pybind.cc 125.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
15

C
chengduoZH 已提交
16
#include <algorithm>
17
#include <cctype>
18
#include <cstdlib>
19
#include <iterator>
C
chengduoZH 已提交
20
#include <map>
S
sneaxiy 已提交
21
#include <memory>
C
chengduoZH 已提交
22 23
#include <mutex>  // NOLINT // for call_once
#include <string>
24 25
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
26
#include <unordered_map>
27
#include <unordered_set>
C
chengduoZH 已提交
28 29
#include <utility>
#include <vector>
30

31
#include "paddle/fluid/framework/custom_operator.h"
32
#include "paddle/fluid/framework/data_layout.h"
Y
Yi Wang 已提交
33 34
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
35
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
36
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
37
#include "paddle/fluid/framework/io/fs.h"
38
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
39
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
40 41 42
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
W
wanghuancoder 已提交
43
#include "paddle/fluid/framework/new_exec.h"
S
sneaxiy 已提交
44
#include "paddle/fluid/framework/op_info.h"
45
#include "paddle/fluid/framework/op_registry.h"
46
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
47
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
48
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
49
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
50
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
51
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
52
#include "paddle/fluid/framework/selected_rows.h"
53
#include "paddle/fluid/framework/tensor_util.h"
54
#include "paddle/fluid/framework/trainer.h"
55
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
56
#include "paddle/fluid/framework/version.h"
H
hong 已提交
57
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
58
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
59
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
60
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
61
#include "paddle/fluid/operators/common_infer_shape_functions.h"
S
sneaxiy 已提交
62
#include "paddle/fluid/operators/py_func_op.h"
63
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
64
#include "paddle/fluid/platform/cpu_info.h"
65
#include "paddle/fluid/platform/device_context.h"
66
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
67
#include "paddle/fluid/platform/enforce.h"
68
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
69
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
70 71
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
72
#include "paddle/fluid/pybind/io.h"
73 74 75
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
H
hutuxian 已提交
76
#include "paddle/fluid/pybind/box_helper_py.h"
77
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
78
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
79
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
80
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
81
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
82
#include "paddle/fluid/pybind/generator_py.h"
83
#include "paddle/fluid/pybind/global_value_getter_setter.h"
84
#include "paddle/fluid/pybind/gloo_context_py.h"
85
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
86
#include "paddle/fluid/pybind/heter_wrapper_py.h"
87
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
88
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
89
#include "paddle/fluid/pybind/ir.h"
T
Thunderbrook 已提交
90
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
91
#include "paddle/fluid/pybind/pybind_boost_headers.h"
92

93
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
94
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
95
#endif
96
#include "paddle/fluid/framework/data_type.h"
97 98
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
99
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
100
#include "paddle/fluid/pybind/tensor_py.h"
101
#include "paddle/fluid/string/to_string.h"
102 103
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
104
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
105
#endif
106
#ifndef PADDLE_WITH_HIP
Y
Yi Wang 已提交
107
#include "paddle/fluid/platform/cuda_profiler.h"
108
#endif
Y
Yi Wang 已提交
109
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
110 111
#endif

112 113
#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/platform/npu_info.h"
114
#include "paddle/fluid/platform/npu_profiler.h"
115 116
#endif

117 118 119 120
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/platform/xpu_info.h"
#endif

Y
Yanghello 已提交
121 122 123 124
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
125
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
126 127 128
#include "paddle/fluid/pybind/fleet_py.h"
#endif

M
minqiyang 已提交
129 130
#include "pybind11/stl.h"

131
DECLARE_bool(use_mkldnn);
132

Q
Qiao Longfei 已提交
133 134
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
135 136 137
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
138

139
namespace paddle {
140
namespace pybind {
141
bool IsCompiledWithCUDA() {
142 143 144 145 146 147 148 149 150
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
151 152 153 154 155 156
  return false;
#else
  return true;
#endif
}

157 158 159 160 161 162 163 164
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

165 166 167 168 169 170 171 172
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

173 174 175 176 177 178 179 180
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

181 182 183 184 185 186 187 188
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

189 190 191 192 193 194 195 196 197 198 199
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

200 201 202 203 204 205 206 207 208 209 210
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_bf16))
    return true;
  else
    return false;
#endif
}

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
// According to the input `place` and `dtype`, this function returns a tuple
// consists of three sets:
// 1) All operators registered in the Paddle framework.
// 2) All operators supported for `place` and `dtype`.
// 3) All operators unsupported for `place` and `dtype`.
// The input `place` is a type of string, which can only be `GPU` or `CPU`.
// The input `dtype` is a type of paddle::framework::proto::VarType::Type,
// which can be paddle::framework::proto::VarType::FP16,
// paddle::framework::proto::VarType::FP32 and so on.
std::tuple<std::unordered_set<std::string>, std::unordered_set<std::string>,
           std::unordered_set<std::string>>
OpSupportedInfos(const std::string &place,
                 framework::proto::VarType::Type dtype) {
  std::string query_place;
  std::transform(place.begin(), place.end(), std::back_inserter(query_place),
                 [](unsigned char c) { return std::toupper(c); });
  using fn_type = std::add_pointer<bool(const platform::Place &)>::type;
  std::unordered_map<std::string, fn_type> is_target_place{
      {"GPU", &platform::is_gpu_place}, {"CPU", &platform::is_cpu_place},
  };
  PADDLE_ENFORCE_NE(
      is_target_place.count(query_place), 0,
      platform::errors::InvalidArgument(
          "The argument `place` should be 'GPU' or 'CPU', but get '%s'.",
          place));

  std::unordered_set<std::string> all_ops;
  const auto &op_info = framework::OpInfoMap::Instance().map();
  for (auto it = op_info.begin(); it != op_info.end(); it++) {
    all_ops.emplace(it->first);
  }

  std::unordered_set<std::string> supported_ops;
  auto &all_kernels = framework::OperatorWithKernel::AllOpKernels();
  for (auto it = all_kernels.begin(); it != all_kernels.end(); it++) {
    for (auto &kernel_type : it->second) {
      if (is_target_place[query_place](kernel_type.first.place_) &&
          kernel_type.first.data_type_ == dtype) {
        supported_ops.emplace(it->first);
      }
    }
  }

  std::unordered_set<std::string> unsupported_ops;
  for (auto &op : all_ops) {
    if (!supported_ops.count(op)) {
      unsupported_ops.emplace(op);
    }
  }

