nn.py 480.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
21
import warnings
S
sneaxiy 已提交
22
import six
P
peizhilin 已提交
23
import os
S
sneaxiy 已提交
24
import inspect
Y
Yu Yang 已提交
25
from ..layer_helper import LayerHelper
26
from ..initializer import Normal, Constant, NumpyArrayInitializer
L
lujun 已提交
27
from ..framework import Variable, OpProtoHolder, in_dygraph_mode
L
lujun 已提交
28
from ..dygraph import base
Y
yangyaming 已提交
29
from ..param_attr import ParamAttr
S
sneaxiy 已提交
30
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
31
from .tensor import concat, assign, fill_constant
32
from . import utils
F
fengjiayi 已提交
33
from .. import unique_name
34
from functools import reduce
35
from .. import core
L
lujun 已提交
36
from ..dygraph import layers
Y
Yu Yang 已提交
37 38

__all__ = [
X
Xin Pan 已提交
39
    'fc',
H
HaoRen 已提交
40
    'center_loss',
X
Xin Pan 已提交
41 42 43 44 45 46 47 48 49
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
50
    'bpr_loss',
X
Xin Pan 已提交
51 52 53 54 55 56 57 58 59 60
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
61 62
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
63
    'batch_norm',
H
heqiaozhi 已提交
64
    'data_norm',
X
Xin Pan 已提交
65 66 67 68 69 70
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
71
    'sequence_unpad',
X
Xin Pan 已提交
72 73 74 75 76 77
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
Z
zhoukunsheng 已提交
78 79
    'reduce_all',
    'reduce_any',
X
Xin Pan 已提交
80 81
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
82
    'sequence_slice',
X
Xin Pan 已提交
83 84 85 86 87 88 89 90 91 92 93 94
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
95
    'sampled_softmax_with_cross_entropy',
X
Xin Pan 已提交
96 97 98 99 100
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
101
    'group_norm',
D
dengkaipeng 已提交
102
    'spectral_norm',
X
Xin Pan 已提交
103 104 105 106 107 108 109 110
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
111
    'lod_append',
X
Xin Pan 已提交
112 113 114 115 116
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
117
    'roi_align',
X
Xin Pan 已提交
118 119 120 121
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
K
Kaipeng Deng 已提交
122
    'resize_trilinear',
123
    'resize_nearest',
X
Xin Pan 已提交
124 125 126 127 128 129
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
130
    'selu',
X
Xin Pan 已提交
131 132 133
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
134
    'margin_rank_loss',
X
Xin Pan 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
Z
zhoukunsheng 已提交
151
    'unique',
152
    'unique_with_counts',
X
Xin Pan 已提交
153 154 155 156 157 158 159 160 161 162
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
Z
zhoukunsheng 已提交
163 164
    'elementwise_mod',
    'elementwise_floordiv',
X
Xin Pan 已提交
165 166 167 168 169 170 171
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
Z
zhoukunsheng 已提交
172
    'rank',
Z
zhoukunsheng 已提交
173
    'size',
X
Xin Pan 已提交
174 175 176 177 178 179 180 181 182 183
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
184
    'space_to_depth',
W
whs 已提交
185
    'affine_grid',
S
sneaxiy 已提交
186
    'sequence_reverse',
187
    'affine_channel',
B
barrierye 已提交
188
    'similarity_focus',
M
minqiyang 已提交
189
    'hash',
D
dengkaipeng 已提交
190
    'grid_sampler',
G
gmcather 已提交
191 192
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
193
    'bilinear_tensor_product',
C
chengduo 已提交
194 195
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
196
    'lstm',
S
shippingwang 已提交
197
    'shuffle_channel',
198
    'temporal_shift',
S
sneaxiy 已提交
199
    'py_func',
200
    'psroi_pool',
H
heqiaozhi 已提交
201
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
202
    'huber_loss',
D
dengkaipeng 已提交
203
    'kldiv_loss',
Z
zhaozhehao 已提交
204
    'tree_conv',
C
ceci3 已提交
205
    'npair_loss',
R
ruri 已提交
206
    'pixel_shuffle',
207
    'fsp_matrix',
H
heqiaozhi 已提交
208
    'continuous_value_model',
Z
zhoukunsheng 已提交
209
    'where',
Z
zhoukunsheng 已提交
210
    'sign',
211
    'deformable_conv',
212
    'unfold',
C
cjt222 已提交
213
    'deformable_roi_pooling',
J
Jiawei Wang 已提交
214
    'filter_by_instag',
K
Kevin 已提交
215
    'var_conv_2d',
216
    'shard_index',
H
huangjun12 已提交
217
    'hard_swish',
Y
Yu Yang 已提交
218 219
]

J
jerrywgz 已提交
220 221
kIgnoreIndex = -100

Y
Yu Yang 已提交
222 223 224 225 226 227 228

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
229
       is_test=False,
230
       name=None):
Y
Yu Yang 已提交
231
    """
232
    **Fully Connected Layer**
Y
Yu Yang 已提交
233

234
    This function creates a fully connected layer in the network. It can take
235
    one or multiple tensors as its inputs(input can be a list of Variable, see
A
Aurelius84 已提交
236
    Args in detail). It creates a variable called weights for each input tensor,
237 238 239 240
    which represents a fully connected weight matrix from each input unit to
    each output unit. The fully connected layer multiplies each input tensor
    with its corresponding weight to produce an output Tensor with shape [M, `size`],
    where M is batch size. If multiple input tensors are given, the results of
A
Aurelius84 已提交
241
    multiple output tensors with shape [M, `size`] will be summed up. If bias_attr
242 243
    is not None, a bias variable will be created and added to the output.
    Finally, if activation is not None, it will be applied to the output as well.
C
caoying03 已提交
244

245
    When the input is single tensor:
C
caoying03 已提交
246

247 248 249 250 251
    .. math::

        Out = Act({XW + b})

    When the input are multiple tensors:
252 253 254

    .. math::

255
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
256 257 258

    In the above equation:

259 260 261
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
262
    * :math:`b`: The bias parameter created by this layer (if needed).
263
    * :math:`Act`: The activation function.
C
caoying03 已提交
264
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
265

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
    See below for an example.

    .. code-block:: text

        Given:
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
284
    Args:
R
ranqiu 已提交
285 286 287 288 289 290 291 292 293 294
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
295
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
296 297 298 299
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
300 301
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
302
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
303
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
304
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
305

306
    Returns:
F
fengjiayi 已提交
307
        Variable: The transformation result.
308 309

    Raises:
C
caoying03 已提交
310
        ValueError: If rank of the input tensor is less than 2.
311 312 313 314

    Examples:
        .. code-block:: python

315
          import paddle.fluid as fluid
316
          # when input is single tensor
F
fengjiayi 已提交
317
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
318
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
319 320 321 322 323

          # when input are multiple tensors
          data_1 = fluid.layers.data(name="data_1", shape=[32, 32], dtype="float32")
          data_2 = fluid.layers.data(name="data_2", shape=[24, 36], dtype="float32")
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
324
    """
C
caoying03 已提交
325
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
326 327 328 329

    dtype = helper.input_dtype()

    mul_results = []
330 331
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
332 333 334
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
335

Y
Yu Yang 已提交
336
        w = helper.create_parameter(
337
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
338
        tmp = helper.create_variable_for_type_inference(dtype)
339
        helper.append_op(
340 341 342
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
343
            outputs={"Out": tmp},
M
mozga-intel 已提交
344 345
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
346 347 348 349
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
350
    else:
X
Xin Pan 已提交
351
        pre_bias = helper.create_variable_for_type_inference(dtype)
352
        helper.append_op(
353 354 355
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
356
            attrs={"use_mkldnn": False})
357 358 359 360
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
361 362


H
HaoRen 已提交
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
def center_loss(input,
                label,
                num_classes,
                alpha,
                param_attr,
                update_center=True):
    """
    **Center loss Cost layer**
    
    This layer accepts input (deep features,the output of the last hidden layer)
    and target label and return the center loss cost
    
    For deep features, :math:`X`, and target labels, :math:`Y`, the equation is:
    
    .. math::

        Out = \\frac{1}{2}(X - Y)^2

    Args:
        input (Variable): a 2-D tensor with shape[N x M].
        label (Variable): the groud truth which is a 2-D tensor
                         with shape[N x 1],where N is the batch size.
        num_classes (int): the number of classification categories.
        alpha (float|Variable): learning rate of centers.
        param_attr (ParamAttr): Attribute initializer of centers. 
        update_center (bool): whether to update value of center.

    Returns:
        Variable: 2-D tensor with shape [N * 1] 

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid 

          input = fluid.layers.data(name='x',shape=[20,30],dtype='float32')
          label = fluid.layers.data(name='y',shape=[20,1],dtype='int64')
          num_classes = 1000
          alpha = 0.01
          param_attr = fluid.initializer.Xavier(uniform=False)
          center_loss=fluid.layers.center_loss(input=input,
                 label=label,
                 num_classes=1000,
                 alpha=alpha,
                 param_attr=fluid.initializer.Xavier(uniform=False),
                 update_center=True)
    """
    helper = LayerHelper('center_loss', **locals())
    dtype = helper.input_dtype()
    centers_shape = [num_classes, input.shape[1]]
    centers_param = helper.create_parameter(
        attr=param_attr, shape=centers_shape, dtype=dtype)
    centers_param.stop_gradient = True
    if isinstance(alpha, Variable):
        alpha_param = alpha
    else:
        assert isinstance(alpha, float)
        alpha_param = helper.create_variable(
            name="centerloss_alpha",
            shape=[1],
            dtype="float32",
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=True,
            stop_gradient=True,
            initializer=Constant(alpha))

    centersdiff = helper.create_variable_for_type_inference(dtype=input.dtype)
    loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='center_loss',
        inputs={
            'X': [input],
            'Label': [label],
            'Centers': [centers_param],
            'CenterUpdateRate': [alpha_param]
        },
        outputs={
            'SampleCenterDiff': [centersdiff],
            'Loss': [loss],
            'CentersOut': [centers_param]
        },
        attrs={'cluster_num': num_classes,
               'need_update': update_center})
    return loss


449 450 451
def embedding(input,
              size,
              is_sparse=False,
452
              is_distributed=False,
453 454 455
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
456
    """
457 458
    **Embedding Layer**

459
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
460 461
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
462 463 464

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
465 466

    Args:
467
        input(Variable): Input is a Tensor<int64> Variable, which contains the IDs information.
K
Kevin 已提交
468
            The value of the input IDs should satisfy :math:`0<= id < size[0]`.
469 470 471 472
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
473
        is_distributed(bool): Whether to run lookup table from remote parameter server.
K
Kevin 已提交
474 475 476 477 478 479 480 481
        padding_idx(int|long|None): It will output all-zero padding data whenever
            lookup encounters :math:`padding\_idx` in Ids. If set :attr:`None`, it makes
            no effect to output. If :math:`padding\_idx < 0`, the :math:`padding\_idx`
            will automatically be converted to :math:`size[0] + padding\_idx` to use.
            Default: None.
        param_attr(ParamAttr): Parameters for this layer.
        dtype(np.dtype|core.VarDesc.VarType|str): The dtype refers to the data type of output
            tensor. It can be float32, float_16, int etc.
Y
Yu Yang 已提交
482

483 484 485
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
486

487 488
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
489

B
bdzhuxiaoning 已提交
490 491 492
          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.embedding(input=data, size=[128, 64])    
Y
Yu Yang 已提交
493 494 495
    """

    helper = LayerHelper('embedding', **locals())
496
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
497 498
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
499 500
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
501
    tmp = helper.create_variable_for_type_inference(dtype)
502 503
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
504 505 506 507 508
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
509 510 511
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
512
            'remote_prefetch': remote_prefetch,
513 514
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
515 516 517
    return tmp


W
wopeizl 已提交
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
534

W
wopeizl 已提交
535 536 537 538 539 540 541 542 543 544 545
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
546

W
wopeizl 已提交
547 548 549 550
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
551

W
wopeizl 已提交
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python
588
            
589
            import paddle.fluid as fluid
590 591
            emb_dim = 256
            vocab_size = 10000
W
wopeizl 已提交
592
            hidden_dim = 512
593 594 595 596 597 598
            
            data = fluid.layers.data(name='x', shape=[1],
                         dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)

            forward_proj = fluid.layers.fc(input=emb, size=hidden_dim * 4,
W
wopeizl 已提交
599
                                           bias_attr=False)
600

W
wopeizl 已提交
601 602 603
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
L
lujun 已提交
604
    assert in_dygraph_mode(
605
    ) is not True, "please use lstm instead of dynamic_lstm in dygraph mode!"
W
wopeizl 已提交
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
649 650


P
phlrain 已提交
651 652 653 654 655 656
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
657
         dropout_prob=0.0,
P
phlrain 已提交
658 659 660 661 662
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
663
    """
P
phlrain 已提交
664
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
665 666

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
667
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
668 669
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
670
    .. math::
M
minqiyang 已提交
671 672 673 674 675 676 677

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
678
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
679 680 681 682

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
683 684

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
685 686 687 688 689 690
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
691 692 693
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
694
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
695

M
minqiyang 已提交
696
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
697 698 699 700 701
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
702
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
703 704 705 706 707
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
708
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
709 710
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
711 712
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
713 714 715 716 717 718
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
719
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
720

L
liuhongyu 已提交
721 722

    Returns:
M
minqiyang 已提交
723 724
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
725
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
726

H
haowang101779990 已提交
727 728 729 730
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
731
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
732 733
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
734
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
735 736 737 738


    Examples:
        .. code-block:: python
739
            
740 741 742
            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

743 744 745 746 747
            emb_dim = 256
            vocab_size = 10000
            data = fluid.layers.data(name='x', shape=[-1, 100, 1],
                         dtype='int32')
            emb = fluid.layers.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)
L
liuhongyu 已提交
748 749 750 751 752 753
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
754 755 756 757 758
            init_h = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
            init_c = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
            rnn_out, last_h, last_c = layers.lstm( emb, init_h, init_c, \
                    max_len, hidden_size, num_layers, \
                    dropout_prob=dropout_prob)
L
liuhongyu 已提交
759 760 761 762
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
763 764 765
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
825 826 827 828 829 830 831 832 833 834
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
X
xuezhong 已提交
835
                  proj_activation='tanh',
836
                  dtype='float32',
X
xuezhong 已提交
837 838 839 840 841
                  name=None,
                  h_0=None,
                  c_0=None,
                  cell_clip=None,
                  proj_clip=None):
Y
Yibing Liu 已提交
842 843 844
    """
    **Dynamic LSTMP Layer**

845 846 847 848 849 850
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
851 852 853 854 855

    The formula is as follows:

    .. math::

856
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
857

858
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
859

860
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
861

862
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
863

864
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
865

866
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
867

868
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
869

Y
Yibing Liu 已提交
870 871 872 873 874 875
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
翟飞跃 已提交
876
          we use vectors to represent these diagonal weight matrices.
Y
Yibing Liu 已提交
877
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
878
          bias vector).
Y
Yibing Liu 已提交
879 880 881
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
882
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
883
    * :math:`h`: The hidden state.
884
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
885 886
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
887
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
888
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
889
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
890 891
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
892 893 894 895

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
896

Y
Yibing Liu 已提交
897 898 899 900 901 902 903 904 905 906 907 908
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
909
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
910 911
                               hidden-hidden weight and projection weight.

912 913
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
914 915
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
916 917
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
918
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
919 920 921 922 923

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
924
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
925 926 927 928 929 930
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
931
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
932 933 934
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
935
                                - The shape is (1 x 7D).
C
chengduo 已提交
936 937 938 939 940

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
941 942 943 944 945 946 947 948 949
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
950
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
951 952
                              default "tanh".
        proj_activation(str): The activation for projection output.
953
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
X
xuezhong 已提交
954
                              default "tanh".
Y
Yibing Liu 已提交
955
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
956 957
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
X
xuezhong 已提交
958 959 960 961 962 963 964 965 966 967 968
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the projection size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        cell_clip(float): If provided the cell state is clipped
                             by this value prior to the cell output activation.
        proj_clip(float): If `num_proj > 0` and `proj_clip` is
                            provided, then the projected values are clipped elementwise to within
                            `[-proj_clip, proj_clip]`.
Y
Yibing Liu 已提交
969 970

    Returns:
971 972 973 974
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
975 976

    Examples:
977

Y
Yibing Liu 已提交
978 979
        .. code-block:: python

980
            import paddle.fluid as fluid
981 982 983 984
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
985
            hidden_dim, proj_dim = 512, 256
986
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
987
                                     act=None, bias_attr=None)
988 989 990
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
991 992 993 994
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
995
    """
996

L
lujun 已提交
997
    assert in_dygraph_mode(
998 999
    ) is not True, "please use lstm instead of dynamic_lstmp in dygraph mode!"

C
chengduo 已提交
1000
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
1001
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
1002
    size = size // 4
Y
Yibing Liu 已提交
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
1013 1014 1015 1016 1017 1018
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
    inputs = {
        'Input': input,
        'Weight': weight,
        'ProjWeight': proj_weight,
        'Bias': bias
    }
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, proj_size), \
            'The shape of h0 should be (batch_size, %d)' % proj_size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yibing Liu 已提交
1034

X
xuezhong 已提交
1035 1036 1037 1038 1039
    if cell_clip:
        assert cell_clip >= 0, "cell_clip should not be negtive."
    if proj_clip:
        assert proj_clip >= 0, "proj_clip should not be negtive."

Y
Yibing Liu 已提交
1040 1041
    helper.append_op(
        type='lstmp',
1042
        inputs=inputs,
Y
Yibing Liu 已提交
1043 1044 1045 1046 1047 1048 1049 1050 1051
        outputs={
            'Projection': projection,
            'Cell': cell,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
1052 1053
            'cell_clip': cell_clip,
            'proj_clip': proj_clip,
Y
Yibing Liu 已提交
1054 1055 1056 1057 1058 1059 1060 1061 1062
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
1063 1064 1065 1066 1067 1068 1069
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
1070 1071
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
1072
    """
1073
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
1074

1075 1076 1077
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
1078

G
guosheng 已提交
1079 1080 1081 1082 1083 1084 1085 1086 1087
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
1088

G
guosheng 已提交
1089
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
1090

Q
Qiao Longfei 已提交
1091 1092 1093

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
1106
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
1107 1108
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
1109 1110 1111 1112
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
1113
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
1114 1115

    Args:
1116 1117
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
1118
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
1119
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
1120 1121
            is the hidden size.
        size(int): The dimension of the gru cell.
1122
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
1123 1124
            hidden-hidden weight matrix. Note:

1125
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
1126
              :math:`D` is the hidden size.
1127
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
1128
              The first part are weights of the update gate and reset gate with
1129
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
1130
              candidate hidden state with shape :math:`(D \\times D)`.
1131 1132 1133 1134 1135

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1136
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1137
            the bias in the update gate, reset gate and candidate calculations.
1138 1139 1140
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
1141 1142
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1143
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
1144 1145 1146
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
1147
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
1148
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
1149 1150 1151 1152
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
1153 1154

    Returns:
G
guosheng 已提交
1155
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
1156
            and sequence length is the same with the input.
1157

G
guosheng 已提交
1158
    Examples:
1159

G
guosheng 已提交
1160 1161
        .. code-block:: python

1162 1163
            import paddle.fluid as fluid

1164 1165 1166 1167
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
1168
            hidden_dim = 512
1169
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
1170
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
1171 1172
    """

L
lujun 已提交
1173
    assert in_dygraph_mode(
1174 1175
    ) is not True, "please use gru instead of dynamic_gru in dygraph mode!"

G
guosheng 已提交
1176 1177 1178 1179 1180 1181 1182
    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
1183
    batch_size = input.shape[0]
G
guosheng 已提交
1184
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
1185
    if h_0:
G
guosheng 已提交
1186
        assert h_0.shape == (
Y
Yancey 已提交
1187 1188 1189
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
1190

X
Xin Pan 已提交
1191 1192 1193 1194
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1208 1209
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1210 1211 1212 1213
        })
    return hidden


Y
Yu Yang 已提交
1214 1215 1216
def gru_unit(input,
             hidden,
             size,
1217 1218
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1219
             activation='tanh',
Q
Qiao Longfei 已提交
1220 1221
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1222
    """
1223 1224 1225
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1226
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1227
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1228

1229 1230
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1231

1232
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1233

1234
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1235

1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1251 1252

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1253 1254 1255
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1256 1257
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1258 1259
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1260 1261 1262
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1263 1264 1265

    Args:
        input (Variable): The fc transformed input value of current step.
1266
        hidden (Variable): The hidden value of gru unit from previous step.
1267
        size (integer): The input dimension value.
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1282
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1283
            the bias in the update gate, reset gate and candidate calculations.
1284 1285 1286
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1287 1288
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1289 1290 1291 1292
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1293

1294 1295 1296 1297 1298 1299
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1300

1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
            import paddle.fluid as fluid

            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='step_data', shape=[1], dtype='int32')
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
            hidden_dim = 512
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
            pre_hidden = fluid.layers.data(
                name='pre_hidden', shape=[hidden_dim], dtype='float32')
            hidden = fluid.layers.gru_unit(
                input=x, hidden=pre_hidden, size=hidden_dim * 3)
Y
Yu Yang 已提交
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1324
    size = size // 3
Y
Yu Yang 已提交
1325 1326

    # create weight
1327 1328
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1329

X
Xin Pan 已提交
1330 1331 1332
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1333
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1334
    # create bias
1335
    if helper.bias_attr:
Y
Yu Yang 已提交
1336 1337 1338
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1339
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1340 1341 1342

    helper.append_op(
        type='gru_unit',
1343
        inputs=inputs,
Y
Yu Yang 已提交
1344 1345 1346 1347 1348 1349
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1350 1351
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1352 1353 1354 1355 1356
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1357
@templatedoc()
1358
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1359 1360 1361 1362 1363 1364 1365
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1366
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1367 1368 1369 1370
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1371 1372 1373
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1374

J
JesseyXujin 已提交
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
    Examples:
        .. code-block:: python

             import paddle.fluid as fluid
             emission = fluid.layers.data(name='emission', shape=[1000], dtype='float32')
             target = fluid.layers.data(name='target', shape=[1], dtype='int32')
             crf_cost = fluid.layers.linear_chain_crf(
                 input=emission,
                 label=target,
                 param_attr=fluid.ParamAttr(
                     name='crfw',
                     learning_rate=0.2))

Y
yuyang18 已提交
1388
    """
Y
Yu Yang 已提交
1389 1390 1391 1392 1393 1394
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1395 1396 1397 1398 1399 1400 1401 1402
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1418 1419 1420 1421
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1422

W
wopeizl 已提交
1423 1424
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1425

W
wopeizl 已提交
1426
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1427

W
wopeizl 已提交
1428
        label(${label_type}): ${label_comment}
1429

W
wopeizl 已提交
1430 1431
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1432

W
wopeizl 已提交
1433 1434
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1435

1436
           import paddle.fluid as fluid
Y
Yibing Liu 已提交
1437 1438 1439 1440 1441 1442 1443
           images = fluid.layers.data(name='pixel', shape=[784], dtype='float32')
           label = fluid.layers.data(name='label', shape=[1], dtype='int32')
           hidden = fluid.layers.fc(input=images, size=2)
           crf = fluid.layers.linear_chain_crf(input=hidden, label=label, 
                     param_attr=fluid.ParamAttr(name="crfw"))
           crf_decode = fluid.layers.crf_decoding(input=hidden, 
                     param_attr=fluid.ParamAttr(name="crfw"))
W
wopeizl 已提交
1444 1445 1446 1447 1448 1449 1450 1451
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1452
                "Transition": transition,
W
wopeizl 已提交
1453 1454
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1455

W
wopeizl 已提交
1456
    return viterbi_path
Y
Yu Yang 已提交
1457 1458


Y
yi.wu 已提交
1459
@templatedoc()
F
fengjiayi 已提交
1460
def cos_sim(X, Y):
Y
Yu Yang 已提交
1461
    """
Y
yi.wu 已提交
1462 1463 1464
    ${comment}

    Args:
1465 1466
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1467

Y
yi.wu 已提交
1468
    Returns:
1469
        Variable: the output of cosine(X, Y).
L
lvmengsi 已提交
1470 1471 1472 1473

    Examples:
        .. code-block:: python

1474
            import paddle.fluid as fluid
L
lvmengsi 已提交
1475 1476 1477
            x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
            y = fluid.layers.data(name='y', shape=[1, 7], dtype='float32', append_batch_size=False)
            out = fluid.layers.cos_sim(x, y)
Y
Yu Yang 已提交
1478
    """
F
fengjiayi 已提交
1479
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1480 1481 1482
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1493 1494 1495 1496 1497
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1498
            dropout_implementation="downgrade_in_infer"):
1499 1500 1501 1502 1503
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1504
    training. The dropout operator randomly sets (according to the given dropout
1505 1506 1507
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1508 1509
    dropout op can be removed from the program to make the program more efficient.

1510
    Args:
1511 1512
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1513 1514 1515 1516 1517 1518 1519
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1520 1521
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1522
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1523 1524

                                           - train: out = input * mask
C
ceci3 已提交
1525
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
1526 1527 1528

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1529
                                        2. upscale_in_train, upscale the outcome at training time
1530

H
haowang101779990 已提交
1531 1532
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1533

H
haowang101779990 已提交
1534 1535
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1536

M
minqiyang 已提交
1537

1538
    Returns:
1539
        Variable: A tensor variable is the shape with `x`.
1540 1541

    Examples:
1542

1543 1544
        .. code-block:: python

1545
            import paddle.fluid as fluid
1546 1547
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1548 1549
    """

F
fengjiayi 已提交
1550
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1551 1552
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
Z
Zeng Jinle 已提交
1553
        dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)
C
chengduo 已提交
1554 1555 1556 1557

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1558 1559 1560 1561 1562
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1563 1564 1565 1566
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
L
lvmengsi 已提交
1567
            'seed': seed if seed is not None else 0,
P
phlrain 已提交
1568
            'dropout_implementation': dropout_implementation,
1569
        })
1570 1571 1572
    return out


J
jerrywgz 已提交
1573
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1574
    """
Y
Yibing Liu 已提交
1575 1576
    **Cross Entropy Layer**

1577 1578 1579
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1580 1581

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1582
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1583

Y
Yibing Liu 已提交
1584
        .. math::
Y
yangyaming 已提交
1585

Y
Yibing Liu 已提交
1586 1587 1588
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1589 1590
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1591 1592 1593 1594 1595

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1596
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1597 1598 1599
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1600 1601
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1602
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1603

Y
Yibing Liu 已提交
1604
    Args:
Y
yangyaming 已提交
1605
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1606 1607 1608 1609
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1610
        label (Variable|list): the ground truth which is a 2-D tensor. When
1611 1612 1613 1614
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1615
        soft_label (bool): a flag indicating whether to
1616
                                           interpretate the given labels as soft
1617
                                           labels. Default: `False`.
M
minqiyang 已提交
1618 1619
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1620
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1621 1622 1623 1624 1625

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1626 1627 1628
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1629

H
haowang101779990 已提交
1630 1631
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1632

H
haowang101779990 已提交
1633 1634
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1635 1636 1637 1638

    Examples:
        .. code-block:: python

1639
          import paddle.fluid as fluid
L
lvmengsi 已提交
1640 1641 1642 1643
          classdim = 7
          x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
          label = fluid.layers.data(name='label', shape=[3, 1], dtype='float32', append_batch_size=False)
          predict = fluid.layers.fc(input=x, size=classdim, act='softmax')
Y
Yibing Liu 已提交
1644
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1645
    """
S
sneaxiy 已提交
1646 1647
    if not soft_label:
        return cross_entropy2(input, label, ignore_index)
F
fengjiayi 已提交
1648
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1649
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1650 1651 1652 1653 1654
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1655 1656
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1657 1658 1659
    return out


S
sneaxiy 已提交
1660 1661 1662 1663
def cross_entropy2(input, label, ignore_index=kIgnoreIndex):
    helper = LayerHelper('cross_entropy2', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    xshape = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1664
    match_x = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1665 1666 1667 1668 1669
    helper.append_op(
        type='cross_entropy2',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out],
S
sneaxiy 已提交
1670
                 'MatchX': [match_x],
S
sneaxiy 已提交
1671 1672 1673 1674 1675
                 'XShape': [xshape]},
        attrs={'ignore_index': ignore_index})
    return out


F
frankwhzhang 已提交
1676
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1677
    """
1678
    **Bayesian Personalized Ranking Loss Operator**
F
frankwhzhang 已提交
1679

1680
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1681
    The loss at a given point in one session is defined as:
1682 1683 1684

    .. math::
        Y[i] = 1/(N[i] - 1) * \sum_j{\log(\sigma(X[i, Label[i]]-X[i, j]))}
F
frankwhzhang 已提交
1685 1686

    Learn more details by reading paper <session-based recommendations with recurrent
1687
    neural networks>.
F
frankwhzhang 已提交
1688

1689 1690 1691 1692 1693 1694
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1695 1696
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1697 1698 1699
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1700 1701 1702
    Examples:
        .. code-block:: python

1703 1704 1705 1706 1707 1708 1709
          import paddle.fluid as fluid

          neg_size = 10
          label = fluid.layers.data(
                    name="label", shape=[1], dtype="int64")
          predict = fluid.layers.data(
                    name="predict", shape=[neg_size + 1], dtype="float32")
1710
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1711
    """
1712 1713 1714 1715 1716
    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1717
                'Label': [label]},
1718 1719 1720 1721
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1722
def square_error_cost(input, label):
Y
Yu Yang 已提交
1723
    """
1724 1725
    **Square error cost layer**

