pybind.cc 28.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16 17 18 19 20 21
#include <algorithm>
#include <map>
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
22

23
#include "paddle/fluid/framework/channel.h"
Y
Yi Wang 已提交
24 25 26 27 28 29 30
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/init.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
31
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
34
#include "paddle/fluid/framework/reader.h"
Y
Yi Wang 已提交
35
#include "paddle/fluid/framework/selected_rows.h"
D
dzhwinter 已提交
36
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
37
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yi Wang 已提交
38 39 40 41 42
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
43 44
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
Y
Yu Yang 已提交
45
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
46
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
47

48
#include "paddle/fluid/string/to_string.h"
49

D
Dong Zhihong 已提交
50
#ifdef PADDLE_WITH_CUDA
Y
Yi Wang 已提交
51 52 53
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
54 55
#endif

Q
Qiao Longfei 已提交
56 57 58
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

59
namespace paddle {
60
namespace pybind {
61
bool IsCompiledWithCUDA() {
62
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
63 64 65 66 67 68
  return false;
#else
  return true;
#endif
}

69 70
PYBIND11_PLUGIN(core) {
  py::module m("core", "C++ core of PaddlePaddle");
71

72 73 74 75
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

76
  BindException(&m);
Y
Yu Yang 已提交
77

78 79 80
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
Yu Yang 已提交
81
      .def("get_dims",
82
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
Yu Yang 已提交
83
      .def("set_dims",
Q
qijun 已提交
84
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
85
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
86
           })
D
dzhwinter 已提交
87 88 89 90
      .def("set_layout",
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
Yu Yang 已提交
91
      .def("alloc_float",
D
dzhwinter 已提交
92
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
93
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
94
           })
Q
qijun 已提交
95
      .def("alloc_float",
Y
Yu Yang 已提交
96
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
97
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
98 99
           })
      .def("alloc_int",
Y
Yu Yang 已提交
100
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
101
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
102
           })
Q
qijun 已提交
103
      .def("alloc_int",
D
dzhwinter 已提交
104
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
105
             self.mutable_data<int>(place);
Q
qijun 已提交
106
           })
C
chengduoZH 已提交
107 108 109 110 111 112 113 114
      .def("alloc_int",
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
      .def("alloc_float",
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
115 116
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
117
      .def("set", PyCPUTensorSetFromArray<double>)
118
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
119
      .def("set", PyCPUTensorSetFromArray<bool>)
120
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
121
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
122
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
123 124
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
125
      .def("set", PyCUDATensorSetFromArray<double>)
126
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
127
      .def("set", PyCUDATensorSetFromArray<bool>)
128
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
129
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
C
chengduoZH 已提交
130 131 132 133 134 135
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
136
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qijun 已提交
137
#endif
138
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
139 140 141 142 143
      .def("set_float_element", TensorSetElement<float>)
      .def("get_float_element", TensorGetElement<float>)
      .def("set_double_element", TensorSetElement<double>)
      .def("get_double_element", TensorGetElement<double>)
      .def("dtype", [](Tensor &self) { return ToDataType(self.type()); });
Y
Yu Yang 已提交
144

145
  py::class_<LoDTensor, Tensor>(m, "LoDTensor")
146 147
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
148 149 150 151 152 153 154 155 156 157 158 159 160 161
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
162
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
163 164 165 166 167
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
168
      .def("set_lod",
169
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
170
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
171
             LoD new_lod;
172 173
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
174 175
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
176
             self.set_lod(new_lod);
D
dangqingqing 已提交
177
           })
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
           })
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
G
gongweibao 已提交
203
      // Set above comments of set_lod.
204 205 206 207 208 209 210 211 212 213 214 215 216
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
      .def("has_valid_recursive_sequence_lengths", [](LoDTensor &self) -> bool {
        // Check that the lod info is valid and match the outermost
        // dimension of the LoDTensor data
        return CheckLoD(self.lod(), vectorize(self.dims()).front());
D
dangqingqing 已提交
217 218
      });

Q
qijun 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
232 233 234 235 236 237 238 239 240
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
241 242 243 244 245 246 247 248 249 250 251
      .def("rows", [](SelectedRows &self) {
#ifndef PADDLE_WITH_CUDA
        return self.rows();
#else
         auto rows = self.rows();
         std::vector<int64_t> new_rows;
         new_rows.reserve(rows.size());
         std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
         return new_rows;
#endif
      });
Q
qijun 已提交
252