  VLOG(4) << "-- The size of all_ops: " << all_ops.size() << " --";
  VLOG(4) << "-- The size of supported_ops: " << supported_ops.size() << " --";
  VLOG(4) << "-- The size of unsupported_ops: " << unsupported_ops.size()
          << " --";
  return std::make_tuple(std::move(all_ops), std::move(supported_ops),
                         std::move(unsupported_ops));
}

269
bool IsCompiledWithBrpc() {
270
#ifndef PADDLE_WITH_DISTRIBUTE
271 272
  return false;
#endif
273
  return true;
274 275
}

Y
update  
Yancey1989 已提交
276
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
277
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
278 279 280 281 282 283
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
284 285 286 287 288 289 290 291 292 293
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

H
hong 已提交
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
316 317 318
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
319 320 321 322 323 324 325 326 327 328 329 330 331
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
332 333
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
334 335
    }
    vec_res.emplace_back(
336
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
337 338 339 340 341 342 343 344 345 346 347 348
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
349 350
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
351 352 353 354 355 356 357 358 359 360 361 362
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
363 364 365
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
366 367 368 369
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
370 371
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
372 373 374 375
  }
  return vec_res;
}

376 377 378 379 380 381 382 383
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
384 385
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
386 387 388 389 390 391 392 393 394 395 396 397 398
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
399 400 401
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
402 403 404 405 406
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
407 408 409 410 411
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
412 413
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
414 415 416
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
417 418 419 420 421 422 423 424 425
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
        tensor_temp->mutable_data(exe->GetPlace(), var_desc.GetDataType());
      }
    }
  } else {
426 427
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
428 429 430 431 432
  }

  return;
}

433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

457 458 459 460 461 462
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

Y
Yu Yang 已提交
463 464 465
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
466
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
467

468 469
  AssertStaticGraphAndDygraphGradMakerNoDiff();

470
  m.doc() = "C++ core of PaddlePaddle";
471

472 473 474 475
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

476
  BindException(&m);
Y
Yu Yang 已提交
477

478 479
  m.def("set_num_threads", &platform::SetNumThreads);

480
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
481 482 483
  m.def("cudnn_version", &platform::CudnnVersion);
#endif

6
633WHU 已提交
484 485 486 487 488
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
489
    framework::Tensor tensor;
6
633WHU 已提交
490 491 492 493

    if (dl.ctx.device_type == kDLCPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
494
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
6
633WHU 已提交
495 496 497 498 499 500
    if (dl.ctx.device_type == kDLGPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });
H
hong 已提交
501

502 503 504 505 506 507
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

508 509 510 511 512 513
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
514 515
  });

516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

L
Leo Chen 已提交
541 542 543 544 545 546
  m.def("broadcast_shape", [](const std::vector<int64_t> &x_dim,
                              const std::vector<int64_t> &y_dim) {
    return vectorize(operators::details::BroadcastTwoDims(
        make_ddim(x_dim), make_ddim(y_dim), -1));
  });

S
sneaxiy 已提交
547
  m.def(
S
sneaxiy 已提交
548
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
549 550 551 552
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
553 554 555
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
  m.def("_get_all_register_op_kernels", [] {
    auto &all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();
    std::unordered_map<std::string, std::vector<std::string>> all_kernels_info;
    for (auto &kernel_pair : all_kernels) {
      auto op_type = kernel_pair.first;
      std::vector<std::string> kernel_types;
      for (auto &info_pair : kernel_pair.second) {
        paddle::framework::OpKernelType kernel_type = info_pair.first;
        kernel_types.push_back(
            paddle::framework::KernelTypeToString(kernel_type));
      }
      all_kernels_info.emplace(op_type, kernel_types);
    }
    return all_kernels_info;
  });

S
sneaxiy 已提交
572 573 574
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
575
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
576

577
  m.def("_set_fuse_parameter_group_size",
578
        &paddle::framework::ir::SetFuseParameterGroupsSize);
579
  m.def("_set_fuse_parameter_memory_size",
580
        &paddle::framework::ir::SetFuseParameterMemorySize);
581

S
sneaxiy 已提交
582 583 584
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

585 586
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

587 588 589
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

590
  BindImperative(&m);
591

592 593 594
  py::class_<framework::Tensor>(m, "Tensor", py::buffer_protocol())
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
595
      .def("_is_initialized",
596
           [](const framework::Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
597
      .def("_get_dims",
598
           [](const framework::Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
599
      .def("_set_dims",
600
           [](framework::Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
601
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
602
           })
Y
yuyang18 已提交
603
      .def("_set_layout",
604
           [](framework::Tensor &self, const std::string &layout) {
D
dzhwinter 已提交
605 606
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
607
      .def("_alloc_float",
608
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
609
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
610
           })
611
      .def("_alloc_float",
612
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
613 614
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
615
      .def("_alloc_float",
616
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
617
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
618
           })
619 620 621 622
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place) {
             self.mutable_data<float>(place);
           })
623
      .def("_alloc_double",
624
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
625 626
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
627
      .def("_alloc_int",
628
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
629
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
630
           })
631
      .def("_alloc_int",
632
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
633 634
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
635
      .def("_alloc_int",
636
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
637
             self.mutable_data<int>(place);
Q
qijun 已提交
638
           })
Y
yuyang18 已提交
639
      .def("_alloc_int",
640 641
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
642 643
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
644
      .def("_alloc_float",
645 646
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
647 648
             self.mutable_data<float>(place);
           })
649
      .def("_mutable_data",
650
           [](framework::Tensor &self, paddle::platform::CPUPlace &place,
651 652 653
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
654
      .def("_mutable_data",
655
           [](framework::Tensor &self, paddle::platform::XPUPlace &place,
656 657 658
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
659
      .def("_mutable_data",
660
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place,
661 662 663 664
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
665
           [](framework::Tensor &self, paddle::platform::CUDAPinnedPlace &place,
666 667 668
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
669
      .def("_clear", &framework::Tensor::clear)
670 671 672 673 674
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
675
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
676
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
677 678
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
679
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
680
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
681 682
      .def("set", SetTensorFromPyArray<paddle::platform::NPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
683
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
684 685
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
L
Leo Chen 已提交
686 687 688 689
        Set the data of LoDTensor on place with given numpy array.
        
        Args:
          lod (numpy.ndarray): The data to set.
690
          place (CPUPlace|CUDAPlace|XPUPlace|CUDAPinnedPlace|NPUPlace): The place where the
L
Leo Chen 已提交
691
          LoDTensor is to be set.
692 693
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
694 695 696 697 698 699 700 701 702 703 704 705 706

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                t = fluid.LoDTensor()
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
707

708 709 710
      .def("shape",
           [](framework::Tensor &self) { return vectorize(self.dims()); },
           R"DOC(
L
Leo Chen 已提交
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
           Return the shape of LoDTensor.

           Returns:
               list[int]: The shape of LoDTensor.


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

                  t = fluid.LoDTensor()
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
727
      .def("_to_dlpack",
728
           [](framework::Tensor &self) {
6
633WHU 已提交
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
             DLPackTensor dlpack_tensor(self, 1);
             DLManagedTensor *dmt =
                 dlpack_tensor.ToCudfCompatibleDLManagedTensor();
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
749 750 751 752
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
753 754
      .def("_place", [](framework::Tensor &self) { return self.place(); })
      .def("_dtype", [](framework::Tensor &self) { return self.type(); })
755
      .def("_layout",
756 757 758 759
           [](framework::Tensor &self) {
             return DataLayoutToString(self.layout());
           })
      .def("_share_data_with", &framework::Tensor::ShareDataWith)
760
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
761
      .def("__str__", [](const framework::Tensor &self) {
762 763 764 765
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
766

L
Leo Chen 已提交
767
  // TODO(cql): add reference: en_user_guide_lod_tensor
768
  py::class_<LoDTensor, framework::Tensor>(m, "LoDTensor", R"DOC(
L
Leo Chen 已提交
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
    LoDTensor is a Tensor with optional LoD (Level of Details) information, 
    it can be used for variable-length sequences, 
    see :ref:`user_guide_lod_tensor` for details.

    LoDTensor can be converted to numpy array using :code:`numpy.array(lod_tensor)`.

    You can skip the following explanation if you don't need to know details 
    of LoDTensor.

    The following two examples show how to use LODtensor to represent 
    variable-length sequences.
    
    Example 1:
    
    Suppose x is a LoDTensor representing a variable-length sequence. 
    It contains two logical subsequences, the length of first logical sequence 
    is 2 (e.g., number of samples is 2), the length of second logical sequence 
    is 3, and the total length is 5. The data of the first logical sequence is 
    [1, 2], [3, 4], and the data of the second logical sequence is [5, 6], 
    [7, 8], [9, 10]. The data dimension of each sample is 2. So, the final 
    shape of the LoDTensor is [5, 2], of which 5 is the total length and 2 is 
    the dimension of each sample.
    
    Logically, we can represent the variable-length sequence in two ways: one 
    is in the form of recursive sequence lengths, that is, 
    x.recursive_sequence_lengths=[[2, 3]]; the other is in the form of offsets, 
    that is, x.lod=[[0, 2, 2+3]]. These two representations are equivalent, and 
    you can set and retrieve recursive_sequence_lengths or LoD through the 
    corresponding interfaces of LoDTensor introduced later.

    Actually, in order to access sequence faster, Paddle uses offset to store 
    different lengths of sequences. 
    Therefore, the operations on recursive_sequence_lengths will be converted 
    to the operations on LoD eventually.
    
    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]

    Example 2:

    LoD may have more than one level (for example, a paragraph may have more 
    than one sentence and a sentence may have more than one word). Suppose y 
    is a LoDTensor and its lod_level is 2. 
    From level = 0, there are two logical sequences, the length of which is 
    2 and 1, respectively, indicating that the first logical sequence contains 
    two sub-sequences and the second logical sequence contains one sub-sequence. 
    From level = 1, the lengths of two sub-sequences contained by the first 
    logical sequence is 2 and 2, and the length of sub-sequence contained by 
    the second logical sequence is 3.
      
    Therefore, the LoDTensor is represented in the form of recursive sequence 
    lengths as y.recursive_sequence_lengths=[[2,1], [2,2,3]]; and equally, in 
    the form of offset, it is represented as y.lod=[[0,2,3], [0,2,4,7]].

    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]
Z
Zeng Jinle 已提交
843 844 845 846 847 848 849

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
850 851

        )DOC")
852 853
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
854 855 856 857 858 859 860 861 862
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
863 864
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, -1), true,
865 866 867 868
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is %s",
                     new_lod));
869 870
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
871
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
872
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
873 874
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
875 876 877
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
878
      .def("set_lod",
879
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
880
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
881
             LoD new_lod;
882 883
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
884 885
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
886 887
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
888
             self.set_lod(new_lod);
S
sneaxiy 已提交
889 890 891 892 893
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
L
Leo Chen 已提交
894 895 896 897
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
898 899 900 901 902 903 904 905 906 907

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
908
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
909
           )DOC")
910 911 912 913 914 915 916 917 918 919 920
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
921 922
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
923 924 925 926 927
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
928
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
929 930
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
L
Leo Chen 已提交
931
           Set LoD of the LoDTensor according to recursive sequence lengths.
S
sneaxiy 已提交
932

L
Leo Chen 已提交
933
           For example, if recursive_sequence_lengths=[[2, 3]], which means
934
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
935
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
936 937

           Args:
L
Leo Chen 已提交
938 939 940 941
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
942 943 944 945 946 947 948 949 950 951

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
L
Leo Chen 已提交
952 953
                 print(t.recursive_sequence_length())  # [[2, 3]]
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
954
           )DOC")
955 956 957 958 959 960 961 962
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
963 964 965 966 967
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
L
Leo Chen 已提交
968 969
               list[list[int]]: The lod of the LoDTensor.
           
Z
Zeng Jinle 已提交
970 971 972 973 974 975 976 977 978 979
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
980
           )DOC")
G
gongweibao 已提交
981
      // Set above comments of set_lod.
982 983 984 985 986 987 988 989
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
990 991
           },
           R"DOC(
L
Leo Chen 已提交
992 993
           Return the recursive sequence lengths corresponding to of the LodD 
           of the LoDTensor.
S
sneaxiy 已提交
994 995

           Returns:
L
Leo Chen 已提交
996
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
1008 1009 1010 1011 1012 1013 1014 1015
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
L
Leo Chen 已提交
1016
           Check whether the LoD of the LoDTensor is valid.
S
sneaxiy 已提交
1017 1018