1726 1727
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1728

1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1742 1743
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1744 1745

    Returns:
G
guosheng 已提交
1746
        Variable: The tensor variable storing the element-wise squared error \
1747
                  difference of input and label.
1748 1749 1750 1751

    Examples:
        .. code-block:: python

1752
          import paddle.fluid as fluid
R
ruri 已提交
1753 1754 1755
          y = fluid.layers.data(name='y', shape=[1], dtype='float32')
          y_predict = fluid.layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = fluid.layers.square_error_cost(input=y_predict, label=y)
1756

Y
Yu Yang 已提交
1757
    """
F
fengjiayi 已提交
1758
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1759
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1760 1761 1762 1763 1764 1765
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1766
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1767
    helper.append_op(
F
fengjiayi 已提交
1768 1769
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1770 1771 1772
    return square_out


Y
yi.wu 已提交
1773
@templatedoc()
Y
Yu Yang 已提交
1774 1775 1776 1777
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
1778 1779
               excluded_chunk_types=None,
               seq_length=None):
Y
Yu Yang 已提交
1780
    """
Y
yi.wu 已提交
1781
    **Chunk Evaluator**
Y
yi.wu 已提交
1782

Y
yangyaming 已提交
1783
    This function computes and outputs the precision, recall and
1784
    F1-score of chunk detection.
Y
yi.wu 已提交
1785

M
minqiyang 已提交
1786
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1787
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1788 1789 1790 1791 1792 1793

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1794

Y
yi.wu 已提交
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1820

Y
yi.wu 已提交
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1845
    Args:
1846 1847 1848 1849 1850
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
1851
        seq_length(Variable): 1-D Tensor specifying sequence length when input and label are Tensor type.
F
fengjiayi 已提交
1852

Y
yi.wu 已提交
1853
    Returns:
Y
update  
yi.wu 已提交
1854 1855 1856
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1857

Y
yi.wu 已提交
1858 1859 1860
    Examples:
        .. code-block:: python

1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
            import paddle.fluid as fluid

            dict_size = 10000
            label_dict_len = 7
            sequence = fluid.layers.data(
                name='id', shape=[1], lod_level=1, dtype='int64')
            embedding = fluid.layers.embedding(
                input=sequence, size=[dict_size, 512])
            hidden = fluid.layers.fc(input=embedding, size=512)
            label = fluid.layers.data(
                name='label', shape=[1], lod_level=1, dtype='int32')
Y
yi.wu 已提交
1872
            crf = fluid.layers.linear_chain_crf(
1873
                input=hidden, label=label, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
1874
            crf_decode = fluid.layers.crf_decoding(
1875
                input=hidden, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
1876 1877 1878 1879 1880
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1881
    """
F
fengjiayi 已提交
1882
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1883 1884

    # prepare output
X
Xin Pan 已提交
1885 1886 1887 1888 1889 1890 1891
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1892

1893 1894 1895 1896 1897
    this_input = {"Inference": [input], "Label": [label]}

    if seq_length:
        this_input["SeqLength"] = [seq_length]

Y
Yu Yang 已提交
1898 1899
    helper.append_op(
        type="chunk_eval",
1900
        inputs=this_input,
Y
Yu Yang 已提交
1901 1902 1903
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1904 1905 1906 1907
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1908 1909 1910
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1911 1912
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1913
        })
1914 1915
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1916 1917


1918
@templatedoc()
Y
Yu Yang 已提交
1919 1920 1921 1922 1923 1924 1925
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1926 1927
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1928 1929 1930 1931
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1932 1933 1934 1935 1936 1937 1938

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1952

1953 1954
    Returns:
        Variable: output of sequence_conv
B
bdzhuxiaoning 已提交
1955 1956 1957 1958 1959 1960 1961

    Examples:
        .. code-block:: python

             import paddle.fluid as fluid
             x = fluid.layers.data(name='x', shape=[10,10], append_batch_size=False, dtype='float32')
             x_conved = fluid.layers.sequence_conv(x,2)
Y
Yu Yang 已提交
1962 1963
    """

L
lujun 已提交
1964
    assert not in_dygraph_mode(), (
1965
        "sequence layer is not supported in dygraph mode yet.")
Y
Yu Yang 已提交
1966 1967 1968 1969 1970
    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1971
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1982
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1983 1984 1985 1986 1987 1988
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1989
def sequence_softmax(input, use_cudnn=False, name=None):
1990 1991 1992
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1993
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
2010 2011 2012
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
2013

2014 2015 2016 2017 2018 2019 2020
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

2021
             import paddle.fluid as fluid
2022 2023 2024 2025
             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
L
lujun 已提交
2026
    assert not in_dygraph_mode(), (
2027
        "sequence layer is not supported in dygraph mode yet.")
2028 2029
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2030
    softmax_out = helper.create_variable_for_type_inference(dtype)
2031 2032 2033 2034 2035 2036 2037 2038
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


D
dengkaipeng 已提交
2039
def softmax(input, use_cudnn=False, name=None, axis=-1):
Q
qiaolongfei 已提交
2040
    """
2041
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
2042
    has the same shape as the input.
Q
qiaolongfei 已提交
2043

D
dengkaipeng 已提交
2044
    The dimension :attr:`axis` of the input tensor will be permuted to the last.
D
dengkaipeng 已提交
2045
    Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
D
dengkaipeng 已提交
2046
    second dimension(row length) is the same as the dimension :attr:`axis` of the input
2047 2048 2049
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
D
dengkaipeng 已提交
2050
    of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
F
fengjiayi 已提交
2051
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
2052 2053 2054 2055 2056 2057 2058

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
2059
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
2060 2061 2062 2063 2064 2065 2066 2067

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
J
jerrywgz 已提交
2068 2069
            library is installed. To improve numerical stablity, set use_cudnn to \
            False by default. Default: False
C
chengduo 已提交
2070 2071
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
D
dengkaipeng 已提交
2072 2073 2074
        axis (int): The index of dimension to perform softmax calculations, it should
            be in range :math:`[-1, rank - 1]`, while :math:`rank` is the rank of
            input variable. Default: -1.
Q
qiaolongfei 已提交
2075 2076 2077 2078 2079 2080 2081 2082

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

J
JesseyXujin 已提交
2083 2084
             import paddle.fluid as fluid
             x = fluid.layers.data(name='x', shape=[2], dtype='float32')
Q
qiaolongfei 已提交
2085
             fc = fluid.layers.fc(input=x, size=10)
D
dengkaipeng 已提交
2086
             # perform softmax in the second dimension
D
dengkaipeng 已提交
2087
             softmax = fluid.layers.softmax(input=fc, axis=1)
D
dengkaipeng 已提交
2088 2089
             # perform softmax in the last dimension
             softmax = fluid.layers.softmax(input=fc, axis=-1)
Q
qiaolongfei 已提交
2090 2091

    """
2092 2093
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2094
    softmax_out = helper.create_variable_for_type_inference(dtype)
2095 2096 2097 2098
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
D
dengkaipeng 已提交
2099 2100
        attrs={"axis": axis,
               "use_cudnn": use_cudnn})
2101 2102 2103
    return softmax_out


Y
Yu Yang 已提交
2104 2105 2106
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
2107 2108
           stride=1,
           padding=0,
2109
           dilation=1,
Y
Yu Yang 已提交
2110 2111 2112
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
2113
           use_cudnn=True,
2114 2115
           act=None,
           name=None):
Y
Yu Yang 已提交
2116
    """
C
chengduoZH 已提交
2117
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
2118 2119
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
2120
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
2121 2122 2123 2124 2125 2126 2127
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
2128 2129 2130
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
2131

2132
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
2133

C
chengduoZH 已提交
2134 2135
    .. math::

C
refine  
chengduoZH 已提交
2136
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
2137

T
tensor-tang 已提交
2138
    Where:
C
chengduoZH 已提交
2139

2140 2141 2142 2143 2144
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
2145
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2146 2147 2148

    Example:

2149 2150
        - Input:

W
weixing02 已提交
2151
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
2152

W
weixing02 已提交
2153
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
2154

2155
        - Output:
T
tensor-tang 已提交
2156

W
weixing02 已提交
2157
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
2158

C
chengduoZH 已提交
2159
        Where
2160 2161

        .. math::
C
chengduoZH 已提交
2162

W
weixing02 已提交
2163 2164
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
2165 2166

    Args:
2167
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
2168
        num_filters(int): The number of filter. It is as same as the output
2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
2186 2187 2188 2189 2190
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
2191
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
2192 2193 2194 2195 2196
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2197 2198
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2199 2200
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
2201
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2202
            will be named automatically. Default: None
C
chengduoZH 已提交
2203 2204

    Returns:
G
guosheng 已提交
2205
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
2206 2207
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
2208
    Raises:
2209 2210
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
2211

C
chengduoZH 已提交
2212 2213 2214
    Examples:
        .. code-block:: python

2215
          import paddle.fluid as fluid
2216 2217
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
2218 2219 2220
    """

    num_channels = input.shape[1]
C
chengduo 已提交
2221
    assert param_attr is not False, "param_attr should not be False here."
2222
    l_type = 'conv2d'
X
xzl 已提交
2223 2224
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
2225
        l_type = 'depthwise_conv2d'
2226 2227 2228 2229

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
2230 2231 2232 2233 2234
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2235
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
2236

C
chengduoZH 已提交
2237 2238 2239
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
2240
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
2241

C
chengduoZH 已提交
2242 2243
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2244 2245

    input_shape = input.shape
M
minqiyang 已提交
2246
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
2247 2248

    def _get_default_param_initializer():
C
chengduo 已提交
2249 2250
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
2251 2252 2253 2254 2255 2256 2257 2258
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2259
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2260

2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
2275
    helper.append_op(
2276
        type=l_type,
Y
Yu Yang 已提交
2277 2278 2279 2280 2281
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
2282 2283 2284
        attrs={
            'strides': stride,
            'paddings': padding,
2285
            'dilations': dilation,
C
chengduoZH 已提交
2286
            'groups': groups,
2287
            'use_cudnn': use_cudnn,
2288
            'use_mkldnn': False,
2289
            'fuse_relu_before_depthwise_conv': False
C
chengduoZH 已提交
2290
        })
Y
Yu Yang 已提交
2291 2292 2293 2294 2295 2296

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
2314 2315 2316 2317 2318 2319
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2320 2321 2322 2323 2324 2325 2326 2327 2328

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2329 2330
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2331 2332 2333
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2334
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
2357
        num_filters(int): The number of filter. It is as same as the output
C
chengduoZH 已提交
2358 2359
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2360
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2361 2362
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2363
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2364 2365
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2366
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2367 2368
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2369
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2370 2371 2372 2373 2374 2375
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2386 2387
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2388 2389
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2390
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2391
            will be named automatically. Default: None.
C
chengduoZH 已提交
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2404
          import paddle.fluid as fluid
2405 2406
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2407 2408 2409
    """

    l_type = 'conv3d'
C
chengduo 已提交
2410
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2421
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2435 2436 2437
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2438 2439 2440 2441 2442 2443 2444 2445
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2446
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2461
            'use_mkldnn': False
C
chengduoZH 已提交
2462 2463
        })

2464
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2465 2466 2467 2468

    return helper.append_activation(pre_act)


2469
def sequence_pool(input, pool_type, is_test=False, pad_value=0.0):
Y
Yu Yang 已提交
2470
    """
Y
yangyaming 已提交
2471 2472 2473
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2474 2475 2476 2477 2478 2479 2480 2481 2482 2483

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

2484 2485
       x is a 1-level LoDTensor and **pad_value** = 0.0:
         x.lod = [[2, 3, 2, 0]]
L
Luo Tao 已提交
2486 2487 2488 2489
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
2490
         out.dim = [4, 1]
2491
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2492 2493

       for different pool_type:
2494 2495 2496
         average: out.data = [2, 4, 3, 0.0], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6, 0.0], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24, 0.0], where 2.82=(1+3)/sqrt(2),
L
Luo Tao 已提交
2497
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
2498 2499 2500 2501 2502
         max    : out.data = [3, 6, 5, 0.0], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
         last   : out.data = [3, 6, 1, 0.0], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5, 0.0], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)

         and all above 0.0 = **pad_value**.
F
fengjiayi 已提交
2503

L
Luo Tao 已提交
2504
    Args:
2505
        input (variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2506
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2507
            It supports average, sum, sqrt and max.
2508 2509
        is_test (bool): Used to distinguish training from scoring mode. Default False.
        pad_value (float): Used to pad the pooling result for empty input sequence.
L
Luo Tao 已提交
2510 2511 2512 2513 2514 2515 2516

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2517

2518 2519
             import paddle.fluid as fluid

Y
yangyaming 已提交
2520
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2521 2522 2523 2524 2525
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2526 2527
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2528
    """
L
lujun 已提交
2529
    assert not in_dygraph_mode(), (
2530
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
2531
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2532
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2533 2534
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2535 2536 2537 2538 2539 2540

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
2541 2542 2543 2544 2545
        attrs={
            "pooltype": pool_type.upper(),
            "is_test": is_test,
            "pad_value": pad_value
        })
Y
Yu Yang 已提交
2546

Y
yangyaming 已提交
2547 2548 2549 2550 2551
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2552 2553 2554
    return pool_out


C
add doc  
chengduoZH 已提交
2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

B
bdzhuxiaoning 已提交
2571 2572 2573 2574
           import paddle.fluid as fluid
           x = fluid.layers.data(name='x', shape=[10], dtype='float32')
           y = fluid.layers.data(name='y', shape=[10], dtype='float32')
           out = fluid.layers.sequence_concat(input=[x, y])
C
add doc  
chengduoZH 已提交
2575
    """
L
lujun 已提交
2576
    assert not in_dygraph_mode(), (
2577
        "sequence layer is not supported in dygraph mode yet.")
C
add doc  
chengduoZH 已提交
2578
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2579
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2580 2581 2582 2583 2584
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2585
def sequence_first_step(input):
L
Luo Tao 已提交
2586
    """
L
Luo Tao 已提交
2587
    This function gets the first step of sequence.
L
Luo Tao 已提交
2588 2589 2590 2591

    .. code-block:: text

       x is a 1-level LoDTensor:
2592
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2593 2594 2595 2596 2597
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2598
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2599
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2600

L
Luo Tao 已提交
2601 2602 2603 2604 2605 2606 2607 2608 2609
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2610

2611
             import paddle.fluid as fluid
Y
yangyaming 已提交
2612
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2613 2614 2615
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2616 2617 2618
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2619
def sequence_last_step(input):
L
Luo Tao 已提交
2620
    """
L
Luo Tao 已提交
2621
    This function gets the last step of sequence.
L
Luo Tao 已提交
2622 2623 2624 2625

    .. code-block:: text

       x is a 1-level LoDTensor:
2626
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2627 2628 2629 2630 2631
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2632
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2633
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2634

L
Luo Tao 已提交
2635 2636 2637 2638 2639 2640 2641 2642 2643
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2644

2645
             import paddle.fluid as fluid
Y
yangyaming 已提交
2646
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2647 2648 2649
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2650 2651 2652
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2653 2654 2655 2656
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2657
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2658 2659 2660 2661 2662
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2663

H
haowang101779990 已提交
2664
              - Case:
Y
Yibing Liu 已提交
2665

2666
            Given the input Variable **input**:
2667

2668 2669 2670
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2671

2672
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2673

2674
            the output Variable will be
2675

2676 2677 2678
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2679

M
minqiyang 已提交
2680
    Note:
H
haowang101779990 已提交
2681
          The first dimension size of **input**, **offset** and **length**
2682
          should be equal. The **offset** should start from 0.
2683

Y
Yibing Liu 已提交
2684
    Args:
2685
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2686
                         sequences.
Y
Yibing Liu 已提交
2687 2688 2689 2690 2691 2692
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2693
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2694 2695 2696 2697 2698

    Examples:

        .. code-block:: python

2699
             import paddle.fluid as fluid
Y
Yibing Liu 已提交
2700 2701 2702 2703 2704
             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2705
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2706 2707
                                                   length=length)
    """
L
lujun 已提交
2708
    assert not in_dygraph_mode(), (
2709
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
2710 2711
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2712
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2727
@templatedoc()
Y
Yu Yang 已提交
2728
def pool2d(input,
C
chengduoZH 已提交
2729 2730
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2731 2732
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2733
           global_pooling=False,
C
chengduoZH 已提交
2734
           use_cudnn=True,
2735
           ceil_mode=False,
2736 2737
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2738
    """
F
fengjiayi 已提交
2739
    ${comment}
2740 2741

    Args:
2742 2743 2744
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2745
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2746
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2747 2748
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2749
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2750 2751 2752 2753 2754 2755
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2756 2757 2758
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2759
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2760
                        layer will be named automatically.
2761
        exclusive (bool): Whether to exclude padding points in average pooling
2762
                          mode, default is true
F
fengjiayi 已提交
2763

2764
    Returns:
F
fengjiayi 已提交
2765
        Variable: The pooling result.
F
fengjiayi 已提交
2766 2767 2768 2769 2770 2771 2772 2773 2774 2775

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

2776
          import paddle.fluid as fluid
F
fengjiayi 已提交
2777 2778
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2779
          pool2d = fluid.layers.pool2d(
2780 2781 2782 2783
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2784
                            global_pooling=False)
Y
Yu Yang 已提交
2785 2786 2787 2788 2789
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2790

C
chengduoZH 已提交
2791 2792 2793 2794 2795
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2796 2797 2798 2799
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2800 2801
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2802

C
Add doc  
chengduoZH 已提交
2803
    l_type = 'pool2d'
2804 2805

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2806
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2807
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2808 2809

    helper.append_op(
2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2821 2822
            "use_mkldnn": False,
            "exclusive": exclusive,
2823 2824 2825 2826 2827
        })

    return pool_out


D
dengkaipeng 已提交
2828
@templatedoc()
2829 2830 2831 2832 2833 2834 2835 2836
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2837 2838
           name=None,
           exclusive=True):
2839
    """
2840
    ${comment}
2841 2842

    Args:
D
dengkaipeng 已提交
2843 2844 2845 2846 2847
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width
                          of the feature.
D
dengkaipeng 已提交
2848 2849 2850 2851 2852
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
2853 2854 2855 2856 2857 2858 2859
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2860
        exclusive (bool): Whether to exclude padding points in average pooling
2861
                          mode, default is true
2862

2863
    Returns:
2864
        Variable: output of pool3d layer.
D
dengkaipeng 已提交
2865 2866 2867 2868 2869

    Examples:

        .. code-block:: python

2870
          import paddle.fluid as fluid
D
dengkaipeng 已提交
2871 2872 2873 2874 2875 2876 2877 2878
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool3d = fluid.layers.pool3d(
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
Y
Yu Yang 已提交
2879 2880 2881 2882 2883
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2884

C
chengduoZH 已提交
2885 2886 2887 2888 2889
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2890 2891 2892
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2893

C
chengduoZH 已提交
2894 2895
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2896

2897 2898
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2899
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2900
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2901 2902

    helper.append_op(
2903
        type=l_type,
Y
Yu Yang 已提交
2904 2905 2906 2907 2908 2909 2910
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2911
            "paddings": pool_padding,
2912
            "use_cudnn": use_cudnn,
2913
            "ceil_mode": ceil_mode,
2914 2915
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2916 2917 2918 2919 2920
        })

    return pool_out


2921 2922 2923 2924 2925 2926 2927
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2928 2929 2930 2931 2932 2933 2934
    **Adaptive Pool2d Operator**
    The adaptive_pool2d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
    is same as Parameter(pool_size).
2935

2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
2949 2950 2951 2952 2953 2954 2955 2956 2957

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2958 2959
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
2974
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
2975
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
2976
          # of input data into m * n grids averagely and performs poolings in each
2977 2978
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2979
          #
2980 2981 2982 2983 2984 2985 2986 2987
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2988
          import paddle.fluid as fluid
2989 2990
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2991
          pool_out = fluid.layers.adaptive_pool2d(
2992 2993
                            input=data,
                            pool_size=[3, 3],
2994
                            pool_type='avg')
2995 2996 2997 2998 2999 3000 3001 3002 3003 3004
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

3005
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
3031
    return (pool_out, mask) if require_index else pool_out
3032 3033 3034 3035 3036 3037 3038 3039 3040


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
3041 3042 3043 3044 3045 3046 3047
    **Adaptive Pool3d Operator**
    The adaptive_pool3d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
    dimensions of output(Out) is same as Parameter(pool_size).
3048

3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
3066 3067 3068

    Args:
        input (Variable): The input tensor of pooling operator. The format of
D
dengkaipeng 已提交
3069 3070 3071
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width of the feature.
3072
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
3073
            it must contain three integers, (Depth, Height, Width).
3074
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
3075 3076
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

3091 3092
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
3093
          # of input data into l * m * n grids averagely and performs poolings in each
3094 3095
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
3096
          #
3097 3098 3099 3100 3101 3102 3103 3104 3105
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
3106
          #                 output[:, :, i, j, k] =
3107 3108
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
K
Kaipeng Deng 已提交
3109 3110 3111

          import paddle.fluid as fluid

3112
          data = fluid.layers.data(
K
Kaipeng Deng 已提交
3113 3114
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool_out = fluid.layers.adaptive_pool3d(
3115
                            input=data,
D
dengkaipeng 已提交
3116
                            pool_size=[3, 3, 3],
3117
                            pool_type='avg')
3118 3119 3120 3121 3122 3123 3124 3125 3126 3127
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

3128
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
3154
    return (pool_out, mask) if require_index else pool_out
3155 3156


Y
Yu Yang 已提交
3157 3158 3159 3160 3161 3162 3163
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
3164
               data_layout='NCHW',
Y
Yang Yang 已提交
3165
               in_place=False,
3166 3167
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
3168
               moving_variance_name=None,
3169
               do_model_average_for_mean_and_var=False,
3170 3171
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
3172
    """
Q
qiaolongfei 已提交
3173 3174 3175 3176
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
3177

Q
qiaolongfei 已提交
3178
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
3179

Q
qiaolongfei 已提交
3180 3181
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
3182 3183 3184
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
3197

3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

3211
    Args:
Q
qingqing01 已提交
3212
        input(variable): The rank of input variable can be 2, 3, 4, 5.
Q
qiaolongfei 已提交
3213
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
3214 3215 3216 3217 3218 3219 3220 3221 3222
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
        momentum(float, Default 0.9): The value used for the moving_mean and
            moving_var computation. The updated formula is:
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
3223 3224
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
3225 3226 3227
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the param_attr is not set, the parameter is initialized 
	     with Xavier. Default: None.
C
chengduo 已提交
3228 3229
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
3230 3231 3232
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
	     Default: None.
Q
qiaolongfei 已提交
3233
        data_layout(string, default NCHW): NCHW|NHWC
3234
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
3235 3236
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
3237 3238 3239
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean. If it 
            is set to None, batch_norm will save global mean with a random name, otherwise, batch_norm 
            will save global mean with the string.
Q
qiaolongfei 已提交
3240
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
3241 3242
            If it is set to None, batch_norm will save global variance with a random name, otherwise, batch_norm 
            will save global variance with the string.
Q
qiaolongfei 已提交
3243
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
3244
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
3245 3246 3247 3248 3249
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
3250 3251

    Returns:
Q
qiaolongfei 已提交
3252
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
3253 3254 3255 3256 3257

    Examples:

        .. code-block:: python

3258
            import paddle.fluid as fluid
L
lvmengsi 已提交
3259
            x = fluid.layers.data(name='x', shape=[3, 7, 3, 7], dtype='float32', append_batch_size=False)
Q
qiaolongfei 已提交
3260 3261
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
3262
    """
C
chengduo 已提交
3263
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
3264 3265 3266
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
3267 3268 3269 3270
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
3289
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
3290

3291 3292
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
3293 3294 3295
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
3296
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3297
        shape=param_shape,
W
Wu Yi 已提交
3298
        dtype=dtype)
3299 3300 3301 3302 3303 3304
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
3305
            trainable=False,
W
wanghaoshuang 已提交
3306
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3307
        shape=param_shape,
W
Wu Yi 已提交
3308
        dtype=dtype)
3309
    variance.stop_gradient = True
Y
Yu Yang 已提交
3310 3311 3312 3313 3314 3315

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
3316 3317 3318 3319
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
3320

X
Xin Pan 已提交
3321 3322
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
3340 3341 3342 3343
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
3344
            "data_layout": data_layout,
X
Xin Pan 已提交
3345
            "use_mkldnn": False,
3346 3347
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
3348
        })
Y
Yu Yang 已提交
3349 3350 3351 3352

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python
3404 3405
            
            import paddle.fluid as fluid
H
heqiaozhi 已提交
3406

3407 3408
            hidden1 = fluid.layers.data(name="hidden1", shape=[200])
            hidden2 = fluid.layers.data_norm(name="hidden2", input=hidden1)
H
heqiaozhi 已提交
3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
H
heqiaozhi 已提交
3474
        attrs={"epsilon": epsilon})
H
heqiaozhi 已提交
3475 3476 3477 3478

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3479
@templatedoc()
G
guosheng 已提交
3480 3481 3482 3483 3484 3485 3486 3487 3488 3489
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3490
    ${comment}
G
guosheng 已提交
3491 3492 3493

    The formula is as follows:

Y
yuyang18 已提交
3494
    ..  math::
G
guosheng 已提交
3495 3496 3497 3498 3499 3500 3501

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3502 3503 3504 3505 3506 3507 3508 3509
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3510

G
guosheng 已提交
3511 3512
    Args:
        input(Variable): The input tensor variable.
3513
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3514
            normalization. Default True.
3515
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3516 3517
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3518
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3519
            Default 1.
3520
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3521
            division by zero. Default 1e-05.
G
guosheng 已提交
3522
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3523 3524
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3525 3526
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3527
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3528 3529
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3530
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3531
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3532
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3533 3534 3535
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3536 3537

    Returns:
Y
yuyang18 已提交
3538
        ${y_comment}
G
guosheng 已提交
3539 3540 3541

    Examples:

3542
        >>> import paddle.fluid as fluid
Y
yuyang18 已提交
3543 3544 3545
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3546
    """
L
lujun 已提交
3547
    assert in_dygraph_mode(
L
lujun 已提交
3548
    ) is not True, "please use FC instead of fc in dygraph mode!"
G
guosheng 已提交
3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3563
    if shift:
G
guosheng 已提交
3564 3565 3566 3567 3568 3569
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3570 3571 3572 3573 3574
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3602
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

3624
        >>> import paddle.fluid as fluid
D
Dun 已提交
3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650
        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3651 3652
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


@templatedoc()
3670
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
D
dengkaipeng 已提交
3671 3672 3673
    """
    **Spectral Normalization Layer**

D
dengkaipeng 已提交
3674
    This layer calculates the spectral normalization value of weight parameters of
3675
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
D
dengkaipeng 已提交
3676
    Parameters. Calculations are showed as follows.
3677

D
dengkaipeng 已提交
3678 3679 3680
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
3681
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math:: 

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
3694
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3695 3696 3697 3698

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3699

D
dengkaipeng 已提交
3700
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3701 3702
                

D
dengkaipeng 已提交
3703 3704 3705 3706
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(${weight_type}): ${weight_comment}
D
dengkaipeng 已提交
3707 3708 3709
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
D
dengkaipeng 已提交
3710 3711 3712
        name (str): The name of this layer. It is optional.