253
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
254 255 256

All parameter, weight, gradient are variables in Paddle.
)DOC")
257
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
258
      .def("set_int",
259 260
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
261 262 263 264 265 266 267
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
268
      .def("get_tensor",
269 270
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
271 272
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
273 274 275
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
276 277 278 279 280
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
281 282 283
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
D
Dong Zhihong 已提交
284 285 286 287 288 289 290
#ifdef PADDLE_WITH_CUDA
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
#endif
Y
Refine  
Yu Yang 已提交
291 292 293 294 295
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
Y
Yu Yang 已提交
296
           py::return_value_policy::reference);
297

Y
Refine  
Yu Yang 已提交
298 299 300
  py::class_<framework::ReaderHolder>(m, "Reader", "")
      .def("reset", &framework::ReaderHolder::ReInit);

S
sneaxiy 已提交
301 302 303 304 305
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
  py::class_<LoDTensorBlockingQueue>(m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
306
      .def("enqueue",
S
sneaxiy 已提交
307
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
308
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
309
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
310 311
             return self.Enqueue(lod_tensor_vec);
           })
S
sneaxiy 已提交
312 313 314 315 316
      .def("size",
           [](const LoDTensorBlockingQueue &self) { return self.Size(); })
      .def("capacity",
           [](const LoDTensorBlockingQueue &self) { return self.Cap(); })
      .def("close", [](LoDTensorBlockingQueue &self) { return self.Close(); })
S
sneaxiy 已提交
317
      .def("is_closed",
S
sneaxiy 已提交
318
           [](const LoDTensorBlockingQueue &self) { return self.IsClosed(); });
S
sneaxiy 已提交
319

S
sneaxiy 已提交
320
  m.def("init_lod_tensor_blocking_queue",
S
sneaxiy 已提交
321
        [](Variable &var, size_t capacity,
S
sneaxiy 已提交
322 323 324 325 326 327 328 329 330 331 332
           const std::vector<std::vector<int64_t>> &shapes)
            -> LoDTensorBlockingQueue * {
              std::vector<DDim> dims(shapes.size());
              std::transform(shapes.begin(), shapes.end(), dims.begin(),
                             [](const std::vector<int64_t> &shape) {
                               return make_ddim(shape);
                             });
              auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
              holder->InitOnce(capacity, dims);
              return holder->GetQueue().get();
            },
S
sneaxiy 已提交
333 334
        py::return_value_policy::reference);

335
  py::class_<Scope>(m, "Scope", "")
D
dongzhihong 已提交
336
      .def("var",
337
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
338
             return self.Var(name);
Y
Yu Yang 已提交
339
           },
340
           py::return_value_policy::reference)
341
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
342
      .def(py::init<>())
343
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
344
           py::return_value_policy::reference)
Y
Yu Yang 已提交
345
      .def("drop_kids", &Scope::DropKids);
346

Y
Yu Yang 已提交
347 348
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
349 350
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
351 352 353 354 355 356 357 358 359 360
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
361 362
    return ret_values;
  });
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
379
  m.def("prune", [](const ProgramDesc &origin,
380
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
381
    ProgramDesc prog_with_targets(origin);
382
    for (const auto &t : targets) {
383
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
384
    }
385
    proto::ProgramDesc pruned_desc;
386
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
387
    return new ProgramDesc(pruned_desc);
388
  });
Y
Yu Yang 已提交
389
  m.def("inference_optimize", [](ProgramDesc &origin) {
390
    proto::ProgramDesc pruned_desc;
391
    InferenceOptimize(*(origin.Proto()), &pruned_desc);
Y
Yu Yang 已提交
392
    return new ProgramDesc(pruned_desc);
393
  });
F
fengjiayi 已提交
394 395
  m.def("empty_var_name", []() { return framework::kEmptyVarName; });
  m.def("grad_var_suffix", []() { return framework::kGradVarSuffix; });
396 397 398
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
399 400
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
401
  // clang-format off
Y
Yu Yang 已提交
402
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
403 404
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
405
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
406 407 408
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
409
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
410
                      -> paddle::platform::DeviceContext* {
411
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
412
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
413
#else
Q
qijun 已提交
414
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
415
#endif
C
chengduoZH 已提交
416 417 418 419 420 421 422 423 424 425 426
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
427 428 429 430
// clang-format on
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
431
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
432
      .def(py::init<int>())
D
dzhwinter 已提交
433
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
434

435 436 437
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
438

C
chengduoZH 已提交
439 440 441 442
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
443 444 445 446 447 448 449
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
450
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
451
             self = gpu_place;
C
chengduoZH 已提交
452 453
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
454 455
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
456
      });
Y
Yu Yang 已提交
457

Y
Yu Yang 已提交
458 459 460
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
461
                    proto::OpDesc desc;
Y
Yu Yang 已提交
462 463 464 465 466
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
467
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
468
                  })
469
      .def("run",
470
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
471 472 473
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
474
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
475 476 477 478 479
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
480 481 482 483 484 485 486
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
487 488
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
489
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
490
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
491 492 493 494
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
495

F
fengjiayi 已提交
496
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
497
      .def(py::init<const platform::Place &>())
W
Wu Yi 已提交
498 499 500
#ifdef PADDLE_WITH_DISTRIBUTE
      .def("complete", &Executor::Complete)
#endif
S
sneaxiy 已提交
501 502 503 504 505
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
                     int block_id, bool create_local_scope, bool create_vars) {
        pybind11::gil_scoped_release release;
        self.Run(prog, scope, block_id, create_local_scope, create_vars);
      });
S
sneaxiy 已提交
506

D
dzhwinter 已提交
507
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
508
  m.def("init_glog", framework::InitGLOG);
X
Xin Pan 已提交
509 510
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
511

512
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
513 514 515 516 517 518
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
519

520
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
521
  m.def("get_fetch_variable", framework::GetFetchVariable);
Q
qijun 已提交
522

523 524 525 526 527
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
528

Y
Yu Yang 已提交
529 530 531 532 533 534 535 536 537
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
      .def("append", [](LoDTensorArray &self, const LoDTensor &t) {
        self.emplace_back();
        self.back().ShareDataWith(t);
        self.back().set_lod(t.lod());
      });

D
dzhwinter 已提交
555 556 557
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
558
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
559
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
560
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
561 562 563 564

  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
565
#endif
Y
Yu Yang 已提交
566

567 568 569 570
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
571
      .value("kAll", platform::ProfilerState::kAll)
572 573 574 575 576 577 578 579 580 581 582 583 584
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
585
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
586
  m.def("reset_profiler", platform::ResetProfiler);
Y
Yu Yang 已提交
587

Y
yuyang18 已提交
588
  // -- python binds for parallel executor.
Y
yuyang18 已提交
589 590 591 592 593 594 595 596 597 598
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
  py::class_<ExecutionStrategy>(pe, "ExecutionStrategy")
      .def(py::init())
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
          })
      .def_property(
599 600 601 602
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
Y
yuyang18 已提交
603 604 605 606 607 608
          })
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
Y
yuyang18 已提交
609 610 611 612 613 614 615 616
          })
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
Y
yuyang18 已提交
617
          });
Y
yuyang18 已提交
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy");

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
            self.reduce_ = strategy;
          })
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
            self.gradient_scale_ = strategy;
Y
yuyang18 已提交
643 644 645 646 647 648
          })
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
            self.debug_graphviz_path_ = path;
Y
yuyang18 已提交
649
          });
Y
yuyang18 已提交
650 651 652 653

  pe.def(py::init<const std::vector<platform::Place> &,
                  const std::unordered_set<std::string> &,
                  const std::unordered_set<std::string> &, const ProgramDesc &,
Y
yuyang18 已提交
654
                  const std::string &, Scope *, std::vector<Scope *> &,
655 656
                  const ExecutionStrategy &, const BuildStrategy &, size_t,
                  size_t>())
T
typhoonzero 已提交
657
      .def("bcast_params", &ParallelExecutor::BCastParamsToGPUs)
Y
Yu Yang 已提交
658 659 660 661
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
662 663 664 665 666
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
667 668 669 670
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
671 672 673 674 675 676
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
677

678
  BindRecordIOWriter(&m);
679
  return m.ptr();
L
Luo Tao 已提交
680
}
681
}  // namespace pybind
682
}  // namespace paddle