           Returns:
L
Leo Chen 已提交
1019
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
1031 1032 1033 1034 1035 1036 1037
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
1038
           )DOC")
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
      .def("__str__",
           [](const LoDTensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           })
      .def("_copy", [](const LoDTensor &self, const platform::Place &place) {
        // follow fetch_op's inplementation
        LoDTensor dst;
        if (self.IsInitialized() && self.numel() > 0) {
          TensorCopySync(self, place, &dst);
        } else {
          // Not copy, if the src tensor is empty.
          dst.clear();
          dst.Resize({0});
        }
        dst.set_lod(self.lod());
        return dst;
1057
#ifdef _WIN32
1058
      });
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
#else
           })
      .def(py::pickle(
          [](const LoDTensor &t) {  // __getstate__
            auto holder = t.Holder();
            PADDLE_ENFORCE_EQ(
              platform::is_cpu_place(holder->place()), true,
              platform::errors::PreconditionNotMet(
                  "LoDTensor is not on CPU."
                  "Now only LoDTensor on CPU can be serialized."));
            auto* mmap_writer_allocation =
              dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                holder.get());
            PADDLE_ENFORCE_NOT_NULL(mmap_writer_allocation,
              platform::errors::PreconditionNotMet(
                "LoDTensor is not in shared memory."
                "Now only LoDTensor on shared memory can be serialized."));
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
                                  mmap_writer_allocation->size(),
                                  type_idx, vectorize(t.dims()), t.lod());
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
              throw std::runtime_error("Invalid LoDTensor state!");

            // 1. Create a new C++ instance
            LoDTensor tensor;

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
              memory::allocation::RebuildMemoryMapReaderAllocation(
                ipc_name, size);

            // 3. Maintain global fd set
            VLOG(3) << "LoDTensor ipc name: " << ipc_name;
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

            // 4. Rebuild LoDTensor
            tensor.ResetHolderWithType(shared_reader_holder,
              static_cast<proto::VarType::Type>(t[2].cast<int>()));
            tensor.Resize(make_ddim(t[3].cast<std::vector<int>>()));
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
1109

Q
qijun 已提交
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
1121 1122
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
1123 1124
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
1125 1126
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
1127
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
Q
qijun 已提交
1128 1129 1130 1131 1132 1133
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1134
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
1135
      .def("rows", [](SelectedRows &self) {
1136 1137 1138 1139 1140
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1141
      });
Q
qijun 已提交
1142

1143
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1144 1145 1146

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1147
      .def(py::init<>())
1148
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1149
      .def("set_int",
1150 1151
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1152 1153 1154 1155 1156 1157 1158
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1159
      .def("get_tensor",
1160 1161
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1162 1163
           },
           py::return_value_policy::reference)
1164 1165 1166 1167
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
Y
Yu Yang 已提交
1168 1169 1170
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1171 1172 1173 1174 1175
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1176 1177 1178
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1179 1180 1181
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1182
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1183 1184 1185 1186 1187
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1188
#endif
Y
Refine  
Yu Yang 已提交
1189 1190
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1191 1192 1193 1194
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1195 1196
             return self.GetMutable<framework::ReaderHolder>();
           },
1197 1198 1199 1200 1201
           py::return_value_policy::reference)
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1202

S
sneaxiy 已提交
1203
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1204

S
sneaxiy 已提交
1205
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1219
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1220 1221 1222 1223 1224 1225
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
1226 1227
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1228
      .def("var",
1229
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1230
             return self.Var(name);
Y
Yu Yang 已提交
1231
           },
S
sneaxiy 已提交
1232 1233
           py::arg("name"),
           R"DOC(
1234
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1235

1236
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1237
           current scope, the variable would be created. Otherwise,
1238
           return the existing variable.
S
sneaxiy 已提交
1239 1240

           Args:
1241 1242
               name (str): the variable name.

S
sneaxiy 已提交
1243
           Returns:
1244
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1245 1246 1247 1248
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1249
           Find variable named :code:`name` in the current scope or
1250
           its parent scope. Return None if not found. 
1251

S
sneaxiy 已提交
1252 1253
           Args:
               name (str): the variable name.
1254

S
sneaxiy 已提交
1255
           Returns:
1256
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1257
           )DOC",
1258
           py::return_value_policy::reference)
1259
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1260 1261 1262 1263 1264 1265
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1266
           py::return_value_policy::reference)
S
sneaxiy 已提交
1267 1268 1269
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1270 1271
           )DOC")
      .def("_kids", &Scope::kids);
1272

S
sneaxiy 已提交
1273 1274 1275 1276 1277 1278
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1279 1280
        R"DOC(
        Create a new scope.
1281

S
sneaxiy 已提交
1282 1283 1284
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1285 1286
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1287 1288
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1289 1290
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1291 1292 1293 1294
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1295 1296
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1297 1298
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1299 1300 1301
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1302 1303
    return ret_values;
  });
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
              res = op_checker->GetAttrsDefaultValuesMap();
            }
          }
          return res;
        });
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1333 1334 1335
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1336 1337 1338 1339 1340
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1341 1342 1343
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1358
  m.def("prune", [](const ProgramDesc &origin,
1359
                    const std::set<std::string> &feeded_var_names,
1360
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1361
    ProgramDesc prog_with_targets(origin);
1362

1363
    for (const auto &t : targets) {
1364
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1365
    }
1366
    proto::ProgramDesc pruned_desc;
1367 1368 1369 1370
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1371
  });
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1389 1390 1391 1392
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1393 1394 1395
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1396 1397
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1398

Q
qijun 已提交
1399
  // clang-format off
Y
Yu Yang 已提交
1400
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1401 1402
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1403
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
1404 1405
                    return new paddle::platform::CPUDeviceContext();
                  })
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
                    return new paddle::platform::XPUDeviceContext(place);
#endif
                  })
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
        .def_static("create",
                    [](paddle::platform::NPUPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_ASCEND_CL
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use NPUPlace in CPU/GPU/XPU version, "
                 "Please recompile or reinstall Paddle with NPU support."));
#else
                return new paddle::platform::NPUDeviceContext(place);
#endif
        })
Q
qijun 已提交
1430
      .def_static("create",
D
dzhwinter 已提交
1431
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1432
                      -> paddle::platform::DeviceContext* {
1433
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1434 1435 1436 1437
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1438
#else
Q
qijun 已提交
1439
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
1440
#endif
C
chengduoZH 已提交
1441 1442 1443 1444
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
1445
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1446 1447 1448 1449
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1450 1451 1452 1453
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1454
// clang-format on
1455
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1456 1457
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1458
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
1459 1460 1461 1462 1463

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1464
    The memory of CUDAPlace with different dev_id is not accessible.
1465 1466 1467 1468 1469 1470 1471 1472
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1473 1474 1475 1476

    Examples:
        .. code-block:: python

1477 1478 1479
          import paddle

          place = paddle.CUDAPlace(0)
L
lujun 已提交
1480

1481
        )DOC")
S
sneaxiy 已提交
1482 1483
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
1484
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

             if (UNLIKELY(dev_id >= platform::GetCUDADeviceCount())) {
               if (platform::GetCUDADeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
                     dev_id, platform::GetCUDADeviceCount(),
                     platform::GetCUDADeviceCount());
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1509 1510
             new (&self) platform::CUDAPlace(dev_id);
#else
1511 1512 1513 1514 1515 1516 1517 1518 1519
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1520 1521
#endif
           })
1522
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1523 1524
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
1525 1526 1527 1528
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
1529
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
1530
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1531 1532
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
1533 1534 1535
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
1536
      .def("__repr__", string::to_string<const platform::CUDAPlace &>)
D
dzhwinter 已提交
1537
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1538

1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
  py::class_<platform::XPUPlace>(m, "XPUPlace", R"DOC(
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
        )DOC")
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
1584
#ifdef PADDLE_WITH_XPU
1585 1586 1587 1588 1589 1590 1591
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
1592 1593 1594
      .def("get_device_id",
           [](const platform::XPUPlace &self) { return self.GetDeviceId(); })
#endif
1595
      .def("__repr__", string::to_string<const platform::XPUPlace &>)
1596
      .def("__str__", string::to_string<const platform::XPUPlace &>);
1597 1598 1599
#ifdef PADDLE_WITH_XPU
  m.def("get_xpu_device_count", platform::GetXPUDeviceCount);
#endif
1600

1601
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
1602
    CPUPlace is a descriptor of a device.
1603
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
1604 1605 1606 1607

    Examples:
        .. code-block:: python

1608 1609
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
1610

1611
        )DOC")
1612
      .def(py::init<>())
S
sneaxiy 已提交
1613 1614
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
1615
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
1616
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1617 1618 1619 1620
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1621
      .def("__repr__", string::to_string<const platform::CPUPlace &>)
1622
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1623

1624
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
1625 1626 1627 1628 1629 1630
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1631 1632 1633 1634

    Examples:
        .. code-block:: python

1635 1636
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
1637

1638
        )DOC")
S
sneaxiy 已提交
1639
      .def("__init__",
S
sneaxiy 已提交
1640
           [](platform::CUDAPinnedPlace &self) {
1641
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1642 1643 1644
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
1645
#endif
S
sneaxiy 已提交
1646
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1647
           })
S
sneaxiy 已提交
1648 1649 1650 1651
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
1652 1653
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
1654 1655
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1656 1657 1658 1659
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
1660
      .def("__repr__", string::to_string<const platform::CUDAPinnedPlace &>)
C
chengduoZH 已提交
1661 1662
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
  // NPUPlace
  py::class_<platform::NPUPlace>(m, "NPUPlace", R"DOC(
    NPUPlace is a descriptor of a device.
    It represents a NPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          npu_place = paddle.NPUPlace(0)

        )DOC")
      .def("__init__",
           [](platform::NPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_ASCEND_CL
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid NPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetNPUDeviceCount())) {
               if (platform::GetNPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use NPU because there is no NPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid NPUPlace(%d), must inside [0, %d), because NPU "
                     "number on your machine is %d",
                     dev_id, platform::GetNPUDeviceCount(),
                     platform::GetNPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::NPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use NPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use NPU, please try to install NPU version "
1705
                 "PaddlePaddle by: pip install paddlepaddle-npu\n"
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
                 "If you only have CPU, please change NPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::NPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::NPUPlace, platform::CUDAPinnedPlace>)
      .def("__str__", string::to_string<const platform::NPUPlace &>);

Y
Yu Yang 已提交
1722 1723
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
1724 1725 1726 1727
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
1728
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
1729
      .def("_equals", &IsSamePlace<platform::Place, platform::NPUPlace>)
S
sneaxiy 已提交
1730
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
1731 1732
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
1733 1734
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
1735 1736
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
1737 1738
      .def("is_npu_place",
           [](platform::Place &self) { return platform::is_npu_place(self); })
S
sneaxiy 已提交
1739 1740 1741 1742
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
1743 1744
      .def("gpu_device_id",
           [](platform::Place &self) {
1745
             return BOOST_GET_CONST(platform::CUDAPlace, self).device;
X
xuezhong 已提交
1746
           })
1747 1748 1749 1750
      .def("xpu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::XPUPlace, self).device;
           })
1751 1752 1753 1754
      .def("npu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::NPUPlace, self).device;
           })
S
sneaxiy 已提交
1755 1756
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
1757 1758 1759 1760
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
1761 1762 1763 1764
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
1765
      .def("set_place",
D
dzhwinter 已提交
1766
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
1767
             self = gpu_place;
C
chengduoZH 已提交
1768
           })
1769 1770 1771 1772 1773
      .def("set_place",
           [](platform::Place &self,
              const platform::CUDAPinnedPlace &cuda_pinned_place) {
             self = cuda_pinned_place;
           })
1774 1775 1776 1777
      .def("set_place",
           [](platform::Place &self, const platform::NPUPlace &npu_place) {
             self = npu_place;
           })
1778 1779
      .def("__repr__", string::to_string<const platform::Place &>)
      .def("__str__", string::to_string<const platform::Place &>);
Y
Yu Yang 已提交
1780

Y
Yu Yang 已提交
1781
  py::class_<OperatorBase>(m, "Operator")
C
chengduo 已提交
1782 1783 1784 1785 1786
      .def_static(
          "create",
          [](py::bytes protobin) {
            proto::OpDesc desc;
            PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin), true,
1787 1788 1789 1790 1791 1792 1793
                              platform::errors::InvalidArgument(
                                  "Cannot parse user input to OpDesc"));
            PADDLE_ENFORCE_EQ(
                desc.IsInitialized(), true,
                platform::errors::InvalidArgument(
                    "The provided OpDesc is not initialized, the reason is: %s",
                    desc.InitializationErrorString()));
C
chengduo 已提交
1794 1795
            return OpRegistry::CreateOp(desc);
          })
1796
      .def("run",
1797
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1798
              const platform::CPUPlace &place) { self.Run(scope, place); })
1799 1800 1801
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::XPUPlace &place) { self.Run(scope, place); })
1802 1803 1804
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::NPUPlace &place) { self.Run(scope, place); })
D
dzhwinter 已提交
1805 1806
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1807
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
1808 1809 1810 1811 1812
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1813 1814 1815 1816 1817 1818 1819
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
1820 1821
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1822
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1823
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1824 1825 1826 1827
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1828

1829 1830 1831
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1832 1833 1834 1835 1836 1837 1838 1839 1840
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
      .def("finalize", &TrainerBase::Finalize);

F
fengjiayi 已提交
1841
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1842
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1843
      .def("close", &Executor::Close)
1844 1845
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
1846 1847
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
1848 1849 1850 1851
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1852
             pybind11::gil_scoped_release release;
1853 1854 1855 1856 1857 1858 1859
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1860 1861 1862
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
1863
              std::map<std::string, FetchType *> *fetch_targets,
1864 1865 1866 1867 1868 1869 1870 1871
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
1872
      .def("run_prepared_ctx",
G
guru4elephant 已提交
1873 1874 1875 1876 1877 1878 1879
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
1890
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
1891 1892
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
1893
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
1894 1895
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
1896
      });
S
sneaxiy 已提交
1897

P
phlrain 已提交
1898
  py::class_<framework::InterpreterCore>(m, "InterpreterCore")
W
wanghuancoder 已提交
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
      .def(py::init<const platform::Place &, const ProgramDesc &,
                    const ProgramDesc &>())
      .def("run",
           [](InterpreterCore &self,
              const std::unordered_map<std::string, py::array> &input_dict,
              std::vector<std::string> vec_fetch_name) {
             pybind11::gil_scoped_release release;
             std::vector<framework::Tensor> vec_tensor;
             std::vector<std::string> vec_name;
             // vec_tensor.reserve( feed.size() );
             // vec_tensor.reserve( feed.size ()) ;

             // auto new_res = input_dict.cast<py::array>();

             for (auto &item : input_dict) {
               // cerr << "test flag  " << test_flag << endl;
               // cerr << item.first << endl;
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);

               // cerr << t.dims() << endl;
               // cerr << t.data<float>()[0] << endl;

               vec_name.push_back(item.first);
               vec_tensor.push_back(t);
             }

             // std::cerr << "11" << std::endl;
             std::vector<framework::Tensor> vec_out;
             self.run(vec_name, vec_tensor, vec_fetch_name, vec_out);
             // self.Run(prog, scope, block_id, create_local_scope, create_vars,
             //         fetch_vars);
             std::vector<py::array> vec_ret;
             for (size_t i = 0; i < vec_out.size(); ++i) {
               vec_ret.push_back(TensorToPyArray(vec_out[i], true));
             }
             return vec_ret;
           })
      .def("run",
           [](InterpreterCore &self,
              const std::unordered_map<std::string, LoDTensor> &input_dict,
              std::vector<std::string> vec_fetch_name) {
             pybind11::gil_scoped_release release;
             std::vector<framework::Tensor> vec_tensor;
             std::vector<std::string> vec_name;

             for (auto &item : input_dict) {
               vec_name.push_back(item.first);
               vec_tensor.push_back(item.second);
             }

             std::vector<framework::Tensor> vec_out;
             self.run(vec_name, vec_tensor, vec_fetch_name, vec_out);

             std::vector<py::array> vec_ret;
             for (size_t i = 0; i < vec_out.size(); ++i) {
               vec_ret.push_back(TensorToPyArray(vec_out[i], true));
             }
             return vec_ret;
           });
P
phlrain 已提交
1960

D
dzhwinter 已提交
1961
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1962
  m.def("init_glog", framework::InitGLOG);
1963 1964
  m.def("load_op_meta_info_and_register_op",
        framework::LoadOpMetaInfoAndRegisterOp);
1965
  m.def("init_devices", []() { framework::InitDevices(); });
1966

1967
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1968
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
1969
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
1970
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
1971
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
1972
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1973
  m.def("supports_bfloat16", SupportsBfloat16);
1974
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
1975
  m.def("op_supported_infos", OpSupportedInfos);
1976
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1977
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1978 1979 1980
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
H
hutuxian 已提交
2000 2001 2002 2003 2004 2005 2006
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
2007 2008 2009 2010 2011 2012 2013 2014 2015
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

2016
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2017 2018 2019 2020 2021
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
2022

2023
  m.def("set_feed_variable", framework::SetFeedVariable);
2024 2025 2026 2027 2028
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
2029
            return py::cast(BOOST_GET(LoDTensor, var));
2030
          } else {
2031
            return py::cast(BOOST_GET(LoDTensorArray, var));
2032 2033
          }
        });
2034
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
2035

X
Xin Pan 已提交
2036 2037
  m.def("_is_program_version_supported", IsProgramVersionSupported);

2038 2039 2040 2041 2042
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
2043
  BindGlobalValueGetterSetter(&m);
Y
Yu Yang 已提交
2044

Y
Yu Yang 已提交
2045 2046 2047 2048 2049 2050 2051 2052 2053
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
2054
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
2055
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
2056 2057 2058

    Examples:
        .. code-block:: python
2059

Z
Zeng Jinle 已提交
2060 2061 2062 2063
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
2064 2065
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
2066 2067 2068 2069 2070 2071
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
2072 2073 2074 2075
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
2076 2077 2078
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
2079 2080 2081 2082 2083 2084
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
2085 2086
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
2087 2088 2089 2090 2091 2092
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
2115

2116 2117 2118 2119 2120 2121 2122 2123
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
2124
                 auto &data = BOOST_GET(LoDTensor, self[i]);
2125 2126
                 res[i] = py::cast(std::move(data));
               } else {
2127
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
2143
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
2144 2145 2146 2147 2148 2149 2150 2151
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
2152
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
2153 2154 2155 2156 2157 2158 2159 2160 2161
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2162 2163
        )DOC")
      .def("_move_to_list",
2164
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
2165 2166 2167 2168
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
2169
                 if (data_is_lod_tensor(self[i][j])) {
2170
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
2171 2172
                   tmp[j] = py::cast(std::move(var));
                 } else {
2173
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
2174 2175 2176 2177 2178 2179
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
2180 2181 2182 2183 2184 2185 2186 2187 2188
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
2189
  m.def("op_support_gpu", OpSupportGPU);
2190
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
D
Dong Zhihong 已提交
2191
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
2192

2193
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2194 2195 2196
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2197 2198 2199 2200
  m.def("nvprof_nvtx_push", platform::CudaNvtxRangePush);
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2201
#endif
P
peizhilin 已提交
2202
#endif
Y
Yu Yang 已提交
2203

2204 2205
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
2206
  m.def("npu_finalize", []() { platform::AclInstance::Instance().Finalize(); });
2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

2227 2228 2229 2230 2231 2232
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2233 2234 2235 2236
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2237
      .value("kAll", platform::ProfilerState::kAll)
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2249
  m.def("set_tracer_option", platform::SetTracerOption);
2250 2251
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2252
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2253
  m.def("reset_profiler", platform::ResetProfiler);
2254
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2255 2256 2257
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2258

2259 2260
  m.def("size_of_dtype", framework::SizeOfType);

2261
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2262 2263
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
2264 2265
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
2266 2267
#endif  // PADDLE_WITH_CUDA

2268 2269 2270
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

2271 2272
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
2273
      .def("has", &ir::Pass::Has)
2274 2275 2276
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
2277
           })
2278
      .def(
2279
          "set",
2280 2281 2282
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
2283 2284
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
2285 2286
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
2301 2302
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
2303
        self.Apply(graph.get());
F
flame 已提交
2304
      });
2305

X
fix  
Xin Pan 已提交
2306 2307
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
2322
  // -- python binds for parallel executor.
X
Xin Pan 已提交
2323

Y
yuyang18 已提交
2324
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
2325 2326 2327 2328
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

2329 2330 2331
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
2332 2333 2334
    Examples:
        .. code-block:: python

2335 2336 2337 2338 2339 2340 2341 2342 2343
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
2344

2345 2346
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
2347

2348
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
2349 2350
          sgd_optimizer.minimize(avg_loss)

2351
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
2352 2353
          exec_strategy.num_threads = 4

2354 2355 2356
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
2357 2358
        )DOC");

2359 2360 2361 2362
  py::enum_<paddle::platform::DeviceType>(m, "DeviceType", py::arithmetic())
      .value("CPU", paddle::platform::DeviceType::CPU)
      .value("CUDA", paddle::platform::DeviceType::CUDA)
      .value("XPU", paddle::platform::DeviceType::XPU);
2363

Y
yuyang18 已提交
2364
  exec_strategy.def(py::init())
Y
yuyang18 已提交
2365 2366 2367 2368 2369
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
2370
          },
2371 2372
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
2373 2374 2375 2376 2377 2378 2379
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
2393
      .def_property(
2394 2395
          "_use_device",
          [](const ExecutionStrategy &self) { return self.use_device_; },
2396
          [](ExecutionStrategy &self, paddle::platform::DeviceType use_device) {
2397 2398 2399
            self.use_device_ = use_device;
          })  // NOTE(liuyuhui): Doesn't add doc for 'use_device', because
              // use_device isn‘t exposed to users.
Y
yuyang18 已提交
2400 2401 2402 2403 2404
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
2405 2406 2407
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
2408 2409
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
2410 2411 2412 2413 2414 2415 2416
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
2417 2418 2419 2420
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
2421
                because the temp variable's shape maybe the same between two iterations.
2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
2432

2433 2434 2435 2436 2437 2438 2439
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
2440
              )DOC")
Q
Qiao Longfei 已提交
2441 2442 2443 2444 2445 2446 2447 2448 2449
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
2462
              )DOC")
2463 2464 2465 2466 2467 2468 2469 2470
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
2471 2472 2473 2474 2475
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
2476

Y
yuyang18 已提交
2477
  exec_strategy.def_property(
Y
yuyang18 已提交
2478 2479 2480 2481 2482 2483 2484
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
2485 2486
      });

C
chengduo 已提交
2487 2488 2489 2490
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

2491 2492 2493
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
2494 2495 2496
    Examples:
        .. code-block:: python

2497
            import os
2498 2499 2500 2501
            import paddle
            import paddle.static as static

            paddle.enable_static()
2502

2503 2504
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
2505

2506 2507 2508 2509
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
2510

2511
            build_strategy = static.BuildStrategy()
2512 2513
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
2514 2515
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
2516
            program = program.with_data_parallel(loss_name=loss.name,
2517 2518
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
2519
)DOC");
Y
yuyang18 已提交
2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
2536 2537 2538 2539
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2540
            self.reduce_ = strategy;
C
chengduo 已提交
2541
          },
2542
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
2543 2544
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
2545
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
2546 2547
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
2548
                Default is 'AllReduce'.
F
flame 已提交
2549 2550 2551 2552

                Examples:
                    .. code-block:: python

2553 2554 2555 2556 2557 2558 2559
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
2560
                  )DOC")
Y
yuyang18 已提交
2561 2562 2563 2564 2565
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
2566 2567 2568 2569
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2570
            self.gradient_scale_ = strategy;
C
chengduo 已提交
2571
          },
2572
          R"DOC((paddle.static.BuildStrategy.GradientScaleStrategy, optional): there are three
2573
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
2574 2575
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
2576
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
2577 2578 2579 2580

                Examples:
                    .. code-block:: python

C
chengduo 已提交
2581 2582
                        import numpy
                        import os
2583 2584 2585 2586
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2587 2588

                        use_cuda = True
2589 2590
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
2591 2592

                        # NOTE: If you use CPU to run the program, you need
2593
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
2594 2595 2596 2597 2598 2599
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
2600
                            places = static.cpu_places()
C
chengduo 已提交
2601
                        else:
2602
                            places = static.cuda_places()
C
chengduo 已提交
2603

2604 2605 2606 2607
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
2608

2609
                        exe.run(static.default_startup_program())
C
chengduo 已提交
2610

2611
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
2612
                        build_strategy.gradient_scale_strategy = \
2613 2614 2615
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
2616
                                          loss_name=loss.name, build_strategy=build_strategy,
2617
                                          places=places)
C
chengduo 已提交
2618 2619 2620 2621 2622 2623

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
2624 2625
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
2626
                   )DOC")
Y
yuyang18 已提交
2627 2628 2629 2630
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
2631 2632 2633 2634
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2635
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
2636
          },
2637
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
2638
                writing the SSA Graph to file in the form of graphviz.
2639
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
2640 2641 2642 2643

                Examples:
                    .. code-block:: python

2644 2645 2646 2647
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2648

2649 2650
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
2651
                    )DOC")
S
sneaxiy 已提交
2652 2653 2654 2655 2656 2657
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
2658 2659 2660 2661
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2662 2663
            self.enable_sequential_execution_ = b;
          },
2664 2665
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
2666 2667 2668 2669

                Examples:
                    .. code-block:: python

2670 2671 2672 2673 2674 2675
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2676 2677
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
2678 2679 2680 2681 2682 2683
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
2684 2685 2686 2687
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2688 2689
            self.remove_unnecessary_lock_ = b;
          },
2690 2691
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
2692 2693 2694 2695