    Returns:
D
dengkaipeng 已提交
3713
        Variable: A tensor variable of weight parameters after spectral normalization.
D
dengkaipeng 已提交
3714 3715

    Examples:
K
Kaipeng Deng 已提交
3716
       .. code-block:: python
D
dengkaipeng 已提交
3717

K
Kaipeng Deng 已提交
3718 3719 3720 3721 3722
            import paddle.fluid as fluid

            weight = fluid.layers.data(name='weight', shape=[2, 8, 32, 32], 
                                       append_batch_size=False, dtype='float32')
            x = fluid.layers.spectral_norm(weight=weight, dim=1, power_iters=2)
D
dengkaipeng 已提交
3723 3724
    """
    helper = LayerHelper('spectral_norm', **locals())
3725
    dtype = weight.dtype
D
dengkaipeng 已提交
3726 3727 3728

    # create intput and parameters
    inputs = {'Weight': weight}
3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746
    input_shape = weight.shape
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    u.stop_gradient = True
    inputs['U'] = u
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    inputs['V'] = v
    v.stop_gradient = True
D
dengkaipeng 已提交
3747 3748

    # create output
3749
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3750 3751

    helper.append_op(
3752
        type="spectral_norm",
D
Dun 已提交
3753
        inputs=inputs,
3754 3755 3756 3757 3758 3759
        outputs={"Out": out, },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        })
D
Dun 已提交
3760

3761
    return out
D
Dun 已提交
3762 3763


Y
Yu Yang 已提交
3764 3765 3766 3767
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3768 3769 3770
                     padding=0,
                     stride=1,
                     dilation=1,
3771
                     groups=None,
C
caoying03 已提交
3772
                     param_attr=None,
3773
                     bias_attr=None,
C
chengduoZH 已提交
3774
                     use_cudnn=True,
3775
                     act=None,
C
caoying03 已提交
3776
                     name=None):
Y
Yu Yang 已提交
3777
    """
3778 3779 3780 3781 3782 3783 3784 3785
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3786
    layer, please refer to the following explanation and references
L
lvmengsi 已提交
3787
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
3788 3789 3790
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3791 3792 3793 3794 3795

    For each input :math:`X`, the equation is:

    .. math::

3796
        Out = \sigma (W \\ast X + b)
3797

3798
    Where:
3799 3800 3801

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3802 3803 3804 3805
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3806

3807 3808 3809 3810
    Example:

        - Input:

3811
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3812

3813
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3814 3815 3816

        - Output:

3817
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3818 3819

        Where
Y
Yu Yang 已提交
3820

3821 3822
        .. math::

3823 3824
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
L
lvmengsi 已提交
3825 3826 3827 3828 3829 3830 3831 3832 3833
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ] 

    Note:
          if output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`; 
          else, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[0]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[1]`, 
          conv2d_transpose can compute the kernel size automatically.
Y
Yu Yang 已提交
3834 3835

    Args:
3836 3837 3838 3839
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3840 3841 3842 3843
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3872
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3873 3874 3875
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3876
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3877
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3878 3879

    Returns:
3880
        Variable: The tensor variable storing the convolution transpose result.
3881 3882

    Raises:
3883 3884
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3885 3886 3887 3888

    Examples:
       .. code-block:: python

3889
          import paddle.fluid as fluid
3890 3891
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3892
    """
C
chengduo 已提交
3893
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3894 3895 3896 3897 3898 3899 3900 3901
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3902 3903 3904
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3905 3906 3907
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3908

C
chengduoZH 已提交
3909 3910
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3911

Y
Yu Yang 已提交
3912 3913 3914 3915 3916
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3917

Y
Yu Yang 已提交
3918 3919
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3920

C
chengduoZH 已提交
3921
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3922
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3923
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3924
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3925
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3926 3927 3928
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3929

3930 3931 3932 3933 3934 3935 3936
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3937
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3938
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3939

Y
Yu Yang 已提交
3940 3941 3942
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3943
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3944
    helper.append_op(
3945
        type=op_type,
Y
Yu Yang 已提交
3946 3947
        inputs={'Input': [input],
                'Filter': [img_filter]},
3948
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3949
        attrs={
3950
            'output_size': output_size,
3951 3952 3953 3954 3955
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3956 3957
        })

3958 3959 3960
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3961 3962


3963
def conv3d_transpose(input,
Y
Yu Yang 已提交
3964 3965 3966
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3967 3968 3969
                     padding=0,
                     stride=1,
                     dilation=1,
3970
                     groups=None,
C
caoying03 已提交
3971
                     param_attr=None,
3972
                     bias_attr=None,
C
chengduoZH 已提交
3973
                     use_cudnn=True,
3974
                     act=None,
C
caoying03 已提交
3975
                     name=None):
Y
Yu Yang 已提交
3976
    """
3977
    **Convlution3D transpose layer**
3978

3979
    The convolution3D transpose layer calculates the output based on the input,
3980
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3981 3982 3983 3984 3985
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
L
lvmengsi 已提交
3986
    explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
3987 3988 3989
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3990 3991 3992 3993 3994

    For each input :math:`X`, the equation is:

    .. math::

3995
        Out = \sigma (W \\ast X + b)
3996 3997 3998

    In the above equation:

3999 4000
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
4001 4002 4003 4004
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
4005

4006 4007 4008 4009
    Example:

        - Input:

4010
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
4011

4012
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
4013 4014 4015

        - Output:

4016
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
4017 4018

        Where
Y
Yu Yang 已提交
4019

4020 4021
        .. math::

4022 4023 4024
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
4025 4026

    Args:
4027
        input(Variable): The input image with [N, C, D, H, W] format.
4028 4029 4030
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
4031
            tuple, it must contain three integers, (image_D, image_H, image_W). This
4032 4033
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
4034
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
4035 4036 4037
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
4038 4039
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
4040
        stride(int|tuple): The stride size. If stride is a tuple, it must
4041 4042
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
4043
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
4044 4045 4046
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
4047 4048 4049 4050 4051
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
4052 4053 4054 4055 4056 4057 4058 4059 4060
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
4061 4062
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
4063 4064
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
4065 4066
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
4067 4068

    Returns:
4069
        Variable: The tensor variable storing the convolution transpose result.
4070 4071

    Raises:
4072 4073
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
4074 4075 4076 4077

    Examples:
       .. code-block:: python

4078
          import paddle.fluid as fluid
4079 4080
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
4081
    """
C
chengduo 已提交
4082
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
4083 4084
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
4085
    if not isinstance(input, Variable):
4086
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
4087 4088
    input_channel = input.shape[1]

4089 4090 4091
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
4092

C
chengduoZH 已提交
4093 4094 4095
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
4096 4097 4098 4099 4100 4101
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

4102 4103 4104
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
4105

4106
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
4107
                         padding[0] - 1) // dilation[0] + 1
4108
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
4109
                         padding[1] - 1) // dilation[1] + 1
4110
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
4111
                         padding[2] - 1) // dilation[2] + 1
4112
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
4113
    else:
4114 4115
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
4116

4117
    groups = 1 if groups is None else groups
M
minqiyang 已提交
4118
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
4119 4120 4121
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
4122
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
4123
    helper.append_op(
4124
        type=l_type,
Y
Yu Yang 已提交
4125 4126
        inputs={'Input': [input],
                'Filter': [img_filter]},
4127
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
4128 4129 4130 4131
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
4132
            'groups': groups,
C
chengduoZH 已提交
4133 4134
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
4135

4136 4137
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
4138
    return out
Y
yangyaming 已提交
4139 4140


Y
yangyaming 已提交
4141
def sequence_expand(x, y, ref_level=-1, name=None):
4142
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
4143 4144 4145 4146
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
4147 4148 4149 4150 4151

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
4152
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
4153
                x.data = [[a], [b], [c], [d]]
4154 4155 4156
                x.dims = [4, 1]

            y is a LoDTensor:
4157 4158
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
4159

Y
yangyaming 已提交
4160
            ref_level: 0
4161

Y
yangyaming 已提交
4162
            then output is a 1-level LoDTensor:
4163
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
4164
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
4165 4166 4167 4168
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
4169
                x.data = [[a], [b], [c]]
4170 4171 4172
                x.dims = [3, 1]

            y is a LoDTensor:
4173
                y.lod = [[2, 0, 3]]
4174

Y
yangyaming 已提交
4175
            ref_level: -1
4176

Y
yangyaming 已提交
4177 4178 4179
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
4180 4181 4182
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
4183 4184
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
4185
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
4186
                        will be named automatically.
4187 4188 4189 4190 4191 4192

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python
4193
	
4194
            import paddle.fluid as fluid
4195
            import paddle.fluid.layers as layers
4196 4197 4198
            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
4199
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
4200
    """
L
lujun 已提交
4201
    assert not in_dygraph_mode(), (
4202
        "sequence layer is not supported in dygraph mode yet.")
Y
yangyaming 已提交
4203
    helper = LayerHelper('sequence_expand', input=x, **locals())
4204
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4205
    tmp = helper.create_variable_for_type_inference(dtype)
4206
    helper.append_op(
Y
yangyaming 已提交
4207 4208 4209 4210 4211
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
4212
    return tmp
4213 4214


C
chengduo 已提交
4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python
4263 4264
            
            import paddle.fluid as fluid
4265
            import paddle.fluid.layers as layers
C
chengduo 已提交
4266 4267 4268 4269 4270 4271

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
L
lujun 已提交
4272
    assert not in_dygraph_mode(), (
4273
        "sequence layer is not supported in dygraph mode yet.")
C
chengduo 已提交
4274 4275
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4276
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
4277 4278 4279 4280 4281 4282 4283 4284
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
4285
@templatedoc()
4286
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
4287 4288 4289 4290 4291
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
4292 4293 4294
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
4295
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
4296 4297 4298 4299
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
4300 4301 4302
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
4303

F
fengjiayi 已提交
4304
    Returns:
M
minqiyang 已提交
4305
        Variable: The padded sequence batch and the original lengths before
4306
                  padding. All sequences has the same length.
M
minqiyang 已提交
4307

F
fengjiayi 已提交
4308 4309 4310
    Examples:
        .. code-block:: python

4311
            import paddle.fluid as fluid
F
fengjiayi 已提交
4312 4313 4314 4315
            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
4316
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
4317
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
4318 4319 4320
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

L
lujun 已提交
4321
    assert not in_dygraph_mode(), (
4322
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
4323 4324
    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4325 4326
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
4327 4328 4329 4330

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
4331 4332 4333 4334 4335 4336
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
4337 4338
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
4339
        attrs={'padded_length': maxlen})
4340
    return out, length
F
fengjiayi 已提交
4341 4342


4343
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
4344
    """
4345
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
4346

4347 4348
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
4349 4350 4351 4352 4353 4354 4355 4356 4357
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
4358 4359 4360
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
4361
	specified by input Variable **length**:
Y
Yibing Liu 已提交
4362 4363 4364 4365 4366 4367

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
4368
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
4369 4370 4371 4372 4373 4374

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
4375 4376
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
4377 4378 4379 4380 4381 4382 4383

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

4384
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
4385 4386 4387 4388 4389
            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

L
lujun 已提交
4390
    assert not in_dygraph_mode(), (
4391
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
4392 4393
    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4394
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


4406 4407 4408 4409 4410 4411 4412
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
4413
                is_accumulated=True,
4414 4415
                name=None,
                return_parent_idx=False):
4416
    """
4417 4418
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
4419 4420 4421

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
4422 4423

    This layer does the search in beams for one time step. Specifically, it
4424 4425 4426
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
4438 4439 4440 4441

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
4442

4443
    Args:
4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
4467 4468
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
4469 4470
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4471 4472 4473 4474
        return_parent_idx(bool): Whether to return an extra Tensor variable 
                        preserving the selected_ids' parent indice in pre_ids
                        in output, which can be used to gather cell states at
                        the next time step.
F
fengjiayi 已提交
4475

4476
    Returns:
4477 4478 4479 4480
        Variable: The LodTensor tuple containing the selected ids and the \
            corresponding scores. If :attr:`return_parent_idx` is :attr:`True`, \
            an extra Tensor variable preserving the selected_ids' parent indice \
            is included.
Y
Yan Chunwei 已提交
4481 4482 4483 4484

    Examples:
        .. code-block:: python

4485 4486
            import paddle.fluid as fluid

4487 4488 4489
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501
            beam_size = 4
            end_id = 1
            pre_ids = fluid.layers.data(
                name='pre_id', shape=[1], lod_level=2, dtype='int64')
            pre_scores = fluid.layers.data(
                name='pre_scores', shape=[1], lod_level=2, dtype='float32')
            probs = fluid.layers.data(
                name='probs', shape=[10000], dtype='float32')
            topk_scores, topk_indices = fluid.layers.topk(probs, k=beam_size)
            accu_scores = fluid.layers.elementwise_add(
                x=fluid.layers.log(x=topk_scores),
                y=fluid.layers.reshape(pre_scores, shape=[-1]),
4502
                axis=0)
4503
            selected_ids, selected_scores = fluid.layers.beam_search(
4504 4505 4506 4507 4508 4509 4510
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
4511
    helper = LayerHelper('beam_search', **locals())
4512 4513 4514 4515 4516 4517
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
4518

X
Xin Pan 已提交
4519 4520 4521
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
4522 4523 4524 4525 4526
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")
Q
Qiao Longfei 已提交
4527 4528 4529

    helper.append_op(
        type='beam_search',
4530
        inputs=inputs,
Q
Qiao Longfei 已提交
4531 4532 4533
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
4534
            'parent_idx': parent_idx
Q
Qiao Longfei 已提交
4535 4536 4537 4538 4539 4540
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
4541
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
4542
        })
4543 4544 4545 4546
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores
Q
Qiao Longfei 已提交
4547 4548


4549 4550 4551 4552 4553 4554 4555
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
4556

4557 4558 4559 4560 4561 4562 4563 4564 4565
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
4566

4567 4568 4569 4570 4571 4572
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4573

4574 4575
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4576

4577 4578
            import paddle.fluid as fluid

4579 4580
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
4581 4582 4583
            ids = fluid.layers.create_array(dtype='int64')
            scores = fluid.layers.create_array(dtype='float32')
            finished_ids, finished_scores = fluid.layers.beam_search_decode(
4584 4585 4586
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4587 4588
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4604 4605 4606 4607
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4608
              param_attr=None,
C
caoying03 已提交
4609 4610
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4611 4612 4613 4614
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4615
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4616

4617
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4618

4619
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4620

4621
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4622 4623 4624

            h_t & = o_t tanh(c_t)

4625 4626 4627 4628 4629 4630
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4631 4632 4633

        .. math::

4634
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4635 4636 4637 4638 4639 4640 4641 4642

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

4643
    This layer has two outputs including :math:`h_t` and :math:`c_t`.
Y
yangyaming 已提交
4644 4645

    Args:
Y
yangyaming 已提交
4646 4647 4648 4649 4650 4651
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4652
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4665 4666
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4667 4668

    Returns:
Y
yangyaming 已提交
4669
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4670 4671

    Raises:
4672 4673 4674 4675
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4676 4677 4678 4679 4680

    Examples:

        .. code-block:: python

4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693
            import paddle.fluid as fluid

            dict_dim, emb_dim, hidden_dim = 128, 64, 512
            data = fluid.layers.data(name='step_data', shape=[1], dtype='int32')
            x = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
            pre_hidden = fluid.layers.data(
                name='pre_hidden', shape=[hidden_dim], dtype='float32')
            pre_cell = fluid.layers.data(
                name='pre_cell', shape=[hidden_dim], dtype='float32')
            hidden = fluid.layers.lstm_unit(
                x_t=x,
                hidden_t_prev=pre_hidden,
                cell_t_prev=pre_cell)
Y
yangyaming 已提交
4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4708
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4709 4710 4711 4712
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4713 4714
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4715 4716 4717
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4718
    size = cell_t_prev.shape[1]
4719
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4720 4721
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4722
                param_attr=param_attr,
4723
                bias_attr=bias_attr)
Y
yangyaming 已提交
4724
    dtype = x_t.dtype
X
Xin Pan 已提交
4725 4726
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4727 4728 4729 4730 4731 4732 4733 4734 4735

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4736
    return h, c
G
guosheng 已提交
4737 4738


C
caoying03 已提交
4739
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4740
    """
Y
yangyaming 已提交
4741
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4742 4743 4744

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4745
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4746 4747
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4748 4749
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4750
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4751
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4752
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4753 4754
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4755 4756 4757

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4758

G
guosheng 已提交
4759 4760 4761
    Examples:
        .. code-block:: python

4762
            import paddle.fluid as fluid
G
guosheng 已提交
4763 4764 4765
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4766
            # Each example is followed by the corresponding output tensor.
4767
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
G
guosheng 已提交
4768 4769 4770 4771
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4772

4773
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4774 4775
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4776
            # Each example is followed by the corresponding output tensor.
4777 4778 4779
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_sum(y, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(y, dim=[0, 1]) # [16, 20]
W
whs 已提交
4780

G
guosheng 已提交
4781 4782
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4783
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4784 4785
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4786 4787 4788 4789 4790
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4791
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4792 4793 4794 4795
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4796 4797


C
caoying03 已提交
4798
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4799
    """
Y
Yibing Liu 已提交
4800
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4801 4802 4803

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4804 4805 4806
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4807
            must be in the range :math:`[-rank(input), rank(input))`. If
4808
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4809
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4810 4811
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4812
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4813
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4814
                       will be named automatically.
G
guosheng 已提交
4815 4816

    Returns:
Y
Yibing Liu 已提交
4817
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4818

G
guosheng 已提交
4819 4820 4821
    Examples:
        .. code-block:: python

4822
            import paddle.fluid as fluid
G
guosheng 已提交
4823 4824 4825 4826
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4827
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
G
guosheng 已提交
4828 4829 4830
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
4831
            fluid.layers.reduce_mean(x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4832

4833
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4834 4835 4836
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4837 4838 4839
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_mean(y, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(y, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4840 4841
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4842
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4843 4844
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4845 4846 4847 4848 4849
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4850
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4851 4852 4853 4854
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4855 4856


C
caoying03 已提交
4857
def reduce_max(input, dim=None, keep_dim=False, name=None):
4858
    """
Y
yangyaming 已提交
4859
    Computes the maximum of tensor elements over the given dimension.
4860 4861 4862

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4863
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4864 4865 4866
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4867
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4868 4869
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4870
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4871 4872
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4873 4874 4875

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4876

4877 4878 4879
    Examples:
        .. code-block:: python

4880
            import paddle.fluid as fluid
4881 4882 4883 4884
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4885
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
4886 4887 4888 4889
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4890

4891
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4892 4893 4894
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4895 4896 4897
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_max(y, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(y, dim=[0, 1]) # [7.0, 8.0]
4898 4899
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4900
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4901 4902
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4903 4904 4905 4906 4907
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4908
            'dim': dim if dim != None else [0],
4909 4910 4911 4912 4913 4914
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4915
def reduce_min(input, dim=None, keep_dim=False, name=None):
4916
    """
Y
yangyaming 已提交
4917
    Computes the minimum of tensor elements over the given dimension.
4918 4919 4920

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4921
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4922 4923 4924
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4925
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4926 4927
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4928
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4929 4930
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4931 4932 4933

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4934

4935 4936 4937
    Examples:
        .. code-block:: python

4938
            import paddle.fluid as fluid
4939 4940 4941 4942
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4943
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
4944 4945 4946 4947
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4948

4949
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4950 4951 4952
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4953 4954 4955
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_min(y, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(y, dim=[0, 1]) # [1.0, 2.0]
4956 4957
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4958
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4959 4960
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4961 4962 4963 4964 4965
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4966
            'dim': dim if dim != None else [0],
4967 4968 4969 4970
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4971 4972


4973 4974 4975 4976 4977 4978
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4979
        dim (list|int|None): The dimensions along which the product is performed. If
4980 4981
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4982 4983
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4984 4985 4986
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4987
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4988
            layer will be named automatically.
4989 4990 4991 4992 4993 4994 4995

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

4996
            import paddle.fluid as fluid
4997 4998 4999 5000
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
5001
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
5002 5003 5004
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
5005
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
5006
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
5007

5008
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
5009 5010 5011
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
5012 5013 5014
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_prod(y, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(y, dim=[0, 1]) # [105.0, 384.0]
5015 5016
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
5017
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
5018 5019
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
5020 5021 5022 5023 5024
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
5025
            'dim': dim if dim != None else [0],
5026 5027 5028 5029 5030 5031
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


Z
zhoukunsheng 已提交
5032 5033
def reduce_all(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
5034
    Computes the ``logical and`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical and is computed.
            If :attr:`None`, compute the logical and over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
5054
        
5055
            import paddle.fluid as fluid
5056 5057 5058
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
5059 5060 5061
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [True, True]]
5062 5063 5064 5065 5066 5067 5068
            x = layers.assign(np.array([[1, 0], [1, 1]], dtype='int32'))
            x = layers.cast(x, 'bool')

            out = layers.reduce_all(x)  # False 
            out = layers.reduce_all(x, dim=0)  # [True, False]
            out = layers.reduce_all(x, dim=-1)  # [False, True]
            out = layers.reduce_all(x, dim=1, keep_dim=True)  # [[False], [True]]
Z
zhoukunsheng 已提交
5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088

    """
    helper = LayerHelper('reduce_all', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_all',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


def reduce_any(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
5089
    Computes the ``logical or`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical or is computed.
            If :attr:`None`, compute the logical or over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
5109

5110
            import paddle.fluid as fluid
5111 5112 5113
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
5114 5115 5116
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [False, False]]
5117 5118 5119 5120 5121 5122 5123
            x = layers.assign(np.array([[1, 0], [0, 0]], dtype='int32'))
            x = layers.cast(x, 'bool')

            out = layers.reduce_any(x)  # True
            out = layers.reduce_any(x, dim=0)  # [True, False]
            out = layers.reduce_any(x, dim=-1)  # [True, False]
            out = layers.reduce_any(x, dim=1,
Z
zhoukunsheng 已提交
5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137
                                     keep_dim=True)  # [[True], [False]]

    """
    helper = LayerHelper('reduce_any', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_any',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
5138 5139 5140 5141 5142
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
5143
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
5144
    """
C
caoying03 已提交
5145
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
5146 5147 5148

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
5149 5150 5151 5152 5153
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
5154
            :attr:`dim` dimension orderly.
C
caoying03 已提交
5155
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
5156
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
5157 5158
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
5159 5160

    Returns:
D
dzhwinter 已提交
5161
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
5162 5163 5164 5165

    Examples:
        .. code-block:: python

5166 5167 5168 5169 5170 5171
            import paddle.fluid as fluid

            # input is a variable which shape is [-1, 3, 9, 5]
            input = fluid.layers.data(
                 name="input", shape=[3, 9, 5], dtype="float32")

5172
            x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=2)
5173 5174 5175 5176 5177 5178 5179 5180
            # x0.shape [-1, 3, 3, 5]
            # x1.shape [-1, 3, 3, 5]
            # x2.shape [-1, 3, 3, 5]

            x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=2)
            # x0.shape [-1, 3, 2, 5]
            # x1.shape [-1, 3, 3, 5]
            # x2.shape [-1, 3, 4, 5]
G
guosheng 已提交
5181 5182 5183 5184 5185 5186 5187 5188
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
T
tink2123 已提交
5189
        assert len(num_or_sections) <= input_shape[
G
guosheng 已提交
5190 5191 5192
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
5193
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
5207 5208 5209 5210 5211 5212 5213 5214 5215


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

5216
    .. math::
5217 5218

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
5219 5220 5221 5222 5223

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
5224
        x(Variable|list): The input tensor to l2_normalize layer.
5225
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
5226 5227
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
5228
        epsilon(float): The epsilon value is used to avoid division by zero, \
翟飞跃 已提交
5229
            the default value is 1e-12.
5230
        name(str|None): A name for this layer(optional). If set None, the layer \
5231
            will be named automatically.
C
caoying03 已提交
5232 5233

    Returns:
5234
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
5235 5236

    Examples:
5237

C
caoying03 已提交
5238 5239
        .. code-block:: python

5240
            import paddle.fluid as fluid
5241 5242 5243 5244
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
5245 5246
    """

F
fengjiayi 已提交
5247 5248
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
5249 5250
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
5251 5252
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5253
    helper.append_op(
5254 5255 5256 5257
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
5258
        attrs={
5259 5260
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
5261 5262
        })
    return out
5263 5264


S
sneaxiy 已提交
5265
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
5266
    """
Y
ying 已提交
5267 5268 5269 5270
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
5271

C
chengduoZH 已提交
5272
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
5273
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
5274

5275 5276 5277 5278 5279
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
5280
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
5281

C
chengduoZH 已提交
5282
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
5283
      performs in the following way.
G
guosheng 已提交
5284

5285
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
5286
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
5287
        last two dimensions and a batched matrix multiply supporting broadcast
5288
        applies on the two tensors.
G
guosheng 已提交
5289

Y
ying 已提交
5290 5291
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
5292
    removed after matrix multiplication.
G
guosheng 已提交
5293 5294 5295

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
5296 5297 5298
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
5299
        alpha (float): The scale of output. Default 1.0.
5300
        name(str|None): A name for this layer(optional). If set None, the layer
5301
            will be named automatically.
G
guosheng 已提交
5302 5303

    Returns:
石晓伟 已提交
5304
        Variable: The product Tensor (or LoDTensor) variable.
G
guosheng 已提交
5305

G
guosheng 已提交
5306 5307 5308
    Examples:
        .. code-block:: python

5309
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
5310
            # x: [B, ..., M, K], y: [B, ..., K, N]
5311
            # fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
5312

5313
            # x: [B, M, K], y: [B, K, N]
5314
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5315

5316
            # x: [B, M, K], y: [K, N]
5317
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5318

5319
            # x: [M, K], y: [K, N]
5320
            # fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
5321 5322

            # x: [B, M, K], y: [K]
5323
            # fluid.layers.matmul(x, y)  # out: [B, M]
Y
ying 已提交
5324

5325
            # x: [K], y: [K]
5326
            # fluid.layers.matmul(x, y)  # out: [1]
5327

Y
ying 已提交
5328
            # x: [M], y: [N]
5329 5330
            # fluid.layers.matmul(x, y, True, True)  # out: [M, N]

5331
            import paddle.fluid as fluid
5332 5333 5334
            x = fluid.layers.data(name='x', shape=[2, 3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[3, 2], dtype='float32')
            out = fluid.layers.matmul(x, y, True, True)
G
guosheng 已提交
5335
    """
Y
ying 已提交
5336 5337 5338 5339 5340 5341 5342

    def __check_input(x, y):
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
5343
            y_shape = y_shape + [1]
Y
ying 已提交
5344 5345 5346 5347 5348 5349 5350

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
5351 5352
            raise ValueError("Invalid inputs for matmul. x: %s, y: %s\n" %
                             (x_shape, y_shape))
Y
ying 已提交
5353

C
chengduo 已提交
5354
        if len(y_shape) > 2 and len(x_shape) > 2:
Y
ying 已提交
5355
            for i, dim_x in enumerate(x_shape[:-2]):
P
phlrain 已提交
5356 5357 5358
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
Y
ying 已提交
5359
                if dim_x != y_shape[i]:
C
chengduo 已提交
5360 5361
                    raise ValueError("Invalid inputs for matmul. x(%s), y(%s)" %
                                     (x.shape, y.shape))
Y
ying 已提交
5362 5363 5364

    __check_input(x, y)

5365
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
5366
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
5367
    helper.append_op(
5368 5369 5370 5371
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
5372 5373 5374
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
5375
            'alpha': float(alpha),
S
sneaxiy 已提交
5376
        })
5377
    return out
5378 5379


5380
def topk(input, k, name=None):
Q
qingqing01 已提交
5381 5382 5383 5384
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
5385
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
5386 5387 5388 5389 5390 5391
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
5413 5414 5415
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
5416
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
5417
                 of input.
5418
        name(str|None): A name for this layer(optional). If set None, the layer
5419
                       will be named automatically.
F
fengjiayi 已提交
5420
                       Default: None
Q
qingqing01 已提交
5421 5422

    Returns:
5423 5424 5425
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
5426
        within the last dimension of input.
Q
qingqing01 已提交
5427

F
fengjiayi 已提交
5428 5429
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
5430 5431 5432 5433

    Examples:
        .. code-block:: python

5434
            import paddle.fluid as fluid
5435 5436
            import paddle.fluid.layers as layers
            input = layers.data(name="input", shape=[13, 11], dtype='float32')
Q
qingqing01 已提交
5437 5438 5439
            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
5440 5441
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
5442 5443 5444 5445 5446 5447
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
5448 5449
    helper.append_op(
        type="top_k",
W
whs 已提交
5450
        inputs=inputs,
Q
qingqing01 已提交
5451 5452
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
5453
        attrs=attrs)
Q
qingqing01 已提交
5454 5455 5456 5457 5458
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


5459 5460 5461 5462 5463 5464
def edit_distance(input,
                  label,
                  normalized=True,
                  ignored_tokens=None,
                  input_length=None,
                  label_length=None):
5465
    """
R
ruri 已提交
5466
    Edit distance operator computes the edit distances between a batch of
Y
ying 已提交
5467 5468 5469 5470 5471 5472 5473 5474
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
5475

Y
ying 已提交
5476
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
5477

5478
    The input is a LoDTensor/Tensor consisting of all the hypothesis strings with
Y
ying 已提交
5479
    the total number denoted by `batch_size`, and the separation is specified
5480 5481
    by the LoD information or input_length. And the `batch_size` reference strings are arranged
    in order in the same way as `input`.
W
wanghaoshuang 已提交
5482

5483
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
5484 5485
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
5486

5487
    Args:
5488 5489
        input(Variable): The indices for hypothesis strings, it should have rank 2 and dtype int64.
        label(Variable): The indices for reference strings, it should have rank 2 and dtype int64.
5490
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
5491
                          the length of reference string.
5492
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
5493
                                     calculating edit distance.
5494 5495
        input_length(Variable): The length for each sequence in `input` if it's of Tensor type, it should have shape `[batch_size]` and dtype int64.
        label_length(Variable): The length for each sequence in `label` if it's of Tensor type, it should have shape `[batch_size]` and dtype int64.
5496

W
wanghaoshuang 已提交
5497
    Returns:
5498 5499 5500
        edit_distance_out(Variable): edit distance result in shape [batch_size, 1]. \n
        sequence_num(Variable): sequence number in shape [].
        
