op_teller.cc 104.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/tensorrt/op_teller.h"
16

17
#include <bitset>
18

19
#include "paddle/fluid/framework/block_desc.h"
20
#include "paddle/fluid/framework/data_layout.h"
W
weishengying 已提交
21 22 23 24
#include "paddle/fluid/framework/phi_utils.h"
#include "paddle/fluid/inference/tensorrt/dynamic_shape_infermeta_factory.h"
#include "paddle/phi/core/compat/op_utils.h"
#include "paddle/phi/core/kernel_factory.h"
25

W
wanghuancoder 已提交
26 27 28 29 30 31
namespace paddle {
namespace framework {
class OpDesc;
}  // namespace framework
}  // namespace paddle

32 33 34 35 36 37
namespace paddle {
namespace inference {
namespace tensorrt {

// Just tell by the op_types.
struct SimpleOpTypeSetTeller : public Teller {
38
  SimpleOpTypeSetTeller() {
39
#if IS_TRT_VERSION_GE(7130)
Z
Zhang Jun 已提交
40
    // use TensorRT plugin
41
    teller_set.insert("group_norm");
Z
Zhang Jun 已提交
42 43
    teller_set.insert("multiclass_nms3");
    teller_set.insert("multiclass_nms");
44 45
    int8_teller_set.insert("multiclass_nms3");
    int8_teller_set.insert("multiclass_nms");
46
#endif
W
wenbin 已提交
47 48
#if IS_TRT_VERSION_GE(7000)
    teller_set.insert("tile");
49
    teller_set.insert("flatten_contiguous_range");
50
    int8_teller_set.insert("flatten_contiguous_range");
Z
zhoutianzi666 已提交
51 52 53 54
    teller_set.insert("rnn");
    int8_teller_set.insert("rnn");
    teller_set.insert("fill_constant_batch_size_like");
    int8_teller_set.insert("fill_constant_batch_size_like");
W
wenbin 已提交
55
#endif
W
wenbin 已提交
56
#if CUDA_VERSION >= 10020
W
Wangzheee 已提交
57 58
    teller_set.insert("reshape");
    teller_set.insert("reshape2");
59 60
    int8_teller_set.insert("reshape");
    int8_teller_set.insert("reshape2");
61 62 63 64 65 66
#endif
#if IS_TRT_VERSION_GE(8000)
    teller_set.insert("sparse_fc");
    int8_teller_set.insert("sparse_fc");
    teller_set.insert("sparse_multihead_matmul");
    int8_teller_set.insert("sparse_multihead_matmul");
67
#endif
68 69 70 71 72
#if IS_TRT_VERSION_GE(8522)
    teller_set.insert("flash_multihead_matmul");
    int8_teller_set.insert("flash_multihead_matmul");
    teller_set.insert("cross_multihead_matmul");
    int8_teller_set.insert("cross_multihead_matmul");
73 74
    teller_set.insert("qk_multihead_matmul");
    int8_teller_set.insert("qk_multihead_matmul");
75
#endif
76 77 78
#if IS_TRT_VERSION_GE(8200)
    teller_set.insert("round");
    int8_teller_set.insert("round");
X
xjmxyt 已提交
79
    teller_set.insert("set_value");
X
xjmxyt 已提交
80 81
    teller_set.insert("index_select");
    int8_teller_set.insert("index_select");
82 83
#endif
  }
84

W
weishengying 已提交
85 86 87 88 89 90 91 92 93 94
  bool operator()(const framework::OpDesc& desc,
                  bool use_no_calib_int8 = false,
                  bool with_dynamic_shape = false) override {
    const std::string op_type = desc.Type();
    // do not support the op which is labeled the `skip_quant`
    if ((desc.HasAttr("namescope") &&
         PADDLE_GET_CONST(std::string, desc.GetAttr("op_namescope")) ==
             "/skip_quant_2/") ||
        desc.HasAttr("skip_quant"))
      return false;
95
    std::unordered_set<std::string> act_op_list = {
96 97 98 99 100 101 102 103 104 105 106 107
        "relu",       "relu6",       "sigmoid",
        "elu",        "selu",        "softsign",
        "softplus",   "stanh",       "thresholded_relu",
        "exp",        "log",         "sqrt",
        "abs",        "sin",         "cos",
        "tan",        "tanh",        "sinh",
        "cosh",       "asin",        "acos",
        "atan",       "asinh",       "acosh",
        "atanh",      "ceil",        "celu",
        "erf",        "floor",       "round",
        "sign",       "silu",        "logical_not",
        "reciprocal", "tanh_shrink", "logsigmoid"};
108
    if (act_op_list.find(op_type) != act_op_list.end()) {
J
JingZhuangzhuang 已提交
109
      auto* block = desc.Block();
110 111 112 113 114 115
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
J
JingZhuangzhuang 已提交
116 117 118
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
119
      if (!with_dynamic_shape && (x_shape.size() == 1 || x_shape.size() == 0)) {
J
JingZhuangzhuang 已提交
120
        VLOG(3) << op_type
121 122
                << " op does not support input's dim is 1 or 0 in tensorrt "
                   "static shape mode.";
J
JingZhuangzhuang 已提交
123 124
        return false;
      }
125 126 127 128 129 130
#if !IS_TRT_VERSION_GE(7000)
      if (op_type == "erf") {
        VLOG(3) << op_type << " op does not support tensorrt.";
        return false;
      }
#endif
J
JingZhuangzhuang 已提交
131 132
    }

