Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
234013a9
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
234013a9
编写于
1月 15, 2018
作者:
G
guosheng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add python wrapper for matmul_op
上级
e7acf32c
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
82 addition
and
0 deletion
+82
-0
python/paddle/v2/fluid/layers/nn.py
python/paddle/v2/fluid/layers/nn.py
+82
-0
未找到文件。
python/paddle/v2/fluid/layers/nn.py
浏览文件 @
234013a9
...
...
@@ -1584,3 +1584,85 @@ def split(input, num_or_sections, dim=-1):
'axis'
:
dim
})
return
outs
def
matmul
(
x
,
y
):
"""
Applies matrix multipication to two tensors.
This operator is used to perform (batched) matrix multiplication
over the last two dimensions of the input tensors `X` and `Y`.
If a transpose flag is specified, the last two dimensions of the
tensor are transposed. If the tensor is rank-1 of shape [D], then
for `X` it is treated as [1, D] in nontransposed form and as [D, 1]
in transposed form, whereas for `Y` it is the opposite: It is treated
as [D, 1] in nontransposed form and as [1, D] in transposed form.
Examples without transpose:
- X: [K], Y: [K] => Out: [1]
- X: [K], Y: [K, N] => Out: [N]
- X: [B, M, K], Y: [K] => Out: [B, M]
- X: [M, K], Y: [B, K, N] => Out: [B, M, N]
- X: [B, M, K], Y: [B, K, N] => Out: [B, M, N]
The behavior is designed to be similar to the `numpy.matmul` function.
The differences are:
- Currently only rank 1 to rank 3 input tensors are supported.
- We add `transpose_X` and `transpose_Y` flags.
Both the input `X` and `Y` can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD information with input `X`.
Args:
x (Variable): The input variable which is a Tensor or LoDTensor.
y (Variable): If :attr:`num_or_sections` is an integer,
then the integer indicates the number of equal sized sub-tensors
that the tensor will be divided into. If :attr:`num_or_sections`
is a list of integers, the length of list indicates the number of
sub-tensors and the integers indicate the sizes of sub-tensors'
:attr:`dim` dimension orderly.
dim (int): The dimension along which to split. If :math:`dim < 0`, the
dimension to split along is :math:`rank(input) + dim`.
Returns:
List: The list of segmented tensor variables.
Examples:
.. code-block:: python
# x is a Tensor variable with shape [3, 9, 5]:
x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
x0.shape # [3, 3, 5]
x1.shape # [3, 3, 5]
x2.shape # [3, 3, 5]
x0, x1, x2 = fluid.layers.split(x, num_or_sections=[2, 3, 4], dim=1)
x0.shape # [3, 2, 5]
x1.shape # [3, 3, 5]
x2.shape # [3, 4, 5]
"""
helper
=
LayerHelper
(
'split'
,
**
locals
())
input_shape
=
input
.
shape
dim
=
(
len
(
input_shape
)
+
dim
)
if
dim
<
0
else
dim
if
isinstance
(
num_or_sections
,
int
):
assert
num_or_sections
>
1
,
'num_or_sections must be more than 1.'
num
=
num_or_sections
else
:
assert
len
(
num_or_sections
)
<
input_shape
[
dim
],
'len(num_or_sections) must not be more than input.shape[dim].'
num
=
len
(
num_or_sections
)
outs
=
[
helper
.
create_tmp_variable
(
dtype
=
helper
.
input_dtype
())
for
i
in
range
(
num
)
]
helper
.
append_op
(
type
=
'split'
,
inputs
=
{
'X'
:
input
},
outputs
=
{
'Out'
:
outs
},
attrs
=
{
'num'
:
num_or_sections
if
isinstance
(
num_or_sections
,
int
)
else
0
,
'sections'
:
num_or_sections
if
isinstance
(
num_or_sections
,
list
)
else
[],
'axis'
:
dim
})
return
outs
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录