W
wanghaoshuang 已提交
5501 5502 5503

    Examples:
        .. code-block:: python
5504
            
R
ruri 已提交
5505 5506
            import paddle.fluid as fluid

5507 5508 5509 5510
            # using LoDTensor
            x_lod = fluid.layers.data(name='x_lod', shape=[1], dtype='int64', lod_level=1)
            y_lod = fluid.layers.data(name='y_lod', shape=[1], dtype='int64', lod_level=1)
            distance_lod, seq_num_lod = fluid.layers.edit_distance(input=x_lod, label=y_lod)
R
ruri 已提交
5511

5512 5513 5514 5515 5516 5517 5518 5519
            # using Tensor
            x_seq_len = 5
            y_seq_len = 6
            x_pad = fluid.layers.data(name='x_pad', shape=[x_seq_len], dtype='int64')
            y_pad = fluid.layers.data(name='y_pad', shape=[y_seq_len], dtype='int64')
            x_len = fluid.layers.data(name='x_len', shape=[], dtype='int64')
            y_len = fluid.layers.data(name='y_len', shape=[], dtype='int64')
            distance_pad, seq_num_pad = fluid.layers.edit_distance(input=x_pad, label=y_pad, input_length=x_len, label_length=y_len)
R
ruri 已提交
5520

5521
    """
5522
    helper = LayerHelper("edit_distance", **locals())
5523

5524
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
5525
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
5526 5527
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
5528 5529 5530 5531 5532

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
5533
            attrs={"tokens": ignored_tokens})
5534 5535 5536 5537 5538
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
5539
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
5540
            attrs={"tokens": ignored_tokens})
5541 5542
        label = erased_label

5543 5544 5545 5546 5547
    this_inputs = {"Hyps": [input], "Refs": [label]}
    if input_length and label_length:
        this_inputs['HypsLength'] = [input_length]
        this_inputs['RefsLength'] = [label_length]

5548
    # edit distance op
X
Xin Pan 已提交
5549 5550
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
5551 5552
    helper.append_op(
        type="edit_distance",
5553
        inputs=this_inputs,
5554 5555
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
5556 5557
        attrs={"normalized": normalized})

5558
    return edit_distance_out, sequence_num
5559 5560 5561 5562 5563


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
5564

Y
ying 已提交
5565 5566 5567 5568
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

5586
        input.lod = [[4, 4]]
M
minqiyang 已提交
5587

W
whs 已提交
5588
        Computation:
5589

W
whs 已提交
5590 5591 5592 5593 5594 5595
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
5596 5597 5598 5599 5600

        output.data = [[2],
                       [1],
                       [3]]

5601
        output.lod = [[2, 1]]
5602

W
whs 已提交
5603

5604 5605
    Args:

Y
ying 已提交
5606 5607 5608 5609 5610 5611 5612 5613 5614
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
5615
        name (str): The name of this layer. It is optional.
5616 5617

    Returns:
H
haowang101779990 已提交
5618 5619 5620
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
5621
                  LoD [[]] and dims [1, 1].
5622 5623 5624 5625

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
5626
            import paddle.fluid as fluid
5627 5628
            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
5629
    """
5630
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
5631
    _, topk_indices = topk(input, k=1)
5632 5633

    # ctc align op
X
Xin Pan 已提交
5634
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
5635 5636 5637
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
5638
        outputs={"Output": [ctc_out]},
5639 5640
        attrs={"merge_repeated": True,
               "blank": blank})
5641
    return ctc_out
5642 5643


W
Wu Yi 已提交
5644
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
5645
    """
5646 5647
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
5648
    to compute Connectionist Temporal Classification (CTC) loss.
5649 5650
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
5651 5652 5653
    input tensor.

    Args:
5654
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
5655 5656 5657 5658
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
5659
       label (Variable): The ground truth of variable-length sequence,
5660 5661 5662
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
5663 5664
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
5665 5666 5667
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
5668
         follewed by a mean_op.
W
Wu Yi 已提交
5669
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
5670 5671

    Returns:
5672 5673
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
5674 5675

    Examples:
5676

W
wanghaoshuang 已提交
5677
        .. code-block:: python
5678

B
Bai Yifan 已提交
5679 5680 5681 5682 5683
            import paddle.fluid as fluid
            label = fluid.layers.data(name='label', shape=[11, 8],
                                      dtype='float32', lod_level=1)
            predict = fluid.layers.data(name='predict', shape=[11, 1],
                                        dtype='float32')
5684
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
5685 5686

    """
F
fengjiayi 已提交
5687
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
5688 5689
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
5690 5691 5692 5693 5694 5695
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
5696 5697 5698 5699 5700
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
5701
    return loss_out
5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
5717 5718 5719
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
5720 5721 5722 5723 5724
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
5725

5726
            out.lod  = [[0, 1, 3]]
5727 5728 5729 5730

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
5731 5732 5733 5734 5735 5736 5737
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
5738 5739 5740

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
5741 5742

    Returns:
5743

5744 5745 5746 5747 5748
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

B
bdzhuxiaoning 已提交
5749 5750 5751
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2, 6], append_batch_size=False, dtype='float32', lod_level=1)
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=4)
5752
    """
L
lujun 已提交
5753
    assert not in_dygraph_mode(), (
5754
        "sequence layer is not supported in dygraph mode yet.")
5755
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
5756
    out = helper.create_variable_for_type_inference(helper.input_dtype())
5757 5758 5759 5760 5761 5762
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
5763 5764


5765 5766 5767 5768
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
5769 5770 5771 5772 5773 5774
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
5775
        num_neg_samples=None,
5776 5777 5778
        name=None,
        sampler="uniform",
        custom_dist=None,
5779 5780
        seed=0,
        is_sparse=False):
5781 5782 5783 5784 5785 5786 5787
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5788 5789
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5790
            sample is 1.0.
C
chengduo 已提交
5791 5792 5793 5794 5795 5796 5797 5798 5799
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5800
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
5801 5802
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5803 5804 5805
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5806
        custom_dist (float[]): A float[] with size=num_total_classes.
5807 5808 5809 5810
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5811
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
5812

5813
    Returns:
Y
Yibing Liu 已提交
5814 5815 5816 5817 5818 5819
        Variable: The output nce loss.

    Examples:
        .. code-block:: python


X
xsrobin 已提交
5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853
            import paddle.fluid as fluid
            import numpy as np

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(fluid.layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = fluid.layers.embedding(input=words[i], size=[dict_size, 32],
                                   param_attr='embed', is_sparse=True)
                embs.append(emb)

            embs = fluid.layers.concat(input=embs, axis=1)
            loss = fluid.layers.nce(input=embs, label=words[label_word],
                      num_total_classes=dict_size, param_attr='nce.w_0',
                      bias_attr='nce.b_0')

             #or use custom distribution
             dist = np.array([0.05,0.5,0.1,0.3,0.05])
             loss = fluid.layers.nce(input=embs, label=words[label_word],
                       num_total_classes=5, param_attr='nce.w_1',
                       bias_attr='nce.b_1',
                       num_neg_samples=3,
                       sampler="custom_dist",
                       custom_dist=dist)
5854
    """
Y
Yang Yu 已提交
5855 5856 5857
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
5858 5859

    dim = input.shape[1]
Y
Yang Yu 已提交
5860 5861 5862 5863 5864 5865
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
5866
    inputs = {}
C
chengduo 已提交
5867 5868 5869 5870 5871 5872 5873
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
5874 5875 5876
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
5877

5878 5879 5880 5881
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
5882 5883 5884 5885 5886 5887 5888

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
5889 5890
        # assert isinstance(custom_dist, Variable)

Y
Yibing Liu 已提交
5891
        custom_dist_len = num_total_classes
5892 5893 5894 5895 5896 5897
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
5898
            if normal_prob - 1.0 > 0:
5899
                bigs.append((i, normal_prob))
5900
            elif 1.0 - normal_prob > 0:
5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
5916
            if big_left - 1.0 > 0:
5917
                bigs.append((big_idx, big_left))
5918
            elif 1.0 - big_left > 0:
5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
5948 5949 5950 5951
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5952 5953 5954 5955 5956
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

5957 5958 5959 5960
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5961

Y
Yang Yu 已提交
5962 5963
    attrs = {
        'num_total_classes': int(num_total_classes),
5964 5965
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5966
        'sampler': sampler,
5967 5968
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
5969
    }
Y
Yang Yu 已提交
5970 5971 5972

    helper.append_op(
        type='nce',
C
chengduo 已提交
5973
        inputs=inputs,
Y
Yang Yu 已提交
5974 5975 5976 5977 5978 5979
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5980
    return cost / (num_neg_samples + 1)
5981 5982


C
chengduo 已提交
5983 5984
def hsigmoid(input,
             label,
5985
             num_classes,
C
chengduo 已提交
5986 5987
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5988
             name=None,
5989 5990 5991
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5992
             is_sparse=False):
W
weixing02 已提交
5993 5994
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5995
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
5996
    complete binary tree, or you can use is_custom to pass your own tree to
5997
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5998 5999 6000 6001 6002 6003
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

6004
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
6005
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
6006

6007 6008
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
6009 6010 6011 6012
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
6013
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
6014
       related to the same batch of inputs.
6015

W
weixing02 已提交
6016
    Args:
M
minqiyang 已提交
6017
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
6018 6019 6020 6021
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
6022 6023
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
6024
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
6036
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
6037
            it should be in leaf -> root order
M
minqiyang 已提交
6038 6039 6040
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
6041
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
6042
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
6043
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
6044
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
6045
             of W and input will be sparse.
W
weixing02 已提交
6046 6047

    Returns:
J
JiabinYang 已提交
6048
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
6049 6050 6051 6052 6053

    Examples:

        .. code-block:: python

6054
            import paddle.fluid as fluid
G
guosheng 已提交
6055 6056 6057
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
6058 6059 6060 6061
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6062 6063
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
6064
    dim = input.shape[1]
6065
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
6066 6067 6068
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

6069 6070 6071 6072 6073 6074 6075 6076 6077
    if (not is_custom) and (is_sparse):
        print("Sparse mode should not be used without custom tree")
        is_sparse = False

    if (not is_custom) and ((path_table is not None) or
                            (path_code is not None)):
        raise ValueError(
            "only num_classes should be passed without custom tree")

6078
    if (is_custom) and (path_code is None):
6079
        raise ValueError("path_code should not be None with custom tree")
6080
    elif (is_custom) and (path_table is None):
6081
        raise ValueError("path_table should not be None with custom tree")
6082
    elif (is_custom) and (num_classes is None):
6083
        raise ValueError("num_classes should not be None with custom tree")
6084 6085 6086
    else:
        pass

J
JiabinYang 已提交
6087
    weights = None
6088 6089 6090 6091
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
6092
    if not is_custom:
J
JiabinYang 已提交
6093 6094 6095 6096 6097 6098 6099 6100
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
6101
            shape=[num_classes, dim],
J
JiabinYang 已提交
6102 6103
            is_bias=False,
            dtype=input.dtype)
6104 6105 6106
    inputs = {
        "X": input,
        "W": weights,
6107
        "PathTable": path_table,
6108
        "PathCode": path_code,
6109 6110
        "Label": label
    }
W
weixing02 已提交
6111
    if helper.bias_attr:
6112
        if not is_custom:
J
JiabinYang 已提交
6113 6114
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
6115
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
6116 6117 6118 6119 6120 6121
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
6122
                shape=[num_classes, 1],
J
JiabinYang 已提交
6123 6124 6125
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
6126 6127
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
6128
        inputs=inputs,
W
weixing02 已提交
6129
        outputs={"Out": out,
6130 6131 6132 6133 6134 6135 6136
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
6137 6138 6139
    return out


Y
fix ci.  
ying 已提交
6140
def transpose(x, perm, name=None):
Y
ying 已提交
6141 6142 6143 6144 6145 6146 6147
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
6148 6149 6150
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
6151 6152 6153 6154 6155 6156 6157

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

6158
            # use append_batch_size=False to avoid prepending extra
6159
            # batch size in shape
6160
            import paddle.fluid as fluid
6161
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
6162
                            dtype='float32', append_batch_size=False)
6163
            x_transposed = fluid.layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
6164 6165
    """

Y
fix ci.  
ying 已提交
6166
    if len(perm) != len(x.shape):
Y
ying 已提交
6167 6168
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
6169
            "Its length should be equal to Input(input)'s rank.")
Y
ying 已提交
6170 6171 6172 6173 6174 6175
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
6176 6177

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
6178 6179
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
6180
    helper.append_op(
6181
        type='transpose2',
Y
fix ci.  
ying 已提交
6182
        inputs={'X': [x]},
6183 6184
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
6185 6186
        attrs={'axis': perm})
    return out
6187 6188


6189 6190 6191 6192 6193 6194 6195
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
6196
    """
6197 6198 6199 6200 6201 6202 6203
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
6204 6205 6206 6207 6208 6209 6210 6211 6212 6213

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

6232 6233 6234 6235 6236 6237 6238 6239 6240
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

6241 6242 6243
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
6244 6245 6246 6247 6248
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
6276 6277 6278
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

6291
            output.dims = {8, 8}
6292

6293
            output.lod = [[4, 4]]
6294

T
Tink_Y 已提交
6295
    Examples:
6296 6297 6298

        .. code-block:: python

B
Bai Yifan 已提交
6299 6300 6301
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                     dtype='float32')
6302
            output = fluid.layers.im2sequence(
B
Bai Yifan 已提交
6303 6304
                input=data, stride=[1, 1], filter_size=[2, 2])

6305 6306

    """
L
lujun 已提交
6307
    assert not in_dygraph_mode(), (
6308
        "sequence layer is not supported in dygraph mode yet.")
W
wanghaoshuang 已提交
6309 6310 6311 6312 6313 6314 6315 6316 6317 6318

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
6319
    inputs = {"X": input}
6320
    attrs = {"kernels": filter_size, "strides": stride, "paddings": padding}
6321 6322 6323 6324 6325
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
6326
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
6327
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
6328
    helper.append_op(
6329
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
6330
    return out
6331 6332


Y
yuyang18 已提交
6333
@templatedoc()
6334
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
6335 6336
    """
    ${comment}
6337 6338

    Args:
Y
yuyang18 已提交
6339
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
6340 6341
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
6342 6343 6344 6345 6346
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
6347
        ${out_comment}.
6348 6349

    Examples:
Y
yuyang18 已提交
6350 6351 6352 6353
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
6354 6355 6356 6357 6358 6359
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
6360
    out = helper.create_variable_for_type_inference(dtype)
6361 6362 6363 6364 6365
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
6366
    return helper.append_activation(out)
6367 6368


Y
yuyang18 已提交
6369
@templatedoc()
6370 6371
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
6372 6373
    ${comment}

L
lujun 已提交
6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416
    For Example:

    .. code-block:: text

        case 1:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
             [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
             [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

        index = [3,0,1,2]

        out:[[3 0 3 4]    // X[3,0] (3 = index[i], 0 = i); i=0
             [0 1 3 4]    // X[0,1] (0 = index[i], 1 = i); i=1
             [1 2 4 2]    // X[1,2] (0 = index[i], 2 = i); i=2
             [2 3 3 4]]   // X[2,3] (0 = index[i], 3 = i); i=3

        case 2:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]]]

        index = [1,0]

        out:[[1 0 3 4]    // X[1,0] (3 = index[0], 0 = i); i=1
             [0 1 3 4]    // X[0,1] (0 = index[1], 1 = i); i=2
             [0 2 4 4]    // X[0,2] (0 = 0, 2 = i); i=3
             [0 3 3 4]]   // X[0,3] (0 = 0, 3 = i); i=4

    Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
        x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
        index = fluid.layers.data(name='index', shape=[1], dtype='int32')
        out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
6417 6418

    Args:
Y
yuyang18 已提交
6419 6420
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
6421 6422

    Returns:
Y
yuyang18 已提交
6423
        ${out_comment}.
6424 6425
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
6426 6427 6428 6429 6430

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
6431
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
6432 6433 6434 6435 6436 6437
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
6438 6439


6440 6441 6442
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
6443
                               ignore_index=kIgnoreIndex,
6444
                               numeric_stable_mode=True,
6445 6446
                               return_softmax=False,
                               axis=-1):
6447 6448
    """
    **Softmax With Cross Entropy Operator.**
6449

6450
    Cross entropy loss with softmax is used as the output layer extensively. This
6451 6452 6453
    operator computes the softmax normalized values for dimension :attr:`axis` of 
    the input tensor, after which cross-entropy loss is computed. This provides 
    a more numerically stable gradient.
6454

6455 6456 6457
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
6458

6459 6460 6461 6462
    When the attribute :attr:`soft_label` is set :attr:`False`, this operators 
    expects mutually exclusive hard labels, each sample in a batch is in exactly 
    one class with a probability of 1.0. Each sample in the batch will have a 
    single label.
6463

6464
    The equation is as follows:
6465

6466
    1) Hard label (one-hot label, so every sample has exactly one class)
6467

6468 6469 6470 6471
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
6472

6473 6474 6475
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
6476

6477 6478 6479 6480
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

6481 6482
    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated 
    first by:
S
sneaxiy 已提交
6483 6484

    .. math::
6485

H
haowang101779990 已提交
6486
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
6487

H
haowang101779990 已提交
6488
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
6489

H
haowang101779990 已提交
6490
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
6491 6492 6493

    and then cross entropy loss is calculated by softmax and label.

6494
    Args:
6495 6496 6497 6498 6499 6500
        logits (Variable): The input tensor of unscaled log probabilities.
        label (Variable): The ground truth  tensor. If :attr:`soft_label`
            is set to :attr:`True`, Label is a Tensor<float/double> in the 
            same shape with :attr:`logits`. If :attr:`soft_label` is set to 
            :attr:`True`, Label is a Tensor<int64> in the same shape with 
            :attr:`logits` expect shape in dimension :attr:`axis` as 1.
6501
        soft_label (bool): A flag to indicate whether to interpretate the given
6502
            labels as soft labels. Default False.
M
minqiyang 已提交
6503 6504
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
6505 6506
                            if :attr:`soft_label` is set to :attr:`False`. 
                            Default: kIgnoreIndex
S
sneaxiy 已提交
6507 6508
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
6509 6510 6511 6512
                                    when :attr:`soft_label` is :attr:`False` 
                                    and GPU is used. When :attr:`soft_label` 
                                    is :attr:`True` or CPU is used, the 
                                    algorithm is always numerically stable.
6513
                                    Note that the speed may be slower when use
6514
                                    stable algorithm. Default: True
6515
        return_softmax (bool): A flag indicating whether to return the softmax
6516
                               along with the cross entropy loss. Default: False
6517 6518 6519
        axis (int): The index of dimension to perform softmax calculations. It 
                    should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                    is the rank of input :attr:`logits`. Default: -1.
6520

6521
    Returns:
H
haowang101779990 已提交
6522 6523
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
6524 6525 6526 6527
                                            (loss, softmax), softmax is in the same shape \
                                            with input logits and cross entropy loss is in \
                                            the same shape with input logits except shape \
                                            in dimension :attr:`axis` as 1.
6528 6529 6530 6531

    Examples:
        .. code-block:: python

6532 6533
            import paddle.fluid as fluid

6534 6535 6536
            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
6537 6538
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
6539 6540
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
6541 6542
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
6543 6544 6545 6546 6547 6548
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
6549 6550 6551
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
6552 6553
            'numeric_stable_mode': numeric_stable_mode,
            'axis': axis
S
sneaxiy 已提交
6554
        })
6555 6556 6557 6558

    if return_softmax:
        return loss, softmax

6559 6560 6561
    return loss


6562 6563 6564
def sampled_softmax_with_cross_entropy(logits,
                                       label,
                                       num_samples,
X
xuezhong 已提交
6565
                                       num_true=1,
6566
                                       remove_accidental_hits=True,
X
xuezhong 已提交
6567 6568 6569
                                       use_customized_samples=False,
                                       customized_samples=None,
                                       customized_probabilities=None,
6570
                                       seed=0):
X
xuezhong 已提交
6571 6572 6573 6574 6575
    """
    **Sampled Softmax With Cross Entropy Operator.**

    Cross entropy loss with sampled softmax is used as the output layer for 
    larger output classes extensively. This operator samples a number of samples
6576
    for all examples, and computes the softmax normalized values for each 
X
xuezhong 已提交
6577 6578 6579 6580 6581 6582 6583 6584
    row of the sampled tensor, after which cross-entropy loss is computed. 

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
    
    For examples with T true labels (T >= 1), we assume that each true label has
    a probability of 1/T. For each sample, S samples are generated using a
X
xuezhong 已提交
6585
    log uniform distribution. True labels are concatenated with these samples to
X
xuezhong 已提交
6586 6587 6588 6589 6590 6591 6592 6593
    form T + S samples for each example. So, assume the shape of logits is
    [N x K], the shape for samples is [N x (T+S)]. For each sampled label, a 
    probability is calculated, which corresponds to the Q(y|x) in 
    [Jean et al., 2014](http://arxiv.org/abs/1412.2007).
    
    Logits are sampled according to the sampled labels. Then if 
    remove_accidental_hits is True, if a sample[i, j] accidentally hits true 
    labels, then the corresponding sampled_logits[i, j] is minus by 1e20 to 
X
xuezhong 已提交
6594
    make its softmax result close to zero. Then sampled logits are subtracted by
X
xuezhong 已提交
6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605
    logQ(y|x), these sampled logits and re-indexed labels are used to compute 
    a softmax with cross entropy.

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. Label is a 
            Tensor<int64> with shape [N x T], where T is the number of true 
            labels per example. 
        num_samples (int): The number for each example, num_samples should be 
            less than the number of class.
6606
        num_true(int): The number of target classes per training example.
X
xuezhong 已提交
6607 6608 6609 6610 6611
        remove_accidental_hits (bool): A flag indicating whether to remove 
            accidental hits when sampling. If True and if a sample[i, j] 
            accidentally hits true labels, then the corresponding 
            sampled_logits[i, j] is minus by 1e20 to make its softmax result 
            close to zero. Default is True.
X
xuezhong 已提交
6612
        use_customized_samples (bool): Whether to use custom samples and probabities to sample
6613
            logits.
X
xuezhong 已提交
6614 6615 6616 6617 6618
        customized_samples (Variable): User defined samples, which is a 2-D tensor
            with shape [N, T + S]. S is the num_samples, and T is the number of true 
            labels per example. 
        customized_probabilities (Variable): User defined probabilities of samples, 
            a 2-D tensor which has the same shape with customized_samples.
6619 6620 6621
        seed (int): The random seed for generating random number, which is used
            in the process of sampling. Default is 0.

X
xuezhong 已提交
6622 6623 6624 6625 6626 6627 6628
    Returns:
        Variable: Return the cross entropy loss which is a 2-D tensor with shape
                  [N x 1].

    Examples:
        .. code-block:: python

6629 6630 6631
            import paddle.fluid as fluid

            input = fluid.layers.data(name='data', shape=[256], dtype='float32')
6632
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
6633
            fc = fluid.layers.fc(input=input, size=100)
X
xuezhong 已提交
6634
            out = fluid.layers.sampled_softmax_with_cross_entropy(
6635
                      logits=fc, label=label, num_samples=25)
X
xuezhong 已提交
6636 6637 6638 6639 6640 6641 6642 6643
    """
    helper = LayerHelper('sample_logits', **locals())
    samples = helper.create_variable_for_type_inference(dtype='int64')
    probabilities = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
    sampled_logits \
        = helper.create_variable_for_type_inference(dtype=logits.dtype)
    sampled_label = helper.create_variable_for_type_inference(dtype='int64')
X
xuezhong 已提交
6644 6645
    sampled_softlabel = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
6646 6647
    logits_dim = helper.create_variable_for_type_inference(dtype=logits.dtype)
    labels_dim = helper.create_variable_for_type_inference(dtype=label.type)
X
xuezhong 已提交
6648 6649 6650 6651 6652

    helper.append_op(
        type='sample_logits',
        inputs={
            'Logits': logits,
X
xuezhong 已提交
6653
            'Labels': label,
X
xuezhong 已提交
6654 6655
            'CustomizedSamples': customized_samples,
            'CustomizedProbabilities': customized_probabilities
X
xuezhong 已提交
6656 6657 6658 6659
        },
        outputs={
            'Samples': samples,
            'Probabilities': probabilities,
X
xuezhong 已提交
6660
            'SampledLabels': sampled_label,
6661 6662 6663
            'SampledLogits': sampled_logits,
            'LogitsDim': logits_dim,
            'LabelsDim': labels_dim
X
xuezhong 已提交
6664 6665
        },
        attrs={
X
xuezhong 已提交
6666
            'use_customized_samples': use_customized_samples,
6667
            'uniq': True,
X
xuezhong 已提交
6668 6669 6670 6671
            'remove_accidental_hits': remove_accidental_hits,
            'num_samples': num_samples,
            'seed': seed
        })
X
xuezhong 已提交
6672 6673
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
X
xuezhong 已提交
6674 6675 6676 6677 6678 6679
    helper.append_op(
        type='one_hot',
        inputs={'X': sampled_label},
        attrs={'depth': num_samples + 1},
        outputs={'Out': sampled_softlabel})

6680 6681
    helper.append_op(
        type='softmax_with_cross_entropy',
X
xuezhong 已提交
6682
        inputs={'Logits': sampled_logits,
X
xuezhong 已提交
6683
                'Label': sampled_softlabel},
X
xuezhong 已提交
6684 6685 6686
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={
X
xuezhong 已提交
6687
            'soft_label': True,
X
xuezhong 已提交
6688 6689 6690
            'ignore_index': False,
            'numeric_stable_mode': False
        })
X
xuezhong 已提交
6691
    return loss / num_true
X
xuezhong 已提交
6692 6693


6694 6695
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
6696 6697
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
6698
    For each instance, it computes the smooth L1 loss element by element first
6699
    and then sums all the losses. So the shape of ouput Variable is
6700
    [batch_size, 1].
6701

6702 6703
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
6704
            L1 loss op with shape [batch_size, dim1, ..., dimN].
6705
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
6706
            L1 loss op with same shape as :attr:`x`.
6707
        inside_weight (Variable|None):  A tensor with rank at least 2. This
6708 6709
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
6710
            by this tensor element by element.
6711
        outside_weight (Variable|None): A tensor with rank at least 2. This
6712 6713
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
6714
            element by element.
6715
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
6716 6717
           scalar with default value 1.0.

6718
    Returns:
6719
        Variable: The output smooth L1 loss with shape [batch_size, 1].
6720 6721 6722 6723

    Examples:
        .. code-block:: python

6724
            import paddle.fluid as fluid
6725
            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
6726 6727
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
6728
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
6729
            out = fluid.layers.smooth_l1(x=fc, y=label)
6730
    """
6731

6732
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
6733 6734
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
6735 6736 6737 6738 6739 6740 6741 6742 6743 6744
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
6745
        attrs={'sigma': sigma if sigma is not None else 1.0})
6746
    return loss
6747 6748


6749
def one_hot(input, depth, allow_out_of_range=False):
6750
    """
Y
Yibing Liu 已提交
6751
    This layer creates the one-hot representations for input indices.
6752 6753

    Args:
Y
Yibing Liu 已提交
6754 6755
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
6756 6757 6758 6759
        allow_out_of_range(bool): A bool value indicating whether the input
            indices could be out of range [0, depth). When input indices are
            out of range, exceptions is raised if allow_out_of_range is False,
            or zero-filling representations is created if it is set True
6760 6761

    Returns:
Y
Yibing Liu 已提交
6762
        Variable: The one-hot representations of input.
6763 6764

    Examples:
C
caoying03 已提交
6765
        .. code-block:: python
6766

6767
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
6768 6769
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            one_hot_label = fluid.layers.one_hot(input=label, depth=10)
6770 6771
    """
    helper = LayerHelper("one_hot", **locals())
6772

X
Xin Pan 已提交
6773
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
6774 6775 6776 6777 6778 6779 6780 6781 6782 6783

    if in_dygraph_mode():
        inputs = {'X': input}
        attrs = {'depth': depth}
    else:
        if not isinstance(depth, Variable):
            # user attribute 
            inputs = {'X': input}
            attrs = {'depth': depth}
        else:
H
Hongyu Liu 已提交
6784
            depth.stop_gradient = True
6785 6786
            inputs = {'X': input, 'depth_tensor': depth}
            attrs = {}
6787 6788
    helper.append_op(
        type="one_hot",
6789 6790
        inputs=inputs,
        attrs=attrs,
6791 6792
        outputs={'Out': one_hot_out},
        stop_gradient=True)
6793
    return one_hot_out
Y
Yu Yang 已提交
6794 6795


Y
Yu Yang 已提交
6796
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
6797
    """
Y
yi.wu 已提交
6798 6799 6800
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
6801 6802 6803 6804 6805 6806

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

6807 6808
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
6809 6810 6811 6812

    Examples:
        .. code-block:: python

6813
           import paddle.fluid as fluid
Y
yi.wu 已提交
6814
           global_step = fluid.layers.autoincreased_step_counter(
Y
Yibing Liu 已提交
6815
               counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Y
Yu Yang 已提交
6816 6817
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
6818 6819
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
6820 6821 6822 6823 6824
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
6825
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
6826
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
6827 6828
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
6829
            outputs={'Out': [counter]},
M
minqiyang 已提交
6830 6831
            attrs={'step': float(step)},
            stop_gradient=True)
Y
Yu Yang 已提交
6832 6833 6834
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
6835 6836


6837
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
6838
    """
C
caoying03 已提交
6839 6840
    Gives a new shape to the input Tensor without changing its data.