133 134
    // In static shape in Paddle-TRT, we can't allow that one op has a
    // 1D intermediate tensor as input.
135 136
    if (!with_dynamic_shape) {
      auto inputs = desc.Inputs();
137 138 139 140 141 142 143 144 145 146 147
      for (auto iter : inputs) {
        for (auto var_name : iter.second) {
          auto* block = desc.Block();
          if (block) {
            auto* var_desc = block->FindVar(var_name);
            // Can't get feed op's TensorDesc
            if (op_type != "feed" && var_desc && !var_desc->Persistable()) {
              const auto shape = var_desc->GetShape();
              if (shape.size() == 1) return false;
            }
          }
148 149 150 151
        }
      }
    }

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
    if (op_type == "dropout") {
      /*
       * Some OpDescs Attribute support both constant value and dynamic
       * runtime value (which is a Variable(s) type). But TensorRT maybe
       * only support constant value Attribute, so we shall distinguish
       * this case in time and return False in OpTeller.Tell().
       * If Attribute is Variable(s), HasAttr() will return False
       */
      if (!desc.HasAttr("dropout_prob", /*with_attr_var=*/false)) {
        VLOG(3)
            << "Skip to convert into TRT while found Attribute('dropout_prob') "
               "is Variable type in dropout.";
        return false;
      }
    }

168
    if (op_type == "pool2d") {
169 170 171 172 173 174 175
      // If Attribute is Variable(s), HasAttr() will return False
      if (!desc.HasAttr("ksize", /*with_attr_var=*/false)) {
        VLOG(3) << "Skip to convert into TRT while found Attribute('ksize') is "
                   "Variable type in pool2d.";
        return false;
      }

176
      std::vector<int> paddings =
R
Ruibiao Chen 已提交
177
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("paddings"));
178 179
      if (paddings.size() > 2) {
        return false;
180
      }
181 182 183 184 185 186 187 188 189 190
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "TRT Pool2d expect 1 input, but got "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "TRT Pool2d has only 1 output, but got "
                << desc.Output("Out").size();
        return false;
      }
W
wenbin 已提交
191 192
      if (desc.HasAttr("data_format")) {
        std::string data_format =
R
Ruibiao Chen 已提交
193
            PADDLE_GET_CONST(std::string, desc.GetAttr("data_format"));
W
wenbin 已提交
194 195 196 197
        if (data_format == "NHWC" || data_format == "NDHWC") {
          return false;
        }
      }
198 199 200 201
      if (!desc.HasAttr("pooling_type")) {
        return false;
      } else {
        std::string pool_type =
R
Ruibiao Chen 已提交
202
            PADDLE_GET_CONST(std::string, desc.GetAttr("pooling_type"));
203 204 205 206 207
        if (pool_type != "max" && pool_type != "avg") {
          VLOG(3) << "Wrong pool op type, the trt do not support the "
                  << pool_type << " pool type.";
          return false;
        }
208 209
        if (pool_type == "avg") {
          if (desc.HasAttr("global_pooling")) {
R
Ruibiao Chen 已提交
210
            if (!PADDLE_GET_CONST(bool, desc.GetAttr("global_pooling"))) {
211
              if (desc.HasAttr("exclusive")) {
R
Ruibiao Chen 已提交
212
                if (PADDLE_GET_CONST(bool, desc.GetAttr("exclusive"))) {
213
                  std::vector<int> ksize =
R
Ruibiao Chen 已提交
214
                      PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("ksize"));
215 216 217 218 219 220 221 222 223 224 225 226 227
                  for (size_t i = 0; i < ksize.size(); i++) {
                    if (ksize[i] <= paddings[i]) {
                      VLOG(3) << "the padding size should be less than the "
                                 "filter size "
                                 "for exclusive-counting pooling.";
                      return false;
                    }
                  }
                }
              }
            }
          }
        }
228 229 230 231
      }
    }