                Examples:
                    .. code-block:: python

2696 2697 2698 2699 2700 2701
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2702 2703
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
2704 2705 2706 2707
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
2708
#ifdef WIN32
2709
            PADDLE_THROW(platform::errors::Unavailable(
2710
                "Distribution mode is not supported on Windows platform."));
2711
#endif
2712 2713
            self.num_trainers_ = num_trainers;
          })
2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
2726 2727 2728 2729 2730 2731
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
2732 2733 2734 2735 2736 2737
      .def_property(
          "bkcl_comm_num",
          [](const BuildStrategy &self) { return self.bkcl_comm_num_; },
          [](BuildStrategy &self, int bkcl_comm_num) {
            self.bkcl_comm_num_ = bkcl_comm_num;
          })
2738
      .def_property("use_hierarchical_allreduce",
2739 2740 2741 2742 2743 2744
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
2745
      .def_property("hierarchical_allreduce_inter_nranks",
2746 2747 2748 2749 2750 2751 2752
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
2753 2754 2755 2756 2757 2758
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
2759 2760 2761 2762
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
2763 2764
            self.fuse_elewise_add_act_ops_ = b;
          },
2765
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
2766
                to fuse elementwise_add_op and activation_op,
2767
                it may make the execution faster. Default is False.
F
flame 已提交
2768 2769 2770 2771

                Examples:
                    .. code-block:: python

2772 2773 2774 2775 2776 2777
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2778 2779
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
Z
Zhen Wang 已提交
2780 2781 2782 2783
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
2784
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
2785
                              platform::errors::PreconditionNotMet(
2786 2787
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
2788 2789 2790 2791 2792 2793 2794 2795 2796
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

2797 2798 2799 2800 2801 2802
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
2803 2804
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
Z
Zhang Ting 已提交
2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
      .def_property(
          "fuse_bn_add_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_add_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_bn_add_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_add_act_ops indicate whether
                to fuse batch_norm, elementwise_add and activation_op,
                it may make the execution faster. Default is True

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_bn_add_act_ops = True
                     )DOC")
2830 2831 2832 2833
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
2834
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
2835
                              platform::errors::PreconditionNotMet(
2836 2837
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

2848 2849 2850 2851 2852 2853
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
2854 2855
                        build_strategy.enable_auto_fusion = True
                    )DOC")
2856 2857 2858 2859 2860 2861
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
2862 2863 2864 2865
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2866 2867
            self.fuse_relu_depthwise_conv_ = b;
          },
2868
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
2869 2870 2871
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
2872
                Default is False.
F
flame 已提交
2873 2874 2875 2876

                Examples:
                    .. code-block:: python

2877 2878 2879 2880 2881 2882
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2883 2884
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
2885 2886 2887 2888 2889 2890
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
                             self.fuse_broadcast_ops_ == boost::none;
                    },
                    [](BuildStrategy &self, bool b) {
2891 2892 2893 2894
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2895 2896
                      self.fuse_broadcast_ops_ = b;
                    },
2897
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
2898 2899 2900 2901
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
2902 2903 2904 2905 2906
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

2907 2908 2909 2910 2911 2912
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
2913 2914
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
2915 2916
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
2917 2918
                      return self.fuse_all_optimizer_ops_ == true ||
                             self.fuse_all_optimizer_ops_ == boost::none;
C
chengduo 已提交
2919 2920
                    },
                    [](BuildStrategy &self, bool b) {
2921 2922 2923 2924
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2925 2926
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
2927 2928 2929 2930
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
2931 2932 2933 2934
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
2935 2936
            self.sync_batch_norm_ = b;
          },
2937
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
2938 2939 2940
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
2941 2942
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
2943 2944 2945 2946

                Examples:
                    .. code-block:: python

2947 2948 2949 2950 2951 2952
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2953 2954
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
2955 2956
      .def_property(
          "memory_optimize",
2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
              self.memory_optimize_ = boost::none;
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
2971 2972 2973
              PADDLE_THROW(platform::errors::InvalidArgument(
                  "BuildStrategy.memory_optimize must be set to None, False or "
                  "True"));
2974 2975
            }
          },
2976
          R"DOC((bool, optional): memory opitimize aims to save total memory
2977
                consumption, set to True to enable it.
2978

2979 2980 2981
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
2996 2997 2998
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
2999 3000 3001
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
3002
              PADDLE_THROW(platform::errors::Unavailable(
3003
                  "Distribution mode is not supported on Windows platform."));
3004 3005 3006 3007 3008
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
3009 3010 3011
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
3012
      .def_property(
D
dzhwinter 已提交
3013 3014 3015
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
3016 3017 3018 3019
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
3020 3021
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
3022 3023 3024 3025
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
                   self.fuse_all_reduce_ops_ == boost::none;
          },
C
chengduo 已提交
3026
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
3027 3028 3029 3030 3031 3032 3033
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
3034 3035 3036 3037
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
3038 3039 3040 3041 3042 3043 3044 3045 3046
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
3047
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
3048
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
3049 3050 3051 3052 3053
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
3054 3055

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
3056
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
3057
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
3058
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
3059 3060 3061 3062
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
3063 3064 3065 3066 3067
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
3068 3069 3070
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
3071 3072 3073 3074
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
3075 3076
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
3077 3078 3079 3080 3081 3082 3083 3084
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
3085
               return py::cast(
3086
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
3087 3088
             } else {
               return py::cast(std::move(
3089
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
3090
             }
3091 3092
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
3093

D
dongdaxiang 已提交
3094
  BindFleetWrapper(&m);
3095
  BindIO(&m);
T
Thunderbrook 已提交
3096

T
Thunderbrook 已提交
3097 3098
#ifdef PADDLE_WITH_PSLIB
  BindHeterWrapper(&m);
T
Thunderbrook 已提交
3099
#endif
T
Thunderbrook 已提交
3100
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
3101
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
3102
#endif
3103
  BindGlooWrapper(&m);
H
hutuxian 已提交
3104
  BindBoxHelper(&m);
H
hutuxian 已提交
3105 3106 3107
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
3108
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
3109
  BindNCCLWrapper(&m);
3110 3111 3112
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
3113
#endif
F
flame 已提交
3114 3115
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
3116
  BindInferenceApi(&m);
3117
  BindCompatible(&m);
3118
  BindDataset(&m);
Y
yaoxuefeng 已提交
3119
  BindGenerator(&m);
3120 3121 3122
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
3123
  BindAscendDevice(&m);
3124
#endif
Y
Yanghello 已提交
3125 3126 3127
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
3128

T
tangwei12 已提交
3129
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
3130 3131
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
3132
  BindCommunicatorContext(&m);
T
tangwei12 已提交
3133 3134
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
3135 3136 3137 3138 3139
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
3140 3141 3142 3143
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
3144
  BindSparseShardingTools(&m);
3145
#endif
L
Luo Tao 已提交
3146
}
3147
}  // namespace pybind
3148
}  // namespace paddle