6841 6842 6843 6844 6845
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
6846

6847
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
6848

6849 6850 6851 6852
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

6853
    2. 0 means the actual dimension value is going to be copied from the
6854 6855 6856 6857
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
6858 6859

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
6860
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
6861
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
6862

6863
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6864 6865
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
6866 6867
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
6868
    dimensions.
C
caoying03 已提交
6869

6870
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6871 6872 6873 6874
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
6875 6876

    Args:
6877
        x(variable): The input tensor.
C
caoying03 已提交
6878 6879
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
6880 6881 6882 6883 6884
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
6885 6886
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
C
chengduozh 已提交
6887 6888 6889
        inplace(bool): If ``inplace`` is `True`, the input and output of ``layers.reshape``
                       are the same variable, otherwise, the input and output of
                       ``layers.reshape`` are different variables. Note that if :attr:`x`
C
chengduozh 已提交
6890
                       is more than one layer's input, ``inplace`` must be :attr:`False`.
6891
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
6892

6893
    Returns:
G
guosheng 已提交
6894 6895 6896 6897
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
6898

X
Xin Pan 已提交
6899 6900 6901
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
6902 6903
    Examples:
        .. code-block:: python
G
guosheng 已提交
6904

6905
            import paddle.fluid as fluid
6906
            data = fluid.layers.data(
6907
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
6908
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
6909
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
6910 6911 6912
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
6913
        raise ValueError("Input shape must be a python list or tuple.")
6914

X
Xin Pan 已提交
6915 6916 6917 6918 6919
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
6920

6921 6922
    # Validate the shape
    unk_dim_idx = -1
6923
    contain_var = False
6924
    for dim_idx, dim_size in enumerate(shape):
6925 6926 6927 6928
        if isinstance(dim_size, Variable):
            contain_var = True
            continue

6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

6941
    helper = LayerHelper("reshape2", **locals())
6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963
    if in_dygraph_mode():
        inputs = {'X': x}
        attrs = {'shape': shape}
    else:
        if contain_var:
            new_shape_tensor = []
            for dim in shape:
                if isinstance(dim, Variable):
                    dim.stop_gradient = True
                    new_shape_tensor.append(dim)
                else:
                    assert (isinstance(dim, int))
                    temp_out = helper.create_variable_for_type_inference(
                        'int32')
                    fill_constant(
                        [1], 'int32', dim, force_cpu=True, out=temp_out)
                    new_shape_tensor.append(temp_out)
            inputs['ShapeTensor'] = new_shape_tensor
            attrs = {}

        else:
            attrs = {'shape': shape}
6964 6965
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
6966
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
6967
    helper.append_op(
6968
        type="reshape2",
X
Xin Pan 已提交
6969
        inputs=inputs,
6970
        attrs=attrs,
6971 6972
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
6973

D
dzhwinter 已提交
6974
    return helper.append_activation(out)
6975

6976

6977
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
6978
    """
M
minqiyang 已提交
6979 6980 6981
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
6982
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
6983

H
haowang101779990 已提交
6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
7005

Y
Yibing Liu 已提交
7006
    Args:
7007
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
7008
        axes (list): List of integers, indicating the dimensions to be squeezed.
7009
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
7010 7011 7012 7013 7014 7015 7016

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

7017
            import paddle.fluid as fluid
7018
            import paddle.fluid.layers as layers
Y
Yibing Liu 已提交
7019
            x = layers.data(name='x', shape=[5, 1, 10])
7020
            y = layers.squeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
7021
    """
L
lujun 已提交
7022
    assert not in_dygraph_mode(), (
L
lujun 已提交
7023
        "squeeze layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
7024
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
7025 7026
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
7027
    helper.append_op(
7028
        type="squeeze2",
7029
        inputs={"X": input},
Y
Yibing Liu 已提交
7030
        attrs={"axes": axes},
7031 7032
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
7033

7034 7035 7036
    return out


7037
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
7038
    """
M
minqiyang 已提交
7039 7040 7041
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
7042

M
minqiyang 已提交
7043
    For example:
H
haowang101779990 已提交
7044 7045 7046

    .. code-block:: text

M
minqiyang 已提交
7047
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
7048
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
7049

Y
Yibing Liu 已提交
7050
    Args:
7051
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
7052
        axes (list): List of integers, indicating the dimensions to be inserted.
7053
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
7054 7055 7056 7057 7058 7059 7060

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

7061 7062 7063
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10])
            y = fluid.layers.unsqueeze(input=x, axes=[1])
Y
Yibing Liu 已提交
7064 7065
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
7066 7067
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
7068
    helper.append_op(
7069
        type="unsqueeze2",
7070
        inputs={"X": input},
Y
Yibing Liu 已提交
7071
        attrs={"axes": axes},
7072 7073
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
7074

7075 7076
    return out

7077

Y
yangyaming 已提交
7078
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
7079
    """
Y
Yibing Liu 已提交
7080
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
7081 7082 7083 7084
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
7085
    :attr:`y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
7086 7087 7088 7089 7090 7091

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
7092
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
7093 7094 7095
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

7096
            target_lod: [4, 2]
Y
yangyaming 已提交
7097 7098

            then we get a 1-level LoDTensor:
7099
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
7100 7101 7102 7103 7104 7105
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
7106
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
7107 7108 7109 7110
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
7111
                y.data = [[2, 4]]
Y
yangyaming 已提交
7112 7113 7114
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
7115
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
7116 7117 7118 7119 7120 7121
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
7122
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
7123 7124 7125 7126
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
7127
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
7128 7129 7130 7131
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
7132
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
7133 7134 7135 7136
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
7137
        x (Variable): Input variable which could be a Tensor or LoDTensor.
7138
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
7139
                           from :attr:`y`.
Y
yangyaming 已提交
7140
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
7141
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
7142 7143

    Returns:
Y
Yibing Liu 已提交
7144
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
7145 7146

    Raises:
Y
Yibing Liu 已提交
7147
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
7148 7149 7150 7151

    Examples:
        .. code-block:: python

7152
            import paddle.fluid as fluid
7153 7154 7155
            x = fluid.layers.data(name='x', shape=[10])
            y = fluid.layers.data(name='y', shape=[10, 20], lod_level=2)
            out = fluid.layers.lod_reset(x=x, y=y)
Y
yangyaming 已提交
7156 7157
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
7158
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195
        raise ValueError("y and target_lod should not be both none.")
    return out


def lod_append(x, level):
    """
    Append level to LoD of :attr:`x`.

    .. code-block:: text

        * Example 1:

            given a 1-level LoDTensor x:
                x.lod =  [[ 2,           3,                   1 ]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            level: [1, 1, 1, 1, 1, 1, 1]

            then we get a 2-level LoDTensor:
                x.lod =  [[ 2, 3, 1 ], [1, 1, 1, 1, 1, 1]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a tensor or LoDTensor.
7196
        level (list|tuple|Variable): The LoD level to be appended into LoD of x.
7197 7198 7199 7200 7201 7202

    Returns:
        Variable: Output variable with new LoD level.

    Raises:
        ValueError: If :attr:`y` is None or and :attr:`level` is not Iterator.
Y
yangyaming 已提交
7203

7204 7205 7206 7207 7208 7209 7210 7211 7212 7213
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[6, 10], lod_level=1)
            out = fluid.layers.lod_append(x, [1,1,1,1,1,1])
    """
    from collections import Iterable
    if x is None:
        raise ValueError("Input(x) can't be None.")
7214 7215 7216
    if (not isinstance(level, Iterable)) and (not isinstance(level, Variable)):
        raise ValueError("Input(level) must be list, tuple or Variable.")

7217 7218
    helper = LayerHelper("lod_append", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7219 7220 7221 7222 7223 7224 7225 7226

    inputs = {'X': x}
    attrs = {'append': True}

    if isinstance(level, Variable):
        inputs['Y'] = level
    else:
        attrs['target_lod'] = level
7227
    helper.append_op(
7228
        type="lod_reset", inputs=inputs, attrs=attrs, outputs={'Out': out})
Y
yangyaming 已提交
7229
    return out
D
dragonwarrior 已提交
7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

X
xiaoting 已提交
7241
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C-1, i + n/2)}_{j = \\max(0, i - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

7270
          import paddle.fluid as fluid
F
stash  
fengjiayi 已提交
7271 7272
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
7285 7286 7287
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
7301 7302 7303 7304


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
7305
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
7306
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
7307

G
guosheng 已提交
7308
    Specifically, the number of values padded before the contents of :attr:`x`
7309
    in dimension :attr:`i` is indicated by :attr:`paddings[2i]`, and the number
G
guosheng 已提交
7310
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
7311
    indicated by :attr:`paddings[2i+1]`.
G
guosheng 已提交
7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
7334
                         The length of :attr:paddings must be
G
guosheng 已提交
7335 7336 7337 7338 7339 7340 7341 7342 7343 7344
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
7345

G
guosheng 已提交
7346
            # x is a rank 2 tensor variable.
S
SunGaofeng 已提交
7347 7348
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape=[224], dtype='float32')
G
guosheng 已提交
7349 7350 7351 7352 7353
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7354
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
7355 7356 7357 7358 7359 7360 7361
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
7362 7363


C
chengduo 已提交
7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
7395 7396
		And
            pad_value = -1,
C
chengduo 已提交
7397

T
Tink_Y 已提交
7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
S
SunGaofeng 已提交
7428 7429 7430
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2,3,2,3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1,3,1,3], dtype='float32')
C
chengduo 已提交
7431 7432 7433 7434 7435
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7436
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
7437 7438 7439 7440 7441 7442 7443 7444 7445
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


7446 7447 7448 7449 7450 7451 7452
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
7453 7454
    called label-smoothing regularization (LSR).

7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
7478
                              be :math:`(1, class\_num)`.
7479 7480
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
7481
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
7482 7483 7484 7485 7486 7487 7488 7489 7490
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python
7491
            
7492
            import paddle.fluid as fluid
7493
            import paddle.fluid.layers as layers
7494 7495 7496 7497 7498 7499 7500 7501 7502 7503

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
7504
    smooth_label = helper.create_variable_for_type_inference(dtype)
7505 7506 7507 7508 7509 7510 7511
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
7512 7513


W
wopeizl 已提交
7514 7515 7516 7517 7518 7519 7520
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
7521 7522 7523 7524 7525
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates.
W
wopeizl 已提交
7526 7527 7528 7529 7530 7531 7532 7533 7534 7535
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548
            import paddle.fluid as fluid

            x = fluid.layers.data(
                name='x', shape=[8, 112, 112], dtype='float32')
            rois = fluid.layers.data(
                name='roi', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.roi_pool(
                input=x,
                rois=rois,
                pooled_height=7,
                pooled_width=7,
                spatial_scale=1.0)

W
wopeizl 已提交
7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
7566 7567


J
jerrywgz 已提交
7568 7569 7570 7571 7572 7573
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
7574 7575
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
7576 7577 7578 7579 7580
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
7581 7582 7583 7584 7585
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates. 
J
jerrywgz 已提交
7586 7587 7588 7589 7590 7591 7592 7593 7594 7595
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

7596
            import paddle.fluid as fluid
J
jerrywgz 已提交
7597 7598 7599 7600
            x = fluid.layers.data(
                name='data', shape=[256, 32, 32], dtype='float32')
            rois = fluid.layers.data(
                name='rois', shape=[4], dtype='float32')
7601 7602 7603
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
7604 7605 7606 7607 7608 7609
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7610
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
7651 7652
        .. code-block:: python

S
SunGaofeng 已提交
7653 7654 7655
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape = [3, 224, 224, 2], dtype='float32')
            label = fluid.layers.data(name='label', shape=[3, 224, 224, 1], dtype='float32')
W
whs 已提交
7656
            predictions = fluid.layers.softmax(x)
S
SunGaofeng 已提交
7657
            loss = fluid.layers.dice_loss(input=predictions, label=label)
W
whs 已提交
7658 7659
    """
    label = one_hot(label, depth=input.shape[-1])
7660
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
7661 7662 7663 7664 7665 7666
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
7667 7668


7669 7670 7671 7672
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
7673
                 resample='BILINEAR',
7674 7675
                 actual_shape=None,
                 align_corners=True,
T
tink2123 已提交
7676
                 align_mode=1):
7677
    """
Q
qiaolongfei 已提交
7678
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
7679

K
Kaipeng Deng 已提交
7680 7681 7682
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w)
    or (num_batches, channels, in_d, in_h, in_w), and the resizing only applies 
    on the last two/three dimensions(depth, hight and width).
7683 7684

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
7685

7686
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
7687

K
Kaipeng Deng 已提交
7688 7689
        'TRILINEAR' : Trilinear interpolation

7690
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
7691

7692 7693 7694 7695 7696 7697 7698 7699 7700 7701
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

K
Kaipeng Deng 已提交
7702 7703 7704 7705 7706
    Trilinear interpolation is an extension of linear interpolation for 
    interpolating functions of three variables (e.g. D-direction, 
    H-direction and W-direction in this op) on a rectilinear 3D grid. 
    The linear interpolation is performed on three directions.

T
tink2123 已提交
7707
    Align_corners and align_mode are optinal parameters,the calculation method 
7708 7709 7710 7711
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7712
    .. code-block:: text
7713

T
Tink_Y 已提交
7714
        For scale:
7715
          
T
Tink_Y 已提交
7716
            if align_corners = True && out_size > 1 :
7717

T
Tink_Y 已提交
7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
          
          if:
              align_corners = False
7729

T
Tink_Y 已提交
7730 7731
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7732

T
Tink_Y 已提交
7733 7734
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
7735

T
Tink_Y 已提交
7736 7737
          else:
              align_corners = True
7738

T
Tink_Y 已提交
7739 7740
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7741

T
Tink_Y 已提交
7742 7743
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7744

T
Tink_Y 已提交
7745 7746 7747 7748 7749 7750 7751 7752 7753 7754
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7755

T
Tink_Y 已提交
7756 7757 7758 7759
          else:
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7760

T
Tink_Y 已提交
7761 7762
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7763

K
Kaipeng Deng 已提交
7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785
        Trilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5


          else:
           
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:

              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
          
7786 7787 7788 7789 7790 7791
    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.

K
Kaipeng Deng 已提交
7792 7793 7794
    For details of trilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Trilinear_interpolation.

7795 7796


7797
    Args:
7798
        input (Variable): The input tensor of image resize layer,
7799
                          This is a 4-D tensor of the shape
K
Kaipeng Deng 已提交
7800 7801 7802
                          (num_batches, channels, in_h, in_w) or a
                          5-D tensor of the shape
                          (num_batches, channls, in_d, in_h, in_w).
7803
        out_shape(list|tuple|Variable|None): Output shape of image resize
K
Kaipeng Deng 已提交
7804 7805 7806 7807
                                    layer, the shape is (out_h, out_w) when
                                    input is a 4-D tensor and is
                                    (out_d, out_h, out_w) when input is a
                                    5-D tensor. Default: None
D
dengkaipeng 已提交
7808
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7809
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7810
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7811
             Default: None.
7812 7813
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
K
Kaipeng Deng 已提交
7814 7815
        resample(str): The resample method. It supports 'BILINEAR', 'TRILINEAR'
                       and 'NEAREST' currently. Default: 'BILINEAR'
7816 7817 7818
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7819
                                :attr:`out_shape` and :attr:`scale` specifying
7820 7821 7822 7823 7824 7825 7826
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7827 7828
                                constructing stage.
                                Default: None
7829 7830 7831 7832
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
7833
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
7834 7835
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
                            src_idx = scale*dst_index .
7836 7837

    Returns:
Q
update  
qiaolongfei 已提交
7838
        Variable: The output is a 4-D tensor of the shape
K
Kaipeng Deng 已提交
7839 7840
        (num_batches, channls, out_h, out_w) or a 5-D tensor of the shape
        (num_batches, channels, out_d, out_h, out_w).
F
stash  
fengjiayi 已提交
7841

7842 7843 7844
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
K
Kaipeng Deng 已提交
7845 7846 7847 7848
        ValueError: The 'resample' of image_resize can only be 'BILINEAR',
                    'TRILINEAR' or 'NEAREST' currently.
        ValueError: 'BILINEAR' and 'NEAREST' only support 4-D tensor.
        ValueError: 'TRILINEAR' only support 5-D tensor.
7849
        ValueError: One of out_shape and scale must not be None.
K
Kaipeng Deng 已提交
7850 7851
        ValueError: out_shape length should be 2 for input 4-D tensor.
        ValueError: out_shape length should be 3 for input 5-D tensor.
D
dengkaipeng 已提交
7852
        ValueError: scale should be greater than zero.
7853 7854
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
7855

7856 7857 7858
    Examples:
        .. code-block:: python

7859
            import paddle.fluid as fluid
R
ruri 已提交
7860
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7861
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
7862
    """
7863 7864
    resample_methods = {
        'BILINEAR': 'bilinear',
K
Kaipeng Deng 已提交
7865
        'TRILINEAR': 'trilinear',
7866 7867
        'NEAREST': 'nearest',
    }
7868 7869
    if resample not in resample_methods:
        raise ValueError(
K
Kaipeng Deng 已提交
7870 7871
            "The 'resample' of image_resize can only be 'BILINEAR', 'TRILINEAR' "
            "or 'NEAREST' currently.")
7872
    resample_type = resample_methods[resample]
7873

K
Kaipeng Deng 已提交
7874 7875 7876 7877 7878
    if resample in ['BILINEAR', 'NEAREST'] and len(input.shape) != 4:
        raise ValueError("'BILINEAR' and 'NEAREST' only support 4-D tensor.")
    if resample == 'TRILINEAR' and len(input.shape) != 5:
        raise ValueError("'TRILINEAR'only support 5-D tensor.")

7879 7880 7881 7882 7883
    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

7884
    if out_shape is None and scale is None:
7885
        raise ValueError("One of out_shape and scale must not be None.")
7886
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
7887
    dtype = helper.input_dtype()
7888 7889 7890 7891

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

7892
    inputs = {"X": input}
D
dengkaipeng 已提交
7893
    attrs = {
K
Kaipeng Deng 已提交
7894
        "out_d": 0,
D
dengkaipeng 已提交
7895 7896
        "out_h": 0,
        "out_w": 0,
D
dengkaipeng 已提交
7897 7898 7899 7900 7901
        "interp_method": resample_type,
        "align_corners": align_corners,
        "align_mode": align_mode
    }

7902
    if out_shape is not None:
7903 7904 7905 7906
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
7907
            inputs['OutSize'] = out_shape
7908 7909
        else:
            if not (_is_list_or_turple_(out_shape)):
D
dengkaipeng 已提交
7910 7911
                raise TypeError(
                    "out_shape should be a list or tuple or Variable.")
K
Kaipeng Deng 已提交
7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926
            if len(input.shape) == 4:
                if len(out_shape) != 2:
                    raise ValueError("out_shape length should be 2 for "
                                     "input 4-D tensor.")
                out_shape = list(map(int, out_shape))
                attrs['out_h'] = out_shape[0]
                attrs['out_w'] = out_shape[1]
            if len(input.shape) == 5:
                if len(out_shape) != 3:
                    raise ValueError("out_shape length should be 3 for "
                                     "input 5-D tensor.")
                out_shape = list(map(int, out_shape))
                attrs['out_d'] = out_shape[0]
                attrs['out_h'] = out_shape[1]
                attrs['out_w'] = out_shape[2]
7927

7928
    else:
D
dengkaipeng 已提交
7929 7930
        if scale <= 0:
            raise ValueError("scale should be greater than zero.")
D
dengkaipeng 已提交
7931
        attrs['scale'] = float(scale)
7932

7933 7934 7935 7936 7937
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
7938
    out = helper.create_variable_for_type_inference(dtype)
7939
    helper.append_op(
7940
        type='{}_interp'.format(resample_type),
7941
        inputs=inputs,
7942
        outputs={"Out": out},
D
dengkaipeng 已提交
7943
        attrs=attrs)
7944
    return out
F
stash  
fengjiayi 已提交
7945 7946


7947
@templatedoc(op_type="bilinear_interp")
7948 7949 7950 7951
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
7952 7953
                    actual_shape=None,
                    align_corners=True,
T
tink2123 已提交
7954
                    align_mode=1):
7955
    """
7956 7957
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
7958 7959
    in priority order.

7960 7961 7962 7963
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
7964 7965
    again in the other direction.

7966
    For details of bilinear interpolation, please refer to Wikipedia:
7967
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
7968

T
tink2123 已提交
7969
    Align_corners and align_mode are optinal parameters,the calculation 
7970 7971 7972 7973
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7974
    .. code-block:: text
7975

T
Tink_Y 已提交
7976
        For scale:
7977
          
T
Tink_Y 已提交
7978
            if align_corners = True && out_size > 1 :
7979

T
Tink_Y 已提交
7980 7981 7982 7983 7984
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     
7985

T
Tink_Y 已提交
7986 7987 7988 7989 7990 7991 7992 7993 7994 7995
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7996 7997


T
Tink_Y 已提交
7998
          else:
T
tink2123 已提交
7999

T
Tink_Y 已提交
8000 8001
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
8002

T
Tink_Y 已提交
8003 8004
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
8005 8006 8007



Y
yuyang18 已提交
8008
    Args:
K
Kaipeng Deng 已提交
8009
        input(${x_type}): input should be a 4-D tensor.
Y
yuyang18 已提交
8010

D
dengkaipeng 已提交
8011 8012 8013
        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
                                    layer, the shape is (out_h, out_w).
                                    Default: None
8014

Y
yuyang18 已提交
8015
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
8016
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
8017
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
8018
             Default: None.
Y
yuyang18 已提交
8019 8020

        name(str|None): The output variable name.
8021 8022 8023
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
8024
                                :attr:`out_shape` and :attr:`scale` specifying
8025 8026 8027 8028 8029 8030 8031
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
8032 8033
                                constructing stage.
                                Default: None
8034 8035
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
Y
yuyang18 已提交
8036 8037

    Returns:
K
Kaipeng Deng 已提交
8038
        A 4-D tensor in shape of (num_batches, channels, out_h, out_w)
8039 8040 8041 8042

    Examples:
        .. code-block:: python

8043
            import paddle.fluid as fluid
R
ruri 已提交
8044
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
8045
            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
8046 8047
    """

8048 8049
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
                        align_corners, align_mode)
8050 8051


K
Kaipeng Deng 已提交
8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157
@templatedoc(op_type="trilinear_interp")
def resize_trilinear(input,
                     out_shape=None,
                     scale=None,
                     name=None,
                     actual_shape=None,
                     align_corners=True,
                     align_mode=1):
    """
    Resize input by performing trilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
    in priority order.

    Trilinear interpolation is an extension of linear interpolation for 
    interpolating functions of three variables (e.g. D-direction, 
    H-direction and W-direction in this op) on a rectilinear 3D grid. 
    The linear interpolation is performed on three directions.

    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation

    Align_corners and align_mode are optinal parameters,the calculation 
    method of interpolation can be selected by them.

    Example:

    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :

              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     

        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5


          else:

              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:

              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}



    Args:
        input(${x_type}): input should be a 4-D tensor.

        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
                                    layer, the shape is (out_d, out_h, out_w).
                                    Default: None

        scale(float|None): The multiplier for the input depth, height or width.
             At least one of :attr:`out_shape` or :attr:`scale` must be set. 
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
             Default: None.

        name(str|None): The output variable name.
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
                                :attr:`out_shape` and :attr:`scale` specifying
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
                                constructing stage.
                                Default: None
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}

    Returns:
        A 5-D tensor in shape (num_batches, channels, out_d, out_h, out_w)

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            input = fluid.layers.data(name="input", shape=[3,6,9,11], dtype="float32")
            out = fluid.layers.resize_trilinear(input, out_shape=[12, 12, 12])
    """

    return image_resize(input, out_shape, scale, name, 'TRILINEAR',
                        actual_shape, align_corners, align_mode)


8158
@templatedoc(op_type="nearest_interp")
8159 8160 8161 8162
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
8163 8164
                   actual_shape=None,
                   align_corners=True):
8165
    """
8166
    Resize input by performing nearest neighbor interpolation in both the
T
Tink_Y 已提交
8167 8168
    3rd dimension(in height direction) and the 4th dimension(in width
    direction) based on given output shape which is specified by actual_shape,
8169 8170
    out_shape and scale in priority order.

8171 8172
    Example:

T
Tink_Y 已提交
8173 8174 8175 8176 8177
    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :
8178

T
Tink_Y 已提交
8179 8180 8181 8182 8183 8184 8185 8186
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
8187
          
T
Tink_Y 已提交
8188 8189
          if:
              align_corners = False
8190

T
Tink_Y 已提交
8191 8192
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
8193

T
Tink_Y 已提交
8194 8195
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
8196

T
Tink_Y 已提交
8197 8198
          else:
              align_corners = True
8199

T
Tink_Y 已提交
8200 8201
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
8202

T
Tink_Y 已提交
8203 8204
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
8205 8206


8207
    For details of nearest neighbor interpolation, please refer to Wikipedia:
8208
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
8209 8210

    Args:
K
Kaipeng Deng 已提交
8211
        input(${x_type}): input should be a 4-D tensor.
Y
yuyang18 已提交
8212

D
dengkaipeng 已提交
8213 8214 8215
        out_shape(list|tuple|Variable|None): Output shape of resize nearest
                                    layer, the shape is (out_h, out_w).
                                    Default: None
8216

Y
yuyang18 已提交
8217
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
8218
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
8219
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
8220
             Default: None.
Y
yuyang18 已提交
8221 8222

        name(str|None): The output variable name.
8223 8224 8225
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
8226
                                :attr:`out_shape` and :attr:`scale` specifying
8227 8228 8229 8230 8231 8232 8233
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
8234 8235
                                constructing stage.
                                Default: None
8236
        align_corners(bool): ${align_corners_comment}
Y
yuyang18 已提交
8237 8238

    Returns:
K
Kaipeng Deng 已提交
8239
        A 4-D tensor in shape of (num_batches, channels, out_h, out_w)
8240 8241 8242 8243

    Examples:
        .. code-block:: python

8244
            import paddle.fluid as fluid
R
ruri 已提交
8245
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
8246
            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
8247 8248
    """

8249 8250
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape,
                        align_corners)
8251 8252 8253 8254


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
8255 8256 8257
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
8258 8259 8260 8261 8262 8263 8264
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
8265
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
8266

8267
    Returns:
Q
update  
qiaolongfei 已提交
8268
        Variable: The output is a 4-D tensor of the shape
8269
        (num_batches, channls, out_h, out_w).
R
ruri 已提交
8270 8271 8272 8273

    Examples:
        .. code-block:: python

8274
            import paddle.fluid as fluid
R
ruri 已提交
8275 8276
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
            out = fluid.layers.image_resize_short(input, out_short_len=3)
8277 8278 8279 8280 8281 8282 8283 8284 8285 8286
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
8287 8288 8289
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
8290 8291 8292
    return image_resize(input=input, out_shape=out_shape, resample=resample)


8293
def gather(input, index, overwrite=True):
W
whs 已提交
8294
    """
Q
qiaolongfei 已提交
8295 8296
    **Gather Layer**

8297
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
8298 8299 8300 8301
    of X indexed by `index` and concatenate them together.

    .. math::

8302
        Out = X[Index]
W
whs 已提交
8303 8304 8305 8306 8307 8308 8309


    .. code-block:: text


                Given:

8310 8311
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
8312 8313 8314 8315 8316 8317 8318 8319 8320 8321
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
8322
        input (Variable): The source input with rank>=1.
W
whs 已提交
8323
        index (Variable): The index input with rank=1.
8324 8325 8326 8327 8328 8329
        overwrite (bool): The mode that updating the grad when has same index.
            If True, use the overwrite mode to update the grad of the same index,
	    if False, use the accumulate mode to update the grad of the same index. 
	    Default value is True.
	    

W
whs 已提交
8330 8331 8332 8333 8334

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
8335

W
whs 已提交
8336 8337
        .. code-block:: python

8338
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
8339 8340
            x = fluid.layers.data(name='x', shape=[-1, 5], dtype='float32')
            index = fluid.layers.data(name='index', shape=[-1, 1], dtype='int32')
W
whs 已提交
8341 8342 8343 8344
            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8345
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
8346 8347 8348 8349
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
8350 8351
        outputs={"Out": out},
        attrs={'overwrite': overwrite})
W
whs 已提交
8352 8353 8354
    return out


8355
def scatter(input, index, updates, name=None, overwrite=True):
8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.
8373 8374 8375 8376
        overwrite (bool): The mode that updating the output when has same index.
            If True, use the overwrite mode to update the output of the same index,
	    if False, use the accumulate mode to update the output of the same index. 
	    Default value is True.You can set overwrite=False to implement scatter_add.
8377 8378 8379 8380 8381 8382 8383 8384

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

8385 8386 8387 8388 8389
            import paddle.fluid as fluid

            input = fluid.layers.data(name='data', shape=[3, 5, 9], dtype='float32', append_batch_size=False)
            index = fluid.layers.data(name='index', shape=[3], dtype='int64', append_batch_size=False)
            updates = fluid.layers.data(name='update', shape=[3, 5, 9], dtype='float32', append_batch_size=False)
8390

8391
            output = fluid.layers.scatter(input, index, updates)
8392 8393 8394
    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8395
    out = helper.create_variable_for_type_inference(dtype)
8396 8397 8398 8399 8400
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
8401
        attrs={'overwrite': overwrite},
8402 8403 8404 8405
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
8406 8407 8408 8409 8410 8411 8412 8413 8414
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
8415

Q
Qingsheng Li 已提交
8416
    Given the following input:
H
haowang101779990 已提交
8417

Q
Qingsheng Li 已提交
8418
    .. code-block:: text
H
haowang101779990 已提交
8419

Q
Qingsheng Li 已提交
8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
8432

Q
Qingsheng Li 已提交
8433
    .. code-block:: text
H
haowang101779990 已提交
8434

Q
Qingsheng Li 已提交
8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
8450
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
8451 8452 8453 8454

    Examples:

        .. code-block:: python
8455
	
8456
            import paddle.fluid as fluid
8457
            import paddle.fluid.layers as layers
Q
Qingsheng Li 已提交
8458

8459 8460 8461
            input = layers.data( name="x", shape=[3, 6], append_batch_size=False, dtype='float32' )
            index = layers.data( name='index', shape=[1], dtype='int32')
            updates = layers.data( name='updates', shape=[1], dtype='float32')
Q
Qingsheng Li 已提交
8462 8463 8464
            output = fluid.layers.sequence_scatter(input, index, updates)

    """
L
lujun 已提交
8465
    assert not in_dygraph_mode(), (
8466
        "sequence layer is not supported in dygraph mode yet.")
Q
Qingsheng Li 已提交
8467 8468
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8469
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
8470 8471 8472 8473 8474 8475 8476 8477 8478
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
8492

8493
    Examples:
8494
        >>> import paddle.fluid as fluid
8495 8496
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
8497
    """
F
stash  
fengjiayi 已提交
8498
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
8499
    dtype = x.dtype
X
Xin Pan 已提交
8500
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
8501
    if seed is None:
8502
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
8503
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
8504
    if isinstance(seed, int):
F
fengjiayi 已提交
8505 8506 8507 8508 8509
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
8510 8511 8512 8513
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
8514
        inputs={"X": x,
F
stash  
fengjiayi 已提交
8515 8516
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
8517 8518
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
8519
    return out
W
whs 已提交
8520 8521


8522
def log(x, name=None):
W
wanghaoshuang 已提交
8523 8524 8525 8526 8527
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

8528
        Out = \\ln(x)
W
wanghaoshuang 已提交
8529 8530

    Args:
8531
        x (Variable): Input tensor.
8532 8533
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
8534 8535 8536 8537 8538 8539 8540 8541

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

8542
            import paddle.fluid as fluid
8543
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
8544
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
8545 8546
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
8547
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8548
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
8549
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
8550 8551 8552
    return out


8553
def relu(x, name=None):
W
wanghaoshuang 已提交
8554 8555
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
8556
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
8557 8558 8559 8560
    the tensor elementwise.

    .. math::

8561
        Out = \\max(0, x)
W
wanghaoshuang 已提交
8562 8563

    Args:
8564
        x (Variable): The input tensor.
8565 8566
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
8567 8568 8569 8570 8571 8572 8573 8574

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

8575
            import paddle.fluid as fluid
8576
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
8577
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
8578 8579
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
8580
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8581
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
8582 8583
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
8584
    return out
8585 8586


C
chengduo 已提交
8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python
8611 8612 8613 8614 8615 8616
             
            import paddle.fluid as fluid
          
            input = fluid.layers.data(
                 name="input", shape=[3, 9, 5], dtype="float32")
            output = fluid.layers.selu(input)
C
chengduo 已提交
8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
8632 8633 8634
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
8635 8636 8637 8638
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
8639
    .. math::
8640

H
haowang101779990 已提交
8641
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
8642

8643
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
8644 8645 8646 8647 8648
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
8649
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
8650
                           Its shape should be the same as input.
8651
        num_classes (int): The possible number of labels.
W
whs 已提交
8652 8653

    Returns:
M
minqiyang 已提交
8654 8655
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
8656
                     Three variables:
M
minqiyang 已提交
8657

H
haowang101779990 已提交
8658 8659 8660
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
8661 8662 8663 8664

    Examples:

        .. code-block:: python
8665

B
Bai Yifan 已提交
8666 8667 8668 8669 8670
            import paddle.fluid as fluid
            predict = fluid.layers.data(name='predict', shape=[3, 32, 32])
            label = fluid.layers.data(name='label', shape=[1])
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label,
                                                          num_classes=5)
W
whs 已提交
8671 8672 8673
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8674 8675 8676
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
8677 8678
    helper.append_op(
        type="mean_iou",
W
whs 已提交
8679 8680
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
8681
        outputs={
W
whs 已提交
8682 8683 8684
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
8685 8686 8687
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
S
SunGaofeng 已提交
8730
        offsets (Variable|list/tuple of integer|None): Specifies the cropping
8731
            offsets at each dimension. It can be a Variable or or a list/tupe
S
SunGaofeng 已提交
8732
            of integers. If a tensor Variable, it's rank must be the same as `x`.
8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

S
SunGaofeng 已提交
8750
            import paddle.fluid as fluid
8751 8752 8753 8754 8755 8756
            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
8757
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
8758 8759 8760 8761 8762

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
8763
            isinstance(shape, Variable)):
8764 8765 8766 8767 8768
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
8769
    out = helper.create_variable_for_type_inference(x.dtype)
8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
8787 8788


W
whs 已提交
8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
8806

W
whs 已提交
8807
              out_shape = [2, 3, 5, 5]
8808

W
whs 已提交
8809
          Step 1:
8810

W
whs 已提交
8811 8812 8813
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
8814

W
whs 已提交
8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
8860
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
8861
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
8874

S
SunGaofeng 已提交
8875
            import paddle.fluid as fluid
W
whs 已提交
8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
8887
            isinstance(out_shape, Variable)):
W
whs 已提交
8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


8909 8910
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
8911

8912 8913
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
8914
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
8915 8916 8917
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
8918

8919 8920
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
8921

H
haowang101779990 已提交
8922 8923
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
8924 8925
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
8926

H
haowang101779990 已提交
8927 8928 8929 8930 8931 8932 8933 8934
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
8935 8936 8937

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

8955
            import paddle.fluid as fluid
8956 8957 8958
            label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
8973
    out = helper.create_variable_for_type_inference("float32")
8974 8975 8976 8977 8978 8979 8980 8981

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
8982 8983


M
minqiyang 已提交
8984 8985
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
8986
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
8987
    which compares left score and right score passed in.
M
minqiyang 已提交
8988
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
8989 8990 8991

    .. math::

H
haowang101779990 已提交
8992
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
8993 8994

    Args:
M
minqiyang 已提交
8995
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
8996 8997
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
8998
       margin (float): Indicates the given margin.
M
minqiyang 已提交
8999 9000
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
9001

M
minqiyang 已提交
9002
    Returns:
M
minqiyang 已提交
9003
       Variable: The ranking loss.
H
haowang101779990 已提交
9004

M
minqiyang 已提交
9005
    Raises:
M
minqiyang 已提交
9006
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
9007

M
minqiyang 已提交
9008
    Examples:
H
haowang101779990 已提交
9009

M
minqiyang 已提交
9010
        .. code-block:: python
H
haowang101779990 已提交
9011

9012
           import paddle.fluid as fluid
Y
Yibing Liu 已提交
9013 9014 9015
           label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
M
minqiyang 已提交
9016 9017
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
9018
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
9019 9020 9021 9022 9023 9024
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
9025 9026
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
9050
        .. code-block:: text
W
whs 已提交
9051

T
Tink_Y 已提交
9052
	      Given that X is a channel of image from input:
M
minqiyang 已提交
9053

T
Tink_Y 已提交
9054 9055
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
9056

T
Tink_Y 已提交
9057
	      Case 0:
M
minqiyang 已提交
9058

T
Tink_Y 已提交
9059 9060 9061
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
9062

T
Tink_Y 已提交
9063 9064 9065
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
9066

T
Tink_Y 已提交
9067
	      Case 1:
M
minqiyang 已提交
9068

T
Tink_Y 已提交
9069 9070
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
9071

T
Tink_Y 已提交
9072 9073 9074
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
9075

T
Tink_Y 已提交
9076
	      Case 2:
M
minqiyang 已提交
9077

T
Tink_Y 已提交
9078 9079
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
9080

T
Tink_Y 已提交
9081 9082 9083
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
9084 9085


W
whs 已提交
9086 9087
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
9088
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

B
Bai Yifan 已提交
9106 9107 9108 9109 9110
          import paddle.fluid as fluid
          data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                   dtype='float32')
          result = fluid.layers.pad2d(input=data, paddings=[1, 2, 3, 4],
                                      mode='reflect')
W
whs 已提交
9111 9112 9113 9114
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
9115
    out = helper.create_variable_for_type_inference(dtype)
9116 9117 9118 9119 9120 9121 9122 9123 9124
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
9125
    helper.append_op(
9126
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
9127 9128 9129 9130

    return out


9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
9143 9144 9145 9146 9147

    Examples:

        .. code-block:: python

9148
            import paddle.fluid as fluid
Z
ZhenWang 已提交
9149 9150
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
9151 9152
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
9153
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
9174 9175 9176 9177 9178

    Examples:

        .. code-block:: python

9179
            import paddle.fluid as fluid
Z
ZhenWang 已提交
9180 9181
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
9182 9183
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
9184
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
9205 9206 9207 9208 9209

    Examples:

        .. code-block:: python

9210
            import paddle.fluid as fluid
Z
ZhenWang 已提交
9211 9212
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
9213 9214
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
9215
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
9237 9238 9239 9240 9241

    Examples:

        .. code-block:: python

9242
            import paddle.fluid as fluid
Z
ZhenWang 已提交
9243
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
9244
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
9245 9246
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
9247
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
9270 9271 9272 9273 9274

    Examples:

        .. code-block:: python

9275
            import paddle.fluid as fluid
Z
ZhenWang 已提交
9276 9277
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
9278 9279
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
9280
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
9302 9303 9304 9305 9306

    Examples:

        .. code-block:: python

9307
            import paddle.fluid as fluid
Z
ZhenWang 已提交
9308 9309
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
9310 9311
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
9312
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9313 9314 9315 9316 9317 9318 9319 9320
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
9321 9322 9323 9324
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
9325 9326
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
9327

J
jerrywgz 已提交
9328 9329 9330 9331 9332 9333 9334 9335
    There are three modes for the activation:

    .. code-block:: text

        all: All elements share same alpha.
        channel: Elements in same channel share same alpha.
        element: All elements do not share alpha. Each element has its own alpha.

J
jerrywgz 已提交
9336 9337
    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
9338
        mode (string): The mode for weight sharing. 
J
jerrywgz 已提交
9339
        param_attr(ParamAttr|None): The parameter attribute for the learnable
J
jerrywgz 已提交
9340
          weight (alpha), it can be create by ParamAttr.
J
jerrywgz 已提交
9341
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
9342
          will be named automatically.
J
jerrywgz 已提交
9343 9344 9345 9346 9347 9348 9349 9350

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
9351 9352 9353
            import paddle.fluid as fluid
            from paddle.fluid.param_attr import ParamAttr
            x = fluid.layers.data(name="x", shape=[5,10,10], dtype="float32")
J
jerrywgz 已提交
9354
            mode = 'channel'
J
jerrywgz 已提交
9355 9356 9357
            output = fluid.layers.prelu(
                     x,mode,param_attr=ParamAttr(name='alpha'))

J
jerrywgz 已提交
9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
9369
        attr=helper.param_attr,
J
jerrywgz 已提交
9370 9371 9372 9373
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
9374
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
9375 9376 9377 9378 9379 9380 9381 9382 9383
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


9384 9385 9386 9387 9388 9389 9390 9391 9392 9393
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
9394
    Returns:
9395
        output(${out_type}): ${out_comment}
9396 9397 9398

    Examples:

9399
    .. code-block:: python
9400

9401
            import paddle.fluid as fluid
H
haowang101779990 已提交
9402 9403
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
9404 9405
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
9406
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
9425
    Returns:
9426
        output(${out_type}): ${out_comment}
9427 9428 9429 9430 9431

    Examples:

        .. code-block:: python

9432
            import paddle.fluid as fluid
H
haowang101779990 已提交
9433 9434
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
9435 9436
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
9437
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
9455
    Returns:
9456
        output(${out_type}): ${out_comment}
9457 9458 9459

    Examples:

9460 9461 9462 9463 9464
        .. code-block:: python 
 
            import paddle.fluid as fluid
   
            x = fluid.layers.data(name="x", shape=[3,16,16], dtype="float32")
H
haowang101779990 已提交
9465
            y = fluid.layers.soft_relu(x, threshold=20.0)
9466 9467
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
9468
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9469 9470 9471 9472 9473 9474 9475 9476
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


9477 9478 9479 9480
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
9481

H
haowang101779990 已提交
9482
    For Example:
M
minqiyang 已提交
9483

H
haowang101779990 已提交
9484
    .. code-block:: text
9485

H
haowang101779990 已提交
9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
9507 9508 9509

    Args:
        x (Variable): A tensor of rank >= axis.
9510 9511
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
9512 9513 9514 9515 9516 9517 9518 9519
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
9520 9521 9522
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
9523 9524 9525 9526
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
9527
        ValueError: If axis is not in range [0, rank(x)].
9528 9529 9530 9531 9532

    Examples:

        .. code-block:: python

9533
            import paddle.fluid as fluid
9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544
            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
9545 9546
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
9547
    helper.append_op(
9548
        type='flatten2',
9549
        inputs={"X": x},
9550 9551
        outputs={'Out': out,
                 'XShape': x_shape},
9552 9553
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
9554 9555


C
chenweihang 已提交
9556
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
9557
    """
C
chenweihang 已提交
9558
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
9559
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
9560 9561
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
9562

H
haowang101779990 已提交
9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
9580 9581

    Args:
C
chenweihang 已提交
9582 9583 9584
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
9585 9586 9587 9588 9589 9590 9591

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

9592 9593 9594
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[-1, 1], dtype='int32', lod_level=1)
C
chenweihang 已提交
9595 9596
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
L
lujun 已提交
9597
    assert not in_dygraph_mode(), (
9598
        "sequence layer is not supported in dygraph mode yet.")
C
chenweihang 已提交
9599
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
9600 9601
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
9602 9603 9604 9605 9606 9607
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
9608
    return out
9609

9610

S
sneaxiy 已提交
9611 9612 9613 9614 9615 9616 9617 9618 9619
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
9620

S
sneaxiy 已提交
9621
    .. math::
9622

S
sneaxiy 已提交
9623 9624 9625
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
9626
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
9627 9628 9629 9630
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
9631 9632 9633
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
9634 9635
    Returns:
        Variable: The output sequence mask.
9636

9637 9638 9639
    Examples:
        .. code-block:: python
	
9640
            import paddle.fluid as fluid
9641 9642 9643 9644 9645
            import paddle.fluid.layers as layers

            x = fluid.layers.data(name='x', shape=[10], dtype='float32', lod_level=1)
            mask = layers.sequence_mask(x=x)

S
sneaxiy 已提交
9646
    """
L
lujun 已提交
9647
    assert not in_dygraph_mode(), (
9648
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
9649

Q
qingqing01 已提交
9650
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
9651
    if name is None:
X
Xin Pan 已提交
9652
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
9653
    else:
X
Xin Pan 已提交
9654
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
9655

9656 9657 9658 9659 9660 9661 9662 9663
    inputs = {'X': [x]}
    attrs = {'out_dtype': out.dtype}
    if maxlen is not None:
        if isinstance(maxlen, Variable):
            inputs['MaxLenTensor'] = maxlen
        else:
            attrs['maxlen'] = maxlen

Q
qingqing01 已提交
9664
    helper.append_op(
9665 9666 9667
        type='sequence_mask', inputs=inputs, outputs={'Y': out}, attrs=attrs)

    out.stop_gradient = True
S
sneaxiy 已提交
9668
    return out
S
sneaxiy 已提交
9669 9670


X
Xin Pan 已提交
9671
def stack(x, axis=0):
S
sneaxiy 已提交
9672 9673 9674 9675
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
9676 9677 9678 9679 9680 9681 9682

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
9683
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
9684
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
9685

C
chengduozh 已提交
9686 9687
    For Example:

C
chengduozh 已提交
9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725
    .. code-block:: text

        Case 1:
          Input:
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 0

          Output:
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
            Out.dims = [3, 1, 2]

        Case 2:
          Given
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 1 or axis = -2

          Output:
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
            Out.dims = [1, 3, 2]

S
sneaxiy 已提交
9726
    Args:
9727
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
9728
        axis (int|None): The axis along which all inputs are stacked.
9729

S
sneaxiy 已提交
9730 9731
    Returns:
        Variable: The stacked variable.
9732

9733 9734 9735
    Examples:
        .. code-block:: python

9736
            import paddle.fluid as fluid
9737
            import paddle.fluid.layers as layers
9738 9739
            x1 = layers.data(name='x1', shape=[1, 2], dtype='int32')
            x2 = layers.data(name='x2', shape=[1, 2], dtype='int32')
9740 9741
            data = layers.stack([x1,x2])

S
sneaxiy 已提交
9742 9743
    """

X
Xin Pan 已提交
9744 9745 9746 9747 9748 9749
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
9750
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
9751
    helper.append_op(
S
sneaxiy 已提交
9752 9753
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
9754

X
Xin Pan 已提交
9755
    return out
D
dzhwinter 已提交
9756 9757


J
Jiawei Wang 已提交
9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827
@templatedoc(op_type="filter_by_instag")
def filter_by_instag(ins, ins_tag, filter_tag, is_lod):
    """
    **Filter By Instag Layer**
   
    This function filter a batch of ins by instag, 
    There are multiple ins, and every ins belongs to some tags. 
    We can specify some tags we want. So the ins which belongs to that tags
    remains in the output, and others removed.
 
    For example, one batch has 4 ins. Every ins has its tag list. 
     
       | Ins   |   Ins_Tag |
       |:-----:|:------:|
       |  0    |   0, 1 |
       |  1    |   1, 3 |
       |  2    |   0, 3 |
       |  3    |   2, 6 |

    And Lod is [1,1,1,1]

    And the filter tags [1]

    From the definition above, ins which has tag 1 can pass the filter
    So Ins 0 and Ins 1 can pass and be seen in the output,
    Ins 2 and 3 cannot pass because they do not has tag 1.

    Actually, if is_lod is false, it is normal tensor that equals to 
    lod_tensor with all 1, similar to the example above.

    Args:
        ins (Variable): Input Variable (LoDTensor), usually it is 2D tensor
                        And first dimension can have lod info or not.
        ins_tag (Variable): Input Variable (LoDTensor), usually it is 1D list
                        And split them by lod info
        filter_tag (Variable): Input Variable (1D Tensor/List), usually it is 
                        list that holds the tags.
        is_lod (Bool): Boolean value to indicate ins is lod tensor or not.

    Returns:
        Variable: filtered ins (LoDTensor) and loss weight (Tensor)

    Examples:
        .. code-block:: python

          import paddle.fluid.layers as layers
          ins = layers.data(name='Ins', shape=[-1,32], lod_level=0, dtype='float64')
          ins_tag = layers.data(name='Ins_tag', shape=[-1,16], lod_level=0, dtype='int64')
          filter_tag = layers.data(name='Filter_tag', shape=[-1,16], dtype='int64')
          out, loss_weight = layers.filter_by_instag(ins,  ins_tag,  filter_tag, True)
        		
    """
    helper = LayerHelper('filter_by_instag', **locals())

    out = helper.create_variable_for_type_inference(dtype=ins.dtype)
    loss_weight = helper.create_variable_for_type_inference(dtype=np.float64)
    mmap = helper.create_variable_for_type_inference(dtype=ins_tag.dtype)
    helper.append_op(
        type='filter_by_instag',
        inputs={'Ins': ins,
                'Ins_tag': ins_tag,
                'Filter_tag': filter_tag},
        outputs={'Out': out,
                 'LossWeight': loss_weight,
                 'IndexMap': mmap},
        attrs={'is_lod': is_lod})

    return [out, loss_weight]


D
dzhwinter 已提交
9828 9829 9830 9831 9832
def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
9833

D
dzhwinter 已提交
9834 9835 9836
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
9837
    raised.
D
dzhwinter 已提交
9838 9839

    Args:
M
minqiyang 已提交
9840
        x (Variable): Input variable.
D
dzhwinter 已提交
9841 9842
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
9843

D
dzhwinter 已提交
9844 9845
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
9846

9847 9848 9849 9850 9851 9852
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10], dtype='float32')
            y = fluid.layers.unstack(x, axis=1)
D
dzhwinter 已提交
9853 9854 9855 9856 9857 9858 9859 9860 9861 9862
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
9863
    for _ in range(num):
X
Xin Pan 已提交
9864
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
9865 9866 9867 9868 9869 9870 9871 9872

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
9885

W
whs 已提交
9886 9887 9888 9889
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
9890

W
whs 已提交
9891
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
9892

W
whs 已提交
9893
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
9894

W
whs 已提交
9895 9896 9897 9898
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
9899

W
whs 已提交
9900 9901 9902 9903 9904 9905 9906 9907 9908 9909
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python
W
wangchaochaohu 已提交
9910 9911 9912
          
            import paddle.fluid as fluid
            x = fluid.layers.fill_constant(shape=[2, 3, 1], dtype='int32', value=0)
W
whs 已提交
9913 9914 9915 9916
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
9917
    out = helper.create_variable_for_type_inference(dtype)
9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934
    # check expand_times have tensor

    if in_dygraph_mode():
        inputs = {'X': x}
        attrs = {'expand_times': expand_times}
    else:

        def contain_tensor(expand_times):
            for ele in expand_times:
                if isinstance(ele, Variable):
                    return True
            return False

        if contain_tensor(expand_times):
            new_expand_times = []
            for ele in expand_times:
                if isinstance(ele, Variable):
H
Hongyu Liu 已提交
9935
                    ele.stop_gradient = True
9936 9937 9938
                    new_expand_times.append(ele)
                else:
                    assert (isinstance(ele, int))
9939 9940
                    temp_out = helper.create_variable_for_type_inference(
                        "int32")
9941 9942 9943 9944 9945 9946 9947 9948 9949
                    fill_constant(
                        [1], 'int32', ele, force_cpu=True, out=temp_out)
                    new_expand_times.append(temp_out)
            inputs = {'X': x, 'expand_times_tensor': new_expand_times}
            attrs = {}
        else:
            inputs = {'X': x}
            attrs = {'expand_times': expand_times}

W
whs 已提交
9950
    helper.append_op(
9951
        type='expand', inputs=inputs, outputs={'Out': out}, attrs=attrs)
W
whs 已提交
9952
    return out
S
sneaxiy 已提交
9953 9954


G
fix  
gongweibao 已提交
9955 9956 9957
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
9958
@templatedoc()
G
fix  
gongweibao 已提交
9959 9960 9961 9962 9963 9964 9965 9966 9967
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
9968
    ${comment}
G
fix  
gongweibao 已提交
9969 9970

    Args:
G
gongweibao 已提交
9971 9972 9973
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9974
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
9975 9976 9977
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9978 9979
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
9980
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9981

9982 9983 9984
    Examples:
        .. code-block:: python

9985
            import paddle.fluid as fluid
9986 9987
            import paddle.fluid.layers as layers 

9988 9989
            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
9990 9991 9992
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
9993
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
10010 10011


G
gongweibao 已提交
10012
@templatedoc()
X
Xin Pan 已提交
10013
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
10014
    """
G
gongweibao 已提交
10015
    ${comment}
G
fix  
gongweibao 已提交
10016 10017

    Args:
G
gongweibao 已提交
10018 10019 10020 10021
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
10022 10023 10024
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
10025
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
10026

10027 10028 10029
    Examples:
        .. code-block:: python

10030
            import paddle.fluid as fluid
J
JesseyXujin 已提交
10031
            import paddle.fluid.layers as layers
10032
            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
10033 10034 10035
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
10036
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
10037 10038 10039 10040 10041 10042 10043 10044 10045 10046
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
10047
            'use_mkldnn': False
G
fix  
gongweibao 已提交
10048 10049 10050 10051 10052
        })

    return out


G
gongweibao 已提交
10053
@templatedoc()
G
fix  
gongweibao 已提交
10054
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
10055
    """
G
gongweibao 已提交
10056
    ${comment}
G
fix  
gongweibao 已提交
10057 10058

    Args:
G
gongweibao 已提交
10059 10060 10061 10062
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
10063
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
10064 10065

    Returns:
G
gongweibao 已提交
10066
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
10067

10068 10069 10070
    Examples:
        .. code-block:: python

10071
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
10072
            x = fluid.layers.data(
10073 10074 10075 10076 10077
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

Y
Yibing Liu 已提交
10078
            out = fluid.layers.sampling_id(x)
G
fix  
gongweibao 已提交
10079 10080 10081
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
10082
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
10094
@templatedoc()
G
fix  
gongweibao 已提交
10095 10096 10097 10098 10099 10100 10101 10102 10103
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
10104
    ${comment}
G
fix  
gongweibao 已提交
10105 10106

    Args:
G
gongweibao 已提交
10107 10108
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
10109
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
10110 10111 10112 10113
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
10114
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
10115 10116

    Returns:
G
gongweibao 已提交
10117
        out (Variable): ${out_comment}
10118 10119 10120 10121

    Examples:
        .. code-block:: python

10122
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
10123
            input = fluid.layers.data(name="input", shape=[13, 11], dtype='float32')
10124

Y
Yibing Liu 已提交
10125
            out = fluid.layers.gaussian_random_batch_size_like(
10126
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
10127 10128 10129
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
10130
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
10149
@templatedoc()
X
Xin Pan 已提交
10150
def sum(x):
G
fix  
gongweibao 已提交
10151
    """
G
gongweibao 已提交
10152
    ${comment}
G
fix  
gongweibao 已提交
10153 10154

    Args:
G
gongweibao 已提交
10155
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
10156 10157

    Returns:
G
gongweibao 已提交
10158
        out (Variable): ${out_comment}
10159 10160 10161 10162

    Examples:
        .. code-block:: python

10163
            import paddle.fluid as fluid
10164 10165 10166 10167
            import paddle.fluid.layers as layers
            input0 = layers.data(name="input0", shape=[13, 11], dtype='float32')
            input1 = layers.data(name="input1", shape=[13, 11], dtype='float32')
            out = layers.sum([input0,input1])
G
fix  
gongweibao 已提交
10168 10169 10170
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
10171 10172
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
10173 10174 10175 10176
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
10177
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
10178 10179 10180 10181

    return out


G
gongweibao 已提交
10182
@templatedoc()
G
fix  
gongweibao 已提交
10183 10184
def slice(input, axes, starts, ends):
    """
10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199
    Slice Operator.

    Produces a slice of the input tensor along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses `axes`, `starts` and `ends` attributes to specify the start and
    end dimension for each axis in the list of axes, it uses this information
    to slice the input data tensor. If a negative value is passed for any of
    the start or end indices, it represents number of elements before the end
    of that dimension. If the value passed to start or end is larger than
    the n (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of axes must be equal to starts\' and ends\'.
    Following examples will explain how slice works:

    .. code-block:: text
G
fix  
gongweibao 已提交
10200

10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217
        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
            Then:
                result = [ [5, 6, 7], ]
        
        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]
            Then:
                result = [ [2, 3, 4], ]
G
fix  
gongweibao 已提交
10218
    Args:
G
gongweibao 已提交
10219 10220 10221 10222
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
10223 10224

    Returns:
G
gongweibao 已提交
10225
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
10226

10227 10228 10229
    Examples:
        .. code-block:: python

10230 10231
            import paddle.fluid as fluid
 
10232 10233 10234 10235
            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

10236
            input = fluid.layers.data(
10237 10238
                name="input", shape=[3, 4, 5, 6], dtype='float32')

10239
            out = fluid.layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
10240 10241 10242
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
10243 10244
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


def shape(input):
    """
C
chengduozh 已提交
10258 10259
    **Shape Layer**

C
fix doc  
chengduozh 已提交
10260
    Get the shape of the input.
G
fix  
gongweibao 已提交
10261 10262

    Args:
C
chengduozh 已提交
10263
        input (Variable): The input variable.
G
fix  
gongweibao 已提交
10264 10265

    Returns:
C
fix doc  
chengduozh 已提交
10266
        Variable: The shape of the input variable.
G
fix  
gongweibao 已提交
10267

10268 10269 10270
    Examples:
        .. code-block:: python

10271 10272 10273
            import paddle.fluid as fluid

            input = fluid.layers.data(
10274
                name="input", shape=[3, 100, 100], dtype="float32")
10275
            out = fluid.layers.shape(input)
G
fix  
gongweibao 已提交
10276 10277 10278
    """

    helper = LayerHelper('shape', **locals())
10279
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
10280
    helper.append_op(
G
fix  
gongweibao 已提交
10281
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
10282 10283

    return out
G
merge  
gongweibao 已提交
10284 10285


Z
zhoukunsheng 已提交
10286 10287 10288 10289
def rank(input):
    """
    **Rank Layer**

Z
zhoukunsheng 已提交
10290
    Returns the number of dimensions for a tensor, which is a 0-D int32 Tensor.
Z
zhoukunsheng 已提交
10291 10292 10293 10294 10295 10296 10297 10298 10299 10300

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The rank of the input variable.

    Examples:
        .. code-block:: python

10301 10302 10303 10304
            import paddle.fluid as fluid

            input = fluid.layers.data(name="input", shape=[3, 100, 100], dtype="float32")
            rank = fluid.layers.rank(input) # 4
Z
zhoukunsheng 已提交
10305 10306 10307 10308 10309 10310 10311 10312
    """

    ndims = len(input.shape)
    out = assign(np.array(ndims, 'int32'))

    return out


Z
zhoukunsheng 已提交
10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341
def size(input):
    """
    **Size Layer**

    Returns the number of elements for a tensor, which is a int64 Tensor with shape [1].

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The number of elements for the input variable.

    Examples:
        .. code-block:: python

            import paddle.fluid.layers as layers

            input = layers.data(
                name="input", shape=[3, 100], dtype="float32", append_batch_size=False)
            rank = layers.size(input) # 300
    """

    helper = LayerHelper('size', **locals())
    out = helper.create_variable_for_type_inference(dtype='int64')
    helper.append_op(type='size', inputs={'Input': input}, outputs={'Out': out})

    return out


S
sneaxiy 已提交
10342 10343 10344 10345
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
L
lujun 已提交
10346
    if in_dygraph_mode():
X
Xin Pan 已提交
10347 10348 10349
        x = base.to_variable(x)
        y = base.to_variable(y)

S
sneaxiy 已提交
10350 10351 10352 10353
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
10354 10355
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
10356
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
10357 10358 10359
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
10360

S
sneaxiy 已提交
10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
10372
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
10373 10374 10375 10376 10377 10378 10379 10380
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
10381
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
10382
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
10383 10384 10385

    Returns:
        out(${out_type}): ${out_comment}
10386 10387 10388 10389 10390 10391 10392 10393

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            x = fluid.layers.data(name="X", shape=[1, 2, 5, 5], dtype='float32')
            y = fluid.layers.scale(x, scale = 2.0, bias = 1.0)
S
sneaxiy 已提交
10394 10395 10396
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
10397
    if name is None:
X
Xin Pan 已提交
10398
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
10399 10400 10401
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
10402 10403 10404 10405 10406 10407 10408 10409 10410 10411

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
10412
    return helper.append_activation(out)
S
sneaxiy 已提交
10413 10414


X
Xin Pan 已提交
10415
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10416 10417 10418
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
10419
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10420 10421 10422
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
10423
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10424 10425 10426
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
10427
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10428 10429 10430
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
10431
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10432 10433 10434
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
10435
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10436 10437 10438
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
10439
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
10440 10441 10442
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


10443 10444 10445 10446 10447 10448 10449 10450
def elementwise_mod(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_mod', **locals()))


def elementwise_floordiv(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))


S
sneaxiy 已提交
10451
for func in [
10452 10453 10454 10455 10456 10457 10458 10459 10460
        elementwise_add,
        elementwise_div,
        elementwise_sub,
        elementwise_mul,
        elementwise_max,
        elementwise_min,
        elementwise_pow,
        elementwise_mod,
        elementwise_floordiv,
S
sneaxiy 已提交
10461 10462 10463 10464 10465
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
10466 10467
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
10468
        ])
10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505
    func.__doc__ = func.__doc__ + """

Examples:
  .. code-block:: python
    
    import paddle.fluid as fluid
    # example 1: shape(x) = (2, 3, 4, 5), shape(y) = (2, 3, 4, 5)
    x0 = fluid.layers.data(name="x0", shape=[2, 3, 4, 5], dtype='float32')
    y0 = fluid.layers.data(name="y0", shape=[2, 3, 4, 5], dtype='float32')
    z0 = fluid.layers.%s(x0, y0)

    # example 2: shape(X) = (2, 3, 4, 5), shape(Y) = (5)
    x1 = fluid.layers.data(name="x1", shape=[2, 3, 4, 5], dtype='float32')
    y1 = fluid.layers.data(name="y1", shape=[5], dtype='float32')
    z1 = fluid.layers.%s(x1, y1)

    # example 3: shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
    x2 = fluid.layers.data(name="x2", shape=[2, 3, 4, 5], dtype='float32')
    y2 = fluid.layers.data(name="y2", shape=[4, 5], dtype='float32')
    z2 = fluid.layers.%s(x2, y2, axis=2)

    # example 4: shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    x3 = fluid.layers.data(name="x3", shape=[2, 3, 4, 5], dtype='float32')
    y3 = fluid.layers.data(name="y3", shape=[3, 4], dtype='float32')
    z3 = fluid.layers.%s(x3, y3, axis=1)

    # example 5: shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    x4 = fluid.layers.data(name="x4", shape=[2, 3, 4, 5], dtype='float32')
    y4 = fluid.layers.data(name="y4", shape=[2], dtype='float32')
    z4 = fluid.layers.%s(x4, y4, axis=0)

    # example 6: shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
    x5 = fluid.layers.data(name="x5", shape=[2, 3, 4, 5], dtype='float32')
    y5 = fluid.layers.data(name="y5", shape=[2], dtype='float32')
    z5 = fluid.layers.%s(x5, y5, axis=0)
    """ % (func.__name__, func.__name__, func.__name__, func.__name__,
           func.__name__, func.__name__)
M
minqiyang 已提交
10506 10507


10508
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
10509 10510
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
10511 10512
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
10513 10514 10515

    if out is None:
        if name is None:
X
Xin Pan 已提交
10516
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
10532
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10544 10545 10546 10547

    Examples:
        .. code-block:: python

10548
            import paddle.fluid as fluid
10549
            left = fluid.layers.data(
石晓伟 已提交
10550
                name='left', shape=[1], dtype='bool')
10551
            right = fluid.layers.data(
石晓伟 已提交
10552
                name='right', shape=[1], dtype='bool')
10553
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
10554 10555 10556 10557 10558 10559 10560
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
10561
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10573 10574 10575 10576

    Examples:
        .. code-block:: python

10577
            import paddle.fluid as fluid
10578
            left = fluid.layers.data(
石晓伟 已提交
10579
                name='left', shape=[1], dtype='bool')
10580
            right = fluid.layers.data(
石晓伟 已提交
10581
                name='right', shape=[1], dtype='bool')
10582
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
10583 10584 10585 10586 10587 10588 10589
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
10590
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10602 10603 10604 10605

    Examples:
        .. code-block:: python

10606
            import paddle.fluid as fluid
10607
            left = fluid.layers.data(
石晓伟 已提交
10608
                name='left', shape=[1], dtype='bool')
10609
            right = fluid.layers.data(
石晓伟 已提交
10610
                name='right', shape=[1], dtype='bool')
10611
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
10612 10613 10614 10615 10616 10617 10618
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
10619
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
10620 10621 10622 10623 10624 10625 10626 10627 10628 10629
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10630 10631 10632 10633

    Examples:
        .. code-block:: python

10634
            import paddle.fluid as fluid
10635
            left = fluid.layers.data(
石晓伟 已提交
10636
                name='left', shape=[1], dtype='bool')
10637
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
10638 10639 10640 10641
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10657 10658 10659 10660

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
10661
            import paddle.fluid as fluid
10662 10663 10664
            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
10665 10666 10667 10668 10669
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
10670 10671
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
10672 10673 10674

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10698 10699 10700 10701

    Examples:
        .. code-block:: python

10702
            import paddle.fluid as fluid
10703 10704 10705
            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
10706 10707 10708 10709 10710
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
10711 10712
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
10713 10714 10715

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
10716 10717 10718 10719 10720 10721 10722 10723

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10737 10738 10739 10740

    Examples:
        .. code-block:: python

10741
            import paddle.fluid as fluid
10742 10743 10744
            input = fluid.layers.data(
                name='data', shape=[2, 3], dtype='float32')
            mean = fluid.layers.mean(input)
X
Xin Pan 已提交
10745 10746 10747 10748 10749
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
10750
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10751 10752 10753 10754 10755 10756 10757 10758 10759 10760
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10772 10773 10774 10775

    Examples:
        .. code-block:: python

10776
            import paddle.fluid as fluid
10777 10778 10779 10780 10781
            b = fluid.default_main_program().global_block()
            var = b.create_var(
                name="X", dtype="float32", persistable=True,
                type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            y = fluid.layers.merge_selected_rows(var)
C
chengduo 已提交
10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            dataX = fluid.layers.data(name="dataX", append_batch_size = False, shape=[2, 5], dtype="float32")
            dataY = fluid.layers.data(name="dataY", append_batch_size = False, shape=[5, 3], dtype="float32")
            output = fluid.layers.mul(dataX, dataY,
                                      x_num_col_dims = 1,
                                      y_num_col_dims = 1)
            

X
Xin Pan 已提交
10820 10821 10822 10823 10824
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
10825
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10826 10827 10828 10829 10830 10831 10832 10833 10834
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
10835 10836
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
10837 10838 10839 10840 10841 10842
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
10843 10844 10845
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
10846 10847
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
10848 10849 10850 10851 10852 10853
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
10854
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
10855
        name(basestring|None): Name of the output.
10856 10857
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
10858 10859 10860

    Returns:
        out(${out_type}): ${out_comment}
10861 10862 10863 10864

    Examples:
        .. code-block:: python

10865
            import paddle.fluid as fluid
10866 10867 10868 10869 10870 10871 10872 10873 10874 10875
            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
10876 10877 10878 10879 10880
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
10881
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10882 10883 10884 10885 10886 10887 10888 10889
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
10890 10891
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
J
jerrywgz 已提交
10908 10909 10910 10911

    Examples:
        .. code-block:: python

10912
            import paddle.fluid as fluid
J
jerrywgz 已提交
10913 10914 10915 10916 10917
            input = fluid.layers.data(
                name='data', 
                shape=[256, 32, 32], 
                dtype='float32')
            out = fluid.layers.maxout(input, groups=2)
X
Xin Pan 已提交
10918 10919 10920 10921
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
10922
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10923 10924 10925 10926 10927 10928 10929 10930 10931 10932
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
10933 10934


J
JiabinYang 已提交
10935
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
10936
    """
J
JiabinYang 已提交
10937
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
10938 10939 10940

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
10941
    The attr blocksize indicates the input block size.
10942 10943

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
10944
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
10945 10946

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
10947
    (but keeping all data)
J
JiabinYang 已提交
10948

J
JiabinYang 已提交
10949
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
10950
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
10951 10952 10953 10954 10955
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
10956
    Args:
J
JiabinYang 已提交
10957
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
10958
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
10959 10960

    Returns:
J
JiabinYang 已提交
10961
        Variable: The output LoDtensor.
J
JiabinYang 已提交
10962 10963

    Raises:
J
JiabinYang 已提交
10964
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
10965 10966 10967

    Examples:
        .. code-block:: python
10968 10969 10970
	
            import paddle.fluid as fluid
            import numpy as np
J
JiabinYang 已提交
10971 10972

            data = fluid.layers.data(
10973
                name='data', shape=[1, 4, 2, 2], dtype='float32', append_batch_size=False)
J
JiabinYang 已提交
10974
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
10975
                x=data, blocksize=2)
10976

10977
            exe = fluid.Executor(fluid.CPUPlace())
10978 10979 10980 10981
            data_np = np.arange(0,16).reshape((1,4,2,2)).astype('float32')
            out_main = exe.run(fluid.default_main_program(),
                          feed={'data': data_np},
                          fetch_list=[space_to_depthed])
10982

J
JiabinYang 已提交
10983 10984
    """

J
JiabinYang 已提交
10985
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
10986

J
JiabinYang 已提交
10987 10988
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
10989 10990

    if name is None:
J
JiabinYang 已提交
10991 10992
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
10993 10994 10995 10996 10997
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
10998
        type="space_to_depth",
J
JiabinYang 已提交
10999
        inputs={"X": x},
J
JiabinYang 已提交
11000
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
11001
        outputs={"Out": out})
J
JiabinYang 已提交
11002 11003
    return out

J
JiabinYang 已提交
11004

S
sneaxiy 已提交
11005 11006
@templatedoc()
def sequence_reverse(x, name=None):
11007
    """
S
sneaxiy 已提交
11008 11009 11010 11011 11012 11013 11014 11015
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
B
bdzhuxiaoning 已提交
11016 11017 11018 11019 11020 11021 11022

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2, 6], dtype='float32')
            x_reversed = fluid.layers.sequence_reverse(x)
S
sneaxiy 已提交
11023
    """
L
lujun 已提交
11024
    assert not in_dygraph_mode(), (
11025
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
11026 11027
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
11028
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
11029 11030 11031 11032 11033 11034 11035 11036 11037 11038
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
11039 11040


11041 11042 11043 11044 11045 11046
def affine_channel(x,
                   scale=None,
                   bias=None,
                   data_layout='NCHW',
                   name=None,
                   act=None):
11047 11048 11049 11050 11051
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
11052

11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.
11065
        act (str, default None): Activation to be applied to the output of this layer.
11066 11067 11068

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
B
Bai Yifan 已提交
11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                     dtype='float32')
            input_scale = fluid.layers.create_parameter(shape=[3],
                                     dtype="float32")
            input_bias = fluid.layers.create_parameter(shape=[3],
                                     dtype="float32")
            out = fluid.layers.affine_channel(data,scale=input_scale,
                                     bias=input_bias)

11083 11084 11085 11086
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
11087
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
11099
    return helper.append_activation(out)
11100 11101


B
barrierye 已提交
11102
def similarity_focus(input, axis, indexes, name=None):
11103
    """
B
barrierye 已提交
11104
    SimilarityFocus Operator
B
barrierye 已提交
11105 11106

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
11107

11108 11109 11110
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
11111
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
11112 11113 11114 11115 11116 11117 11118
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
11119
       each index.
B
barrierye 已提交
11120 11121 11122 11123
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
11173
    Args:
11174
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
11175
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
11176
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
11177
            1, 2 or 3.
B
barrierye 已提交
11178
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
11179 11180

    Returns:
H
haowang101779990 已提交
11181 11182
        Variable: A tensor variable with the same shape and same type \
                  as the input.
11183

B
barrierye 已提交
11184 11185
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
11186

11187
            import paddle.fluid as fluid
B
barrierye 已提交
11188
            data = fluid.layers.data(
Y
Yibing Liu 已提交
11189 11190
                name='data', shape=[-1, 3, 2, 2], dtype='float32')
            fluid.layers.similarity_focus(input=data, axis=1, indexes=[0])
B
barrierye 已提交
11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
11203 11204 11205 11206 11207
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
11208 11209 11210 11211 11212 11213 11214
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
11215 11216


M
minqiyang 已提交
11217 11218
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
11219 11220
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
11221 11222
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
11223 11224 11225 11226 11227 11228 11229 11230

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
11231
        input.data = 
11232
            [[1, 2],
11233
             [3, 4]]
M
minqiyang 已提交
11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
11247 11248
            [[9662, 9217, 1129, 8487],
             [8310, 1327, 1654, 4567]],
M
minqiyang 已提交
11249 11250 11251 11252
        ]

    Args:
        input (Variable): The input variable which is a one-hot word. The
11253
            dimensions of the input variable must be 2. Both Tensor and LoDTensor are supported.
M
minqiyang 已提交
11254 11255
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
11256
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
11257
        name (str, default None): The name of this layer.
M
minqiyang 已提交
11258 11259

    Returns:
11260
       Variable: The hash result variable, which the same variable type as `input`.
M
minqiyang 已提交
11261 11262 11263

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
11264

11265 11266
            import paddle.fluid as fluid

11267 11268 11269 11270
            # titles has shape [batch, 1]
            titles = fluid.layers.data(name='titles', shape=[1], dtype='int32', lod_level=0)
            # hash_r has shape [batch, 2]
            hash_r = fluid.layers.hash(name='hash_x', input=titles, num_hash=2, hash_size=1000)
11271 11272


11273 11274 11275 11276
            # titles has shape [batch, 1] and lod information
            titles = fluid.layers.data(name='titles', shape=[1], dtype='int32', lod_level=1)
            # hash_r has shape [batch, 2] and inherits lod information from titles
            hash_r = fluid.layers.hash(name='hash_x', input=titles, num_hash=2, hash_size=1000)
M
minqiyang 已提交
11277 11278
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
11279 11280
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
11281 11282 11283 11284 11285 11286 11287
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
11288 11289


D
dengkaipeng 已提交
11290
@templatedoc()
11291 11292
def grid_sampler(x, grid, name=None):
    """
11293
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
11294
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
11295 11296 11297 11298
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
11299
    interpolation value of 4 nearest corner points.
11300

H
haowang101779990 已提交
11301
    .. code-block:: text
11302

H
haowang101779990 已提交
11303 11304
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
11305

H
haowang101779990 已提交
11306 11307
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
11308

H
haowang101779990 已提交
11309 11310 11311
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
11312

H
haowang101779990 已提交
11313 11314 11315 11316 11317 11318 11319 11320 11321
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
11322

H
haowang101779990 已提交
11323 11324 11325 11326
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
11327

H
haowang101779990 已提交
11328 11329 11330 11331
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
11332

H
haowang101779990 已提交
11333 11334 11335 11336
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
11337

H
haowang101779990 已提交
11338 11339
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
11340 11341

    Args:
11342 11343 11344
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
11345 11346

    Returns:
H
haowang101779990 已提交
11347
        Variable: Output of shape [N, C, H, W] data samples input X
11348 11349
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
11350 11351 11352 11353
    Examples:

        .. code-block:: python

K
Kaipeng Deng 已提交
11354 11355 11356 11357 11358
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(theta=theta, out_shape=[3, 10, 32, 32])
H
haowang101779990 已提交
11359
            out = fluid.layers.grid_sampler(x=x, grid=grid)
11360

D
dengkaipeng 已提交
11361 11362 11363 11364 11365 11366 11367 11368 11369
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

11370
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
11371 11372
    ipts = {'X': x, 'Grid': grid}

11373
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
11374 11375 11376
    return out


G
gmcather 已提交
11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

11404
          import paddle.fluid as fluid
Y
Yibing Liu 已提交
11405 11406
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          prob = fluid.layers.data(name='prob', shape=[10], dtype='float32')
G
gmcather 已提交
11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
11445
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
11446 11447 11448 11449 11450 11451 11452
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
11453 11454
          
          import paddle.fluid as fluid
H
heqiaozhi 已提交
11455

11456 11457 11458 11459 11460
          batch_size = 64
          label = fluid.layers.data(
                    name="label", shape=[batch_size, 1], dtype="int64", append_batch_size=False)
          similarity = fluid.layers.data(
                    name="similarity", shape=[batch_size, 1], dtype="float32", append_batch_size=False)
H
heqiaozhi 已提交
11461
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
11462

H
heqiaozhi 已提交
11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
11476 11477 11478 11479
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
11480
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
11481 11482
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
11483
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
11484 11485

    .. math::
H
haowang101779990 已提交
11486 11487 11488
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
11489 11490

    Where:
H
haowang101779990 已提交
11491 11492
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

11506 11507 11508 11509 11510 11511 11512 11513 11514
          import paddle.fluid as fluid

          tensor = fluid.layers.data(
              name='tensor',
              shape=[32, 64, 512],
              dtype='float32',
              append_batch_size=False)
          position_tensor = fluid.layers.add_position_encoding(
              input=tensor, alpha=1.0, beta=1.0)
H
haowang101779990 已提交
11515

G
gmcather 已提交
11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
11532 11533 11534 11535 11536 11537 11538 11539 11540 11541


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
11542
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
11543

Q
Qiao Longfei 已提交
11544
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
11545 11546 11547
    For example:

    .. math::
H
haowang101779990 已提交
11548
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
11549

Q
Qiao Longfei 已提交
11550
    In this formula:
11551 11552
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
11553
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
11554
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
11555 11556 11557
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
11558 11559
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
11560 11561 11562
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
11563
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
11564
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
11565
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
11566 11567 11568 11569
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
11570
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
11571 11572 11573 11574

    Examples:
        .. code-block:: python

11575
          import paddle.fluid as fluid
Y
Yibing Liu 已提交
11576 11577 11578
          layer1 = fluid.layers.data("t1", shape=[-1, 5], dtype="float32")
          layer2 = fluid.layers.data("t2", shape=[-1, 4], dtype="float32")
          tensor = fluid.layers.bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
11579 11580
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
11581
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
11582 11583 11584 11585

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
11586
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
B
bdzhuxiaoning 已提交
11617 11618 11619 11620 11621 11622 11623 11624

    Examples:
        .. code-block:: python
	    
            import paddle.fluid as fluid
            b = fluid.default_main_program().global_block()
            input = b.create_var(name="X", dtype="float32", persistable=True, type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            out = fluid.layers.get_tensor_from_selected_rows(input)
C
chengduo 已提交
11625 11626 11627 11628 11629 11630 11631 11632 11633 11634
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
11635 11636


S
shippingwang 已提交
11637
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
11638 11639
    """
    **Shuffle Channel Operator**
11640

S
shippingwang 已提交
11641 11642 11643 11644 11645 11646
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
11647
    
S
shippingwang 已提交
11648
    .. code-block:: text
11649

S
shippingwang 已提交
11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
11678
    Args: 
S
shippingwang 已提交
11679 11680
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
11681 11682

    Returns:
S
shippingwang 已提交
11683 11684
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
11685 11686

    Raises:
S
shippingwang 已提交
11687
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
11688 11689 11690

    Examples:
        .. code-block:: python
11691

11692
            import paddle.fluid as fluid
11693
            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
S
shippingwang 已提交
11694
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
11695 11696 11697
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
11698
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
11699 11700 11701 11702 11703 11704 11705 11706 11707

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
11708
    return out
S
Add  
shippingwang 已提交
11709 11710


11711
@templatedoc()
D
dengkaipeng 已提交
11712
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None):
11713 11714 11715 11716 11717 11718 11719 11720
    """
    **Temporal Shift Operator**
    
    ${comment}
                        
    Args: 
        x(Variable): ${x_comment}
        seg_num(int): ${seg_num_comment}
D
dengkaipeng 已提交
11721
        shift_ratio(float): ${shift_ratio_comment}
D
dengkaipeng 已提交
11722
        name (str, default None): The name of this layer.
11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733

    Returns:
        out(Variable): The temporal shifting result is a tensor variable with the 
        same shape and same type as the input.

    Raises:
        TypeError: seg_num must be int type.

    Examples:
        .. code-block:: python

11734
            import paddle.fluid as fluid
11735
            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
D
dengkaipeng 已提交
11736
            out = fluid.layers.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748
    """
    helper = LayerHelper("temporal_shift", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(seg_num, int):
        raise TypeError("seg_num must be int type.")

    helper.append_op(
        type="temporal_shift",
        inputs={"X": x},
        outputs={"Out": out},
D
dengkaipeng 已提交
11749 11750
        attrs={"seg_num": seg_num,
               "shift_ratio": shift_ratio})
11751 11752 11753
    return out


S
sneaxiy 已提交
11754
class PyFuncRegistry(object):
S
sneaxiy 已提交
11755 11756 11757
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
11758
        if func is None or not callable(func):
S
sneaxiy 已提交
11759 11760 11761
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
11762
        # find named args using reflection
S
sneaxiy 已提交
11763 11764 11765 11766 11767 11768 11769
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
11770 11771 11772
        '''
        Why record self here?

M
minqiyang 已提交
11773 11774
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
11775
           to find the registered function corresponding
M
minqiyang 已提交
11776
           to :code:`idx`.
S
sneaxiy 已提交
11777

M
minqiyang 已提交
11778 11779
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
11780
           whose reference count is 1 would cause
M
minqiyang 已提交
11781
           segmentation fault error in C++ side.
S
sneaxiy 已提交
11782 11783
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
11784
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
11799 11800 11801 11802 11803 11804 11805 11806 11807
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
11808

S
sneaxiy 已提交
11809 11810
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
11811 11812

        ret = []
S
sneaxiy 已提交
11813 11814 11815
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
11816 11817
                continue

S
sneaxiy 已提交
11818 11819
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
11820

S
sneaxiy 已提交
11821 11822 11823
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
11824

S
sneaxiy 已提交
11825
        return tuple(ret)
S
sneaxiy 已提交
11826 11827


S
sneaxiy 已提交
11828 11829 11830 11831
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
11832

S
sneaxiy 已提交
11833 11834 11835 11836 11837 11838 11839 11840
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
11841
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
11842

S
sneaxiy 已提交
11843 11844
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
11845 11846 11847 11848
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
11849
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
11850
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
11851 11852
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
11853 11854 11855 11856 11857
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
11858
            should create :code:`out` beforehand.
S
sneaxiy 已提交
11859
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
11860
                                       None means no backward. Default None.
S
sneaxiy 已提交
11861
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
11862
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
11863 11864
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
11865
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
11866 11867 11868

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
11869 11870

    Examples:
M
minqiyang 已提交
11871

S
sneaxiy 已提交
11872 11873 11874 11875 11876
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
11877
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
11878 11879
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
11880
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
11881 11882 11883
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
11884
        >>>
S
sneaxiy 已提交
11885 11886 11887 11888 11889
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
11890
        >>>     print(x)
S
sneaxiy 已提交
11891 11892 11893 11894 11895 11896
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
11897
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
11898 11899
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
11900 11901
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
11902 11903 11904 11905 11906 11907 11908 11909
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
11910
    """
S
sneaxiy 已提交
11911
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
11912 11913 11914
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
11915
        x = [x]
S
sneaxiy 已提交
11916 11917
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
11918

S
sneaxiy 已提交
11919 11920 11921
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
11922
        out_list = [out]
S
sneaxiy 已提交
11923
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
11924
        out_list = out
S
sneaxiy 已提交
11925 11926 11927
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
11928

S
sneaxiy 已提交
11929 11930
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
11931
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
11932 11933

    for each_out in out_list:
S
sneaxiy 已提交
11934 11935
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
11936 11937
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
11938

S
sneaxiy 已提交
11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
11954 11955 11956 11957

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
11958 11959
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
11960 11961 11962
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
11963
        })
S
sneaxiy 已提交
11964
    return out
S
sneaxiy 已提交
11965 11966 11967


# For debug usage
S
sneaxiy 已提交
11968 11969 11970 11971
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
S
SunGaofeng 已提交
11985 11986 11987 11988 11989
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates.
11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
12002 12003 12004 12005
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[490, 28, 28], dtype='float32')
            rois = fluid.layers.data(name='rois', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.psroi_pool(x, rois, 10, 1.0, 7, 7)
12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
12031

M
minqiyang 已提交
12032

M
minqiyang 已提交
12033
def huber_loss(input, label, delta):
12034
    """
M
minqiyang 已提交
12035 12036 12037
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
12038 12039 12040 12041

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
12042
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
12043 12044 12045 12046

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
12047
        huber\_loss = 0.5 * (label - input) * (label - input)
12048 12049 12050 12051 12052 12053 12054


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
12055
        delta (float): The parameter of huber loss, which controls
12056 12057 12058
                       the range of outliers

    Returns:
M
minqiyang 已提交
12059
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
12060 12061 12062 12063

    Examples:
        .. code-block:: python

12064 12065 12066 12067 12068 12069 12070 12071 12072
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            predict = fluid.layers.fc(input=x, size=1)
            label = fluid.layers.data(
                name='label', shape=[1], dtype='float32')
            loss = fluid.layers.huber_loss(
                input=predict, label=label, delta=1.0)

12073
    """
M
minqiyang 已提交
12074
    helper = LayerHelper('huber_loss', **locals())
12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
12086 12087


D
dengkaipeng 已提交
12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104
@templatedoc()
def kldiv_loss(x, target, reduction='mean', name=None):
    """
    ${comment}

    Args:
        x (Variable): ${x_comment}
        target (Variable): ${target_comment}
        reduction (Variable): ${reduction_comment}
        name (str, default None): The name of this layer.

    Returns:
        kldiv\_loss (Variable): The KL divergence loss.

    Examples:
        .. code-block:: python

12105
            import paddle.fluid as fluid
D
dengkaipeng 已提交
12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120
            x = fluid.layers.data(name='x', shape=[4,2,2], dtype='float32')
            target = fluid.layers.data(name='target', shape=[4,2,2], dtype='float32')
            loss = fluid.layers.kldiv_loss(x=x, target=target, reduction='batchmean')
    """
    helper = LayerHelper('kldiv_loss', **locals())
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='kldiv_loss',
        inputs={'X': x,
                'Target': target},
        outputs={'Loss': loss},
        attrs={'reduction': reduction})
    return loss


Z
zhaozhehao 已提交
12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150
@templatedoc()
def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
    """ 
    ${comment}
    		
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

12151
          import paddle.fluid as fluid
T
Tao Luo 已提交
12152 12153 12154
          # 10 for max_node_size of dataset, 5 for vector width
          nodes_vector = fluid.layers.data(name='vectors', shape=[10, 5], dtype='float32')
          # 10 for max_node_size of dataset, 2 for every edge has two nodes
Z
zhaozhehao 已提交
12155
          # edges must be directional
T
Tao Luo 已提交
12156 12157 12158 12159
          edge_set = fluid.layers.data(name='edge_set', shape=[10, 2], dtype='float32')
          # the shape of output will be [10, 6, 1],
          # 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = fluid.layers.tree_conv(nodes_vector, edge_set, 6, 1, 2)
Z
zhaozhehao 已提交
12160
          # After reshape, output tensor could be nodes_vector for next tree convolution
T
Tao Luo 已提交
12161 12162
          out_vector = fluid.layers.reshape(out_vector, shape=[-1, 10, 6])
          out_vector_2 = fluid.layers.tree_conv(out_vector, edge_set, 3, 4, 2)
Z
zhaozhehao 已提交
12163
          # also output tensor could be pooling(the pooling in paper called global pooling)
T
Tao Luo 已提交
12164
          pooled = fluid.layers.reduce_max(out_vector, dim=2) # global pooling
Z
zhaozhehao 已提交
12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187
    """
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    if name == None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)
C
ceci3 已提交
12188 12189


C
ceci3 已提交
12190
from .ops import square
C
ceci3 已提交
12191
from .control_flow import equal
C
ceci3 已提交
12192 12193


C
ceci3 已提交
12194 12195 12196
def npair_loss(anchor, positive, labels, l2_reg=0.002):
    '''
  **Npair Loss Layer**
C
ceci3 已提交
12197

C
ceci3 已提交
12198
  Read `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_ .
C
ceci3 已提交
12199 12200

  Npair loss requires paired data. Npair loss has two parts: the first part is L2
C
ceci3 已提交
12201
  regularizer on the embedding vector; the second part is cross entropy loss which
C
ceci3 已提交
12202 12203 12204 12205 12206
  takes the similarity matrix of anchor and positive as logits.

  Args:
    anchor(Variable): embedding vector for the anchor image. shape=[batch_size, embedding_dims]
    positive(Variable): embedding vector for the positive image. shape=[batch_size, embedding_dims]
C
ceci3 已提交
12207 12208
    labels(Variable): 1-D tensor. shape=[batch_size]
    l2_reg(float32): L2 regularization term on embedding vector, default: 0.002
C
ceci3 已提交
12209 12210 12211 12212 12213 12214 12215

  Returns:
    npair loss(Variable): return npair loss, shape=[1]

  Examples:
    .. code-block:: python

12216
       import paddle.fluid as fluid
C
ceci3 已提交
12217 12218 12219 12220 12221 12222 12223 12224
       anchor = fluid.layers.data(
                     name = 'anchor', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       positive = fluid.layers.data(
                     name = 'positive', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       labels = fluid.layers.data(
                     name = 'labels', shape = [18], dtype = 'float32', append_batch_size=False)

       npair_loss = fluid.layers.npair_loss(anchor, positive, labels, l2_reg = 0.002)
C
ceci3 已提交
12225 12226 12227 12228 12229 12230 12231
  '''
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = reshape(labels, shape=[batch_size, 1], inplace=True)
    labels = expand(labels, expand_times=[1, batch_size])

C
ceci3 已提交
12232
    labels = equal(labels, transpose(labels, perm=[1, 0])).astype('float32')
C
ceci3 已提交
12233 12234
    labels = labels / reduce_sum(labels, dim=1, keep_dim=True)

C
ceci3 已提交
12235 12236
    l2loss = reduce_mean(reduce_sum(square(anchor), 1)) \
             + reduce_mean(reduce_sum(square(positive), 1))
C
ceci3 已提交
12237 12238 12239 12240
    l2loss = l2loss * Beta * l2_reg

    similarity_matrix = matmul(
        anchor, positive, transpose_x=False, transpose_y=True)
C
ceci3 已提交
12241 12242 12243
    softmax_ce = softmax_with_cross_entropy(
        logits=similarity_matrix, label=labels, soft_label=True)
    cross_entropy = reduce_sum(labels * softmax_ce, 0)
C
ceci3 已提交
12244 12245 12246
    celoss = reduce_mean(cross_entropy)

    return l2loss + celoss
12247 12248


R
ruri 已提交
12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277
def pixel_shuffle(x, upscale_factor):
    """

    **Pixel Shuffle Layer**

    This layer rearranges elements in a tensor of shape [N, C, H, W]
    to a tensor of shape [N, C/r**2, H*r, W*r].
    This is useful for implementing efficient sub-pixel convolution
    with a stride of 1/r.
    Please refer to the paper: `Real-Time Single Image and Video Super-Resolution 
    Using an Efficient Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_ .
    by Shi et. al (2016) for more details.

        .. code-block:: text
        
            Given a 4-D tensor with the shape:
                x.shape = [1, 9, 4, 4]
            Given upscale_factor:
                upscale_factor= 3
            output shape is:
                [1, 1, 12, 12]
    
    Args:

        x(Variable): The input tensor variable.
        upscale_factor(int): factor to increase spatial resolution

    Returns:

12278
        Out(Variable): Reshaped tensor according to the new dimension.
R
ruri 已提交
12279 12280 12281 12282 12283 12284 12285 12286 12287

    Raises:

        ValueError: If the square of upscale_factor cannot divide the channels of input.

    Examples:

        .. code-block:: python

12288
            import paddle.fluid as fluid
R
ruri 已提交
12289
            input = fluid.layers.data(name="input", shape=[9,4,4])
R
ruri 已提交
12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308
            output = fluid.layers.pixel_shuffle(x=input, upscale_factor=3)

    """

    helper = LayerHelper("pixel_shuffle", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(upscale_factor, int):
        raise TypeError("upscale factor must be int type")

    helper.append_op(
        type="pixel_shuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"upscale_factor": upscale_factor})
    return out


12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339
def fsp_matrix(x, y):
    """

    **FSP matrix op**

    This op is used to calculate the flow of solution procedure (FSP) matrix of two feature maps.
    Given feature map x with shape [x_channel, h, w] and feature map y with shape
    [y_channel, h, w], we can get the fsp matrix of x and y in two steps:

    1. reshape x into matrix with shape [x_channel, h * w] and reshape and
       transpose y into matrix with shape [h * w, y_channel].
    2. multiply x and y to get fsp matrix with shape [x_channel, y_channel].

    The output is a batch of fsp matrices.

    Args:

        x (Variable): A feature map with shape [batch_size, x_channel, height, width].
        y (Variable): A feature map with shape [batch_size, y_channel, height, width].
                      The y_channel can be different with the x_channel of Input(X)
                      while the other dimensions must be the same with Input(X)'s.

    Returns:

        fsp matrix (Variable): The output of FSP op with shape [batch_size, x_channel, y_channel].
        The x_channel is the channel of x and the y_channel is the channel of y.

    Examples:

        .. code-block:: python

B
Bai Yifan 已提交
12340 12341 12342 12343 12344 12345
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32])
            feature_map_0 = fluid.layers.conv2d(data, num_filters=2,
                                                filter_size=3)
            feature_map_1 = fluid.layers.conv2d(feature_map_0, num_filters=2,
                                                filter_size=1)
12346 12347 12348 12349 12350 12351 12352 12353
            loss = fluid.layers.fsp_matrix(feature_map_0, feature_map_1)

    """
    helper = LayerHelper('fsp_matrix', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype(
        input_param_name='x'))
    helper.append_op(type='fsp', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
H
heqiaozhi 已提交
12354 12355 12356 12357


def continuous_value_model(input, cvm, use_cvm=True):
    """
H
fix doc  
heqiaozhi 已提交
12358

H
heqiaozhi 已提交
12359
    **continuous_value_model layers**
H
fix doc  
heqiaozhi 已提交
12360

H
fix doc  
heqiaozhi 已提交
12361
    continuous value model(cvm). Now, it only considers show and click value in CTR project.
H
fix doc  
heqiaozhi 已提交
12362 12363 12364
    We assume that input is an embedding vector with cvm_feature, whose shape is [N * D] (D is 2 + embedding dim).
    If use_cvm is True, it will log(cvm_feature), and output shape is [N * D].
    If use_cvm is False, it will remove cvm_feature from input, and output shape is [N * (D - 2)].
H
heqiaozhi 已提交
12365
    
H
fix doc  
heqiaozhi 已提交
12366
    This layer accepts a tensor named input which is ID after embedded(lod level is 1), cvm is a show_click info.
H
fix doc  
heqiaozhi 已提交
12367

H
heqiaozhi 已提交
12368
    Args:
H
fix doc  
heqiaozhi 已提交
12369 12370

        input (Variable): a 2-D LodTensor with shape [N x D], where N is the batch size, D is 2 + the embedding dim. lod level = 1.
H
heqiaozhi 已提交
12371 12372
        cvm (Variable):   a 2-D Tensor with shape [N x 2], where N is the batch size, 2 is show and click.
        use_cvm  (bool):  use cvm or not. if use cvm, the output dim is the same as input
H
fix doc  
heqiaozhi 已提交
12373
                          if don't use cvm, the output dim is input dim - 2(remove show and click)
12374
                          (cvm op is a customized op, which input is a sequence has embed_with_cvm default, so we need an op named cvm to decided whever use it or not.)
H
fix doc  
heqiaozhi 已提交
12375

H
heqiaozhi 已提交
12376
    Returns:
H
fix doc  
heqiaozhi 已提交
12377 12378 12379

        Variable: A 2-D LodTensor with shape [N x D], if use cvm, D is equal to input dim, if don't use cvm, D is equal to input dim - 2. 

H
heqiaozhi 已提交
12380
    Examples:
H
fix doc  
heqiaozhi 已提交
12381

H
heqiaozhi 已提交
12382
        .. code-block:: python
H
fix doc  
heqiaozhi 已提交
12383

12384
          import paddle.fluid as fluid
H
heqiaozhi 已提交
12385 12386 12387 12388 12389 12390 12391 12392 12393 12394
          input = fluid.layers.data(name="input", shape=[-1, 1], lod_level=1, append_batch_size=False, dtype="int64")#, stop_gradient=False)
          label = fluid.layers.data(name="label", shape=[-1, 1], append_batch_size=False, dtype="int64")
          embed = fluid.layers.embedding(
                            input=input,
                            size=[100, 11],
                            dtype='float32')
          ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype="int64", value=1)
          show_clk = fluid.layers.cast(fluid.layers.concat([ones, label], axis=1), dtype='float32')
          show_clk.stop_gradient = True
          input_with_cvm = fluid.layers.continuous_value_model(embed, show_clk, True)
H
fix doc  
heqiaozhi 已提交
12395

H
heqiaozhi 已提交
12396 12397 12398 12399 12400 12401 12402 12403 12404
    """
    helper = LayerHelper('cvm', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='cvm',
        inputs={'X': [input],
                'CVM': [cvm]},
        outputs={'Y': [out]},
        attrs={"use_cvm": use_cvm})
H
heqiaozhi 已提交
12405
    return out
Z
zhoukunsheng 已提交
12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423


def where(condition):
    """
    Return an int64 tensor with rank 2, specifying the coordinate of true element in `condition`.

    Output's first dimension is the number of true element, second dimension is rank(number of dimension) of `condition`.
    If there is zero true element, then an empty tensor will be generated.  

    Args:
        condition(Variable): A bool tensor with rank at least 1.

    Returns:
        Variable: The tensor variable storing a 2-D tensor. 

    Examples:
        .. code-block:: python

12424
             import paddle.fluid as fluid
12425 12426 12427
             import paddle.fluid.layers as layers
             import numpy as np

Z
zhoukunsheng 已提交
12428
             # condition is a tensor [True, False, True]
12429 12430 12431
             condition = layers.assign(np.array([1, 0, 1], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[0], [2]]
Z
zhoukunsheng 已提交
12432 12433

             # condition is a tensor [[True, False], [False, True]]
12434 12435 12436
             condition = layers.assign(np.array([[1, 0], [0, 1]], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[0, 0], [1, 1]]
Z
zhoukunsheng 已提交
12437 12438

             # condition is a tensor [False, False, False]
12439 12440 12441 12442
             condition = layers.assign(np.array([0, 0, 0], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[]]

Z
zhoukunsheng 已提交
12443 12444 12445 12446 12447 12448 12449 12450 12451
    """
    helper = LayerHelper("where", **locals())

    out = helper.create_variable_for_type_inference(
        dtype=core.VarDesc.VarType.INT64)

    helper.append_op(
        type='where', inputs={'Condition': condition}, outputs={'Out': [out]})
    return out
Z
zhoukunsheng 已提交
12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468


def sign(x):
    """
    **sign**

    This function returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.

    Args:
        x(Variable|numpy.ndarray): The input tensor.

    Returns:
        Variable: The output sign tensor with identical shape and dtype to `x`.

    Examples:
        .. code-block:: python

12469 12470 12471
          import paddle.fluid as fluid
          import numpy as np

Z
zhoukunsheng 已提交
12472
          # [1, 0, -1]
12473 12474
          data = fluid.layers.sign(np.array([3, 0, -2], dtype='int32')) 

Z
zhoukunsheng 已提交
12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486
    """

    helper = LayerHelper("sign", **locals())

    if not isinstance(x, Variable):
        x = assign(x)

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out
12487 12488


Z
zhoukunsheng 已提交
12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527
def unique(x, dtype='int32'):
    """
    **unique** 

    Return a unique tensor for `x` and an index tensor pointing to this unique tensor.

    Args:
        x(Variable): A 1-D input tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): The type of index tensor: int32, int64.

    Returns:
        tuple: (out, index). `out` is the unique tensor for `x`, with identical dtype to `x`, and \
            `index` is an index tensor pointing to `out`, by which user can recover the original `x` tensor.

    Examples:
        .. code-block:: python

             import numpy as np
             import paddle.fluid as fluid
             x = fluid.assign(np.array([2, 3, 3, 1, 5, 3], dtype='int32'))
             out, index = fluid.layers.unique(x) # out is [2, 3, 1, 5]; index is [0, 1, 1, 2, 3, 1]
    """

    helper = LayerHelper("unique", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    index = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='unique',
        inputs={'X': x},
        attrs={'dtype': convert_np_dtype_to_dtype_(dtype)},
        outputs={'Out': [out],
                 'Index': [index]})

    return out, index


12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579
def unique_with_counts(x, dtype='int32'):
    """
    **unique** 

    Return a unique tensor for `x` and an index tensor pointing to this unique tensor.

    Args:
        x(Variable): A 1-D input tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): The type of index tensor: int32, int64.

    Returns:
        tuple: (out, index, count). `out` is the unique tensor for `x`, with identical dtype to `x`, and \
            `index` is an index tensor pointing to `out`, by which user can recover the original `x` tensor, \
            `count` is count of unqiue element in the `x`.

    Examples:
        .. code-block:: python

             import numpy as np
             import paddle.fluid as fluid
             x = fluid.layers.assign(np.array([2, 3, 3, 1, 5, 3], dtype='int32'))
             out, index, count = fluid.layers.unique_with_counts(x) # out is [2, 3, 1, 5]; index is [0, 1, 1, 2, 3, 1]
                                                        # count is [1, 3, 1, 1]
    """
    if not (dtype == 'int32' or dtype == 'int64'):
        raise TypeError(
            "Op unique_with_counts, index dtype must be int32 or int64")

    if x is None or len(x.shape) != 1:
        raise ValueError(
            "Op unique_with_counts, x must not be null and size of dim must be 1"
        )

    helper = LayerHelper("unique_with_counts", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    index = helper.create_variable_for_type_inference(dtype)

    count = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='unique_with_counts',
        inputs={'X': x},
        attrs={'dtype': convert_np_dtype_to_dtype_(dtype)},
        outputs={'Out': [out],
                 'Index': [index],
                 'Count': [count]})

    return out, index, count


12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681
def deformable_conv(input,
                    offset,
                    mask,
                    num_filters,
                    filter_size,
                    stride=1,
                    padding=0,
                    dilation=1,
                    groups=None,
                    deformable_groups=None,
                    im2col_step=None,
                    param_attr=None,
                    bias_attr=None,
                    name=None):
    """
    **Deformable Convolution Layer**

    Compute 2-D deformable convolution on 4-D input.
    Given input image x, output feature map y, the deformable convolution operation can be expressed as follow:
    
    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k) * \Delta m_k}
    
    Where :math:`\Delta p_k` and :math:`\Delta m_k` are the learnable offset and modulation scalar for the k-th location, respectively.
    Refer to `Deformable ConvNets v2: More Deformable, Better Results
    <https://arxiv.org/abs/1811.11168v2>`_ .
    
    Example:
        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

          Offset shape: :math:`(N, 2 * deformable\_groups * H_f * H_w, H_{in}, W_{in})`

          Mask shape: :math:`(N, deformable\_groups * H_f * H_w, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

    Args:
        input (Variable): The input image with [N, C, H, W] format.
        offset (Variable): The input coord offset of deformable convolution layer.
        Mask (Variable): The input mask of deformable covolution layer.
        num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the deformable conv layer. According to
            grouped convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
        deformable_groups (int): The number of deformable group partitions.
            Default: deformable_groups = 1.
        im2col_step (int): Maximum number of images per im2col computation; 
            The total batch size should be divisable by this value or smaller
            than this value; if you face out of memory problem, you can try
            to use a smaller value here.
            Default: im2col_step = 64.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of deformable conv. If it is set to None or one attribute of ParamAttr,
            deformable conv will create ParamAttr as param_attr.
            If the Initializer of the param_attr is not set, the parameter is
            initialized with :math:`Normal(0.0, std)`, and the 
            :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of
            deformable conv layer. If it is set to False, no bias will be added
            to the output units. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None
    Returns:
        Variable: The tensor variable storing the deformable convolution \
                  result.
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
    Examples:
        .. code-block:: python

12682
          import paddle.fluid as fluid
12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          offset = fluid.layers.data(name='offset', shape=[18, 32, 32], dtype='float32')
          mask = fluid.layers.data(name='mask', shape=[9, 32, 32], dtype='float32')
          out = fluid.layers.deformable_conv(input=data, offset=offset, mask=mask,
                                             num_filters=2, filter_size=3, padding=1)
    """

    num_channels = input.shape[1]
    assert param_attr is not False, "param_attr should not be False here."

    helper = LayerHelper('deformable_conv', **locals())
    dtype = helper.input_dtype()

    if not isinstance(input, Variable):
        raise TypeError("Input of deformable_conv must be Variable")
    if not isinstance(offset, Variable):
        raise TypeError("Input Offset of deformable_conv must be Variable")
    if not isinstance(mask, Variable):
        raise TypeError("Input Mask of deformable_conv must be Variable")

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels // groups

    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')

    input_shape = input.shape
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size

    def _get_default_param_initializer():
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='deformable_conv',
        inputs={
            'Input': input,
            'Filter': filter_param,
            'Offset': offset,
            'Mask': mask,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'deformable_groups': deformable_groups,
            'im2col_step': im2col_step,
        })

    output = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    return output
12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860


def unfold(x, kernel_sizes, strides=1, paddings=0, dilations=1, name=None):
    """

    This function returns a col buffer of sliding local blocks of input x, also known
    as im2col for batched 2D image tensors. For each block under the convolution filter,
    all element will be rearranged as a column. While the convolution filter silding over
    the input feature map, a series of such columns will be formed.

    For each input :math:`X` with shape [N, C, H, W], the output shape [N, Cout, Lout]
    can be calculated as following.

    .. math::

        dkernel[0] &= dilations[0] \\times (kernel\_sizes[0] - 1) + 1

        dkernel[1] &= dilations[1] \\times (kernel\_sizes[1] - 1) + 1

        hout &= \\frac{H + paddings[0] + paddings[2] - dkernel[0]}{strides[0]} + 1

        wout &= \\frac{W + paddings[1] + paddings[3] - dkernel[1]}{strides[1]} + 1

        Cout &= C \\times kernel\_sizes[0] \\times kernel\_sizes[1]

        Lout &= hout \\times wout


    Args:
        x(Varaible):              The input tensor of format [N, C, H, W].
        kernel_sizes(int|list):   The size of convolution kernel, should be [k_h, k_w]
                                  or an integer k treated as [k, k].
        strides(int|list):        The strides, should be [stride_h, stride_w]
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
        paddings(int|list):       The paddings of each dimension, should be
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
        dilations(int|list):      the dilations of convolution kernel, shold be
                                  [dilation_h, dilation_w], or an integer dialtion treated as
                                  [dilation, dilation]. For default, it will be [1, 1].

    
    Returns:
        Variable: The tensor variable corresponding to the sliding local blocks. The output shape is [N, Cout, Lout] as decribled above. Cout is the  total number of values within each block, and Lout is the total number of such blocks.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name = 'data', shape = [3, 224, 224], dtype = 'float32')
            y = fluid.layers.unfold(x, [3, 3], 1, 1, 1)
    """

    helper = LayerHelper("unfold", **locals())

    assert len(x.shape) == 4, \
            "input should be the format of [N, C, H, W]"

    if isinstance(kernel_sizes, int):
        kernel_sizes = [kernel_sizes, kernel_sizes]
    else:
        assert isinstance(kernel_sizes, list) and (len(kernel_sizes) == 2), \
            "kernel_sizes should either be an integer or a list of two integers"

    if isinstance(strides, int):
        strides = [strides, strides]
    else:
        assert isinstance(strides, list) and (len(strides) == 2), \
            "strides should either be an integer or a list of two integers"

    if isinstance(dilations, int):
        dilations = [dilations, dilations]
    else:
        assert isinstance(dilations, list) and (len(dilations) == 2), \
            "dilations should either be an integer or a list of two integers"

    if isinstance(paddings, int):
        paddings = [paddings] * 4
    elif isinstance(paddings, list):
        if len(paddings) == 2:
            paddings = paddings * 2
        elif len(paddings) == 4:
            pass
        else:
            raise ValueError(
                "paddings should either be an integer or a list of 2 or 4 integers"
            )
    else:
        raise ValueError(
            "Unexpected type of paddings, it should be either an integer or a list"
            "of 2 or 4 integers")

    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="unfold",
        inputs={"X": x},
        outputs={"Y": out},
        attrs={
            "kernel_sizes": kernel_sizes,
            "strides": strides,
            "paddings": paddings,
            "dilations": dilations
        })
    return out
C
cjt222 已提交
12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913


def deformable_roi_pooling(input,
                           rois,
                           trans,
                           no_trans=False,
                           spatial_scale=1.0,
                           group_size=[1, 1],
                           pooled_height=1,
                           pooled_width=1,
                           part_size=None,
                           sample_per_part=1,
                           trans_std=0.1,
                           position_sensitive=False,
                           name=None):
    """
    Deformable PSROI Pooling Layer
    
    Args:
       input (Variable):The input of Deformable PSROIPooling.The shape of input tensor is 
                        [N,C,H,W]. Where N is batch size,C is number of input channels,H 
                        is height of the feature, and W is the width of the feature.
       rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                        a 2-D LoDTensor of shape (num_rois, 4), the lod level
                        is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                        the top left coordinates, and (x2, y2) is the bottom
                        right coordinates.
       trans (Variable): Offset of features on ROIs while pooling.The format is NCHW, where 
                         N is number of ROIs, C is number of channels, which indicate the offset distance 
                         in the x and y directions, H is pooled height, and W is pooled width.
       no_trans (bool): Whether to add offset to get new value or not while roi pooling, which 
                          value is True or False. Default: False.
       spatial_scale (float): Ratio of input feature map height (or width) to raw image height (or width).
                             Equals the reciprocal of total stride in convolutional layers, Default: 1.0.
       group_size (list|tuple): The number of groups which input channels are divided.(eg.number of input channels 
                         is k1*k2*(C+1), which k1 and k2 are group width and height and C+1 is number of output
                         chanels. eg.(4, 6), which 4 is height of group and 6 is width of group. Default: [1, 1].
       pooled_height (integer): The pooled output height. Default: 1.
       pooled_width (integer): The pooled output width. Default: 1.
       part_size (list|tuple): The height and width of offset, eg.(4, 6), which height is 4 and width is 6, Default: 
                        if None, default value is [pooled_height, pooled_width].
       sample_per_part (integer): The number of samples in each bin. Default: 1.
       trans_std (float): Coefficient of offset. Default: 0.1.
       position_sensitive (bool): Whether to choose deformable psroi pooling mode or not. Default: False.
       name (str): Name of layer. Default: None.
    Returns:
        Variable: The tensor variable storing the deformable psroi pooling \
                  result.


    Examples:
      .. code-block:: python

12914
        import paddle.fluid as fluid
C
cjt222 已提交
12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975
        input = fluid.layers.data(name="input",
                                  shape=[2, 192, 64, 64], 
                                  dtype='float32', 
                                  append_batch_size=False)                   
        rois = fluid.layers.data(name="rois",
                                 shape=[4],
                                 dtype='float32', 
                                 lod_level=1)
        trans = fluid.layers.data(name="trans",
                                  shape=[2, 384, 64, 64], 
                                  dtype='float32', 
                                  append_batch_size=False) 
        x = fluid.layers.nn.deformable_roi_pooling(input=input, 
                                                     rois=rois, 
                                                     trans=trans, 
                                                     no_trans=False,
                                                     spatial_scale=1.0, 
                                                     group_size=(1, 1),
                                                     pooled_height=8,
                                                     pooled_width=8,
                                                     part_size=(8, 8),
                                                     sample_per_part=4, 
                                                     trans_std=0.1,
                                                     position_sensitive=False)
    """

    input_channels = input.shape[1]
    if position_sensitive == False:
        output_channels = input_channels
    else:
        output_channels = input_channels / pooled_height / pooled_width

    if part_size is None:
        part_height = pooled_height
        part_width = pooled_width
        part_size = [part_height, part_width]
    part_size = utils.convert_to_list(part_size, 2, 'part_size')
    group_size = utils.convert_to_list(group_size, 2, 'group_size')
    helper = LayerHelper('deformable_psroi_pooling', **locals())
    dtype = helper.input_dtype()
    output = helper.create_variable_for_type_inference(dtype)
    top_count = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="deformable_psroi_pooling",
        inputs={"Input": input,
                "ROIs": rois,
                "Trans": trans},
        outputs={"Output": output,
                 "TopCount": top_count},
        attrs={
            "no_trans": no_trans,
            "spatial_scale": spatial_scale,
            "output_dim": output_channels,
            "group_size": group_size,
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "part_size": part_size,
            "sample_per_part": sample_per_part,
            "trans_std": trans_std
        })
    return output
12976 12977


K
Kevin 已提交
12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092
def var_conv_2d(input,
                row,
                col,
                input_channel,
                output_channel,
                filter_size,
                stride=1,
                param_attr=None,
                act=None,
                dtype='float32',
                name=None):
    """
    The var_conv_2d layer calculates the output base on the :attr:`input` with variable length,
    row, col, input channel, filter size and strides. Both :attr:`input`, :attr:`row`,
    and :attr:`col` are 1-level LodTensor. The covolution operation is same as conv2d layer with 
    padding. Besides, input.dims[1] should be 1. 

    .. code-block:: text
            
            If input_channel is 2 and given row lodTensor and col lodTensor as follows:
                row.lod = [[5, 4]]
                col.lod = [[6, 7]]
            input is a lodTensor: 
                input.lod = [[60, 56]]	# where 60 = input_channel * 5 * 6
                input.dims = [116, 1]	# where 116 = 60 + 56
            
            If set output_channel is 3, filter_size is [3, 3], stride is [1, 1]:
                output.lod = [[90, 84]] # where 90 = output_channel * [(5-1)/stride + 1] * [(6-1)/stride + 1]
                output.dims = [174, 1]  # where 174 = 90 + 84

    Args:
        input (Variable): The input shoud be 1-level LodTensor with dims[1] equals 1.
        row (Variable): The row shoud be 1-level LodTensor to provide height information.
        col (Variable): The col shoud be 1-level LodTensor to provide width information.
        input_channel (int): The number of input channel.
        output_channel (int): The number of output channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of var_conv2d. If it is set to None or one attribute of ParamAttr, var_conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
        dtype ('float32'): The data type of parameter and output.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None

    Returns:
        Variable: Output variable with LoD specified by this layer.

    Examples:
        .. code-block:: python

            import numpy as np
            from paddle.fluid import layers

            x_lod_tensor = layers.data(name='x', shape=[1], lod_level=1)
            row_lod_tensor = layers.data(name='row', shape=[6], lod_level=1)
            col_lod_tensor = layers.data(name='col', shape=[6], lod_level=1)
            out = layers.var_conv_2d(input=x_lod_tensor, 
                                     row=row_lod_tensor,
                                     col=col_lod_tensor,
                                     input_channel=3,
                                     output_channel=5,
                                     filter_size=[3, 3],
                                     stride=1)
    """
    helper = LayerHelper('var_conv_2d', **locals())
    x_shape = list(input.shape)
    assert len(x_shape) == 2

    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')

    filter_shape = [
        int(output_channel),
        int(input_channel) * filter_size[0] * filter_size[1]
    ]
    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype, )

    conv_res = helper.create_variable_for_type_inference(dtype)
    tmp_res = helper.create_variable_for_type_inference(
        dtype, stop_gradient=True)

    helper.append_op(
        type='var_conv_2d',
        inputs={
            'X': input,
            'ROW': row,
            'COLUMN': col,
            'W': filter_param,
        },
        outputs={"Out": conv_res,
                 "Col": tmp_res},
        attrs={
            'InputChannel': input_channel,
            'OutputChannel': output_channel,
            'StrideH': stride[0],
            'StrideW': stride[1],
            'KernelH': filter_size[0],
            'KernelW': filter_size[1],
        })

    return helper.append_activation(conv_res)


13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174
def shard_index(input, index_num, nshards, shard_id, ignore_value=-1):
    """
    This layer creates the sharded index for input. This layers is used in
    model- and data- parallel mixed training generally, in which the index
    data (usually the label) should be recaculated in each trainer according
    to 

    .. math::
        
        assert index_num % nshards == 0

        shard_size = index_num / nshards

        y = x % shard_size if x / shard_size == shard_id else ignore_value

    We take the distributed one-hot representation to show what this layer is
    used for. The distributed one-hot representation is seperated into multiple
    shards, and each shard is filling zeros except the one with the index
    inside. In order to create these sharded representation in each trainer,
    the original index should be recalculated (i.e. sharded) before.

    Examples:
    
        X is a Tensor of integer values:
          X.shape = [4, 1]
          X.data = [[1], [6], [12], [19]]
        
        suppose index_num = 20 and nshards = 2, then we get shard_size = 10
        
        if shard_id == 0, we get the Out:
          Out.shape = [4, 1]
          Out.data = [[1], [6], [-1], [-1]]
        
        if shard_id == 1, we get the Out:
          Out.shape = [4, 1]
          Out.data = [[-1], [-1], [2], [9]]
    
        the default `ignore_value` -1 is used in this example.
    
    Args:
        input(Variable): Input indices, last dimension must be 1.
        index_num(scalar): An interger defining the range of the index.
        nshards(scalar): The number of shards
        shard_id(scalar): The index of the current shard
        ignore_value(scalar): An ingeter value out of sharded index range

    Returns:
        Variable: The shard index of input.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            shard_label = fluid.layers.shard_index(input=label,
                                                   index_num=20,
                                                   nshards=2,
                                                   shard_id=0)
    """
    op_type = 'shard_index'
    helper = LayerHelper(op_type, **locals())
    if index_num % nshards != 0:
        raise ValueError(
            'The index_num(%d) cannot be evenly divided by nshards(%d)' %
            (index_num, nshards))
    if shard_id < 0 or shard_id >= nshards:
        raise ValueError('The shard_id(%d) should be in [0, %d)' %
                         (shard_id, nshards))

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type=op_type,
        inputs={'X': [input]},
        outputs={'Out': out},
        attrs={
            'index_num': index_num,
            'nshards': nshards,
            'shard_id': shard_id,
            'ignore_value': ignore_value
        },
        stop_gradient=True)
    return out
H
huangjun12 已提交
13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209


@templatedoc()
def hard_swish(x, threshold=6.0, scale=6.0, offset=3.0, name=None):
    """
    ${comment}
    Args:
        x(Varaible): Input of HardSwish operator.
        threshold(float): The threshold parameter of HardSwish operator. Default:threshold=6.0
        scale(float): The scale parameter of HardSwish operator. Default:scale=6.0
        offset(float): The offset parameter of HardSwish operator. Default:offset=3.0
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_swish(x)
    """
    helper = LayerHelper('hard_swish', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='hard_swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold,
               'scale': scale,
               'offset': offset})
    return out