[[
3481
],
[
7475
]],
[[
1719
],
[
5986
]],
[[
8473
],
[
694
]],
[[
3481
],
[
7475
]],
[[
4372
],
[
9456
]],
[[
4372
],
[
9456
]],
[[
6897
],
[
3218
]],
[[
9038
],
[
7951
]]]
self
.
out_seq
=
np
.
array
(
self
.
out_seq
)
def
test_check_output
(
self
):
self
.
check_output
()
class
TestHashNotLoDOp
(
TestHashOp
):
def
setUp
(
self
):
self
.
op_type
=
"hash"
self
.
init_test_case
()
self
.
inputs
=
{
'X'
:
self
.
in_seq
}
self
.
attrs
=
{
'num_hash'
:
2
,
'mod_by'
:
10000
}
self
.
outputs
=
{
'Out'
:
self
.
out_seq
}
def
init_test_case
(
self
):
np
.
random
.
seed
(
1
)
self
.
in_seq
=
np
.
random
.
randint
(
0
,
10
,
(
8
,
1
)).
astype
(
"int32"
)
self
.
out_seq
=
[[[
3481
],
[
7475
]],
[[
1719
],
[
5986
]],
[[
8473
],
[
694
]],
[[
3481
],
[
7475
]],
[[
4372
],
[
9456
]],
[[
4372
],
[
9456
]],
[[
6897
],
[
3218
]],
[[
9038
],
[
7951
]]]
self
.
out_seq
=
np
.
array
(
self
.
out_seq
)
def
test_check_output
(
self
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录