    if (op_type == "conv2d" || op_type == "conv2d_transpose" ||
232 233
        op_type == "conv2d_fusion" || op_type == "depthwise_conv2d" ||
        op_type == "depthwise_conv2d_transpose") {
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
      if (desc.Input("Input").size() != 1) {
        VLOG(3) << "TRT Conv2d expect 1 input, but got "
                << desc.Input("Input").size() << " input.";
        return false;
      }

      if (desc.Input("Filter").size() != 1) {
        VLOG(3) << "TRT Conv2d expect 1 filter, but got "
                << desc.Input("Filter").size() << " filter.";
        return false;
      }

      if (desc.HasAttr("enable_int8")) {
        if (op_type == "conv2d" || op_type == "conv2d_fusion") {
          if (!desc.HasAttr("Input_scale")) {
            VLOG(3) << "Input scale not found. TRT int8"
                       " requires conv/deconv to have "
                       "input quantization scales.";
            return false;
          }
        }
      }

257 258
      if (op_type == "conv2d_transpose" ||
          op_type == "depthwise_conv2d_transpose") {
259 260 261 262
        if (!desc.HasAttr("dilations")) {
          return false;
        } else {
          const std::vector<int> dilations =
R
Ruibiao Chen 已提交
263
              PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("dilations"));
264 265 266 267 268 269 270 271 272 273 274 275 276 277
          if (dilations[0] != 1 || dilations[1] != 1) {
            VLOG(3) << "In conv2d_transpose, Dilations must be (1, 1) for "
                       "tensorRT, but given ("
                    << dilations[0] << ", " << dilations[1] << ")";
            return false;
          }
        }
      }

      if (desc.Output("Output").size() != 1) {
        VLOG(3) << "TRT Conv2d expect 1 output, but got "
                << desc.Output("Output").size() << " output.";
        return false;
      }
278

W
wenbin 已提交
279
// strides > 1 and 'SAME' is only supported by trt7.0 above
280
#if !IS_TRT_VERSION_GE(7000)
W
wenbin 已提交
281 282 283 284
      if (op_type == "conv2d" || op_type == "conv2d_fusion" ||
          op_type == "depthwise_conv2d") {
        if (desc.HasAttr("padding_algorithm") && with_dynamic_shape) {
          auto padding_algorithm =
R
Ruibiao Chen 已提交
285
              PADDLE_GET_CONST(std::string, desc.GetAttr("padding_algorithm"));
W
wenbin 已提交
286 287
          if (padding_algorithm == "SAME" && desc.HasAttr("strides")) {
            const std::vector<int> strides =
R
Ruibiao Chen 已提交
288
                PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("strides"));
W
wenbin 已提交
289 290 291 292 293 294
            // there is no issue if strides.size() less than 2
            if (strides.size() > 1) {
              for (size_t i = 0; i < strides.size(); i++) {
                if (strides[i] > 1) return false;
              }
            }
295 296 297 298
          }
        }
      }
#endif
299 300 301 302 303 304 305 306 307
      auto* block = desc.Block();
      if (block) {
        auto* filter_var_desc = block->FindVar(desc.Input("Filter")[0]);
        if (!filter_var_desc->Persistable()) {
          VLOG(3) << "Trt not support filter is  a intermediate tensor in "
                     "conv2d op.";
          return false;
        }
      }
308 309
    }

W
wangxinxin08 已提交
310
    if (op_type == "deformable_conv") {
311 312 313
      if (!desc.HasAttr("groups") || !desc.HasAttr("strides") ||
          !desc.HasAttr("paddings"))
        return false;
W
wangxinxin08 已提交
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
      auto* block = desc.Block();
      auto input_name = desc.Input("Input")[0];
      auto* input_desc = block->FindVar(input_name);
      const auto input_shape = input_desc->GetShape();

      if (input_shape.size() != 4) {
        VLOG(3) << "Input of deformable conv should be 4-D Tensor, but got "
                << input_shape.size();
        return false;
      }

      auto filter_name = desc.Input("Filter")[0];
      auto* filter_desc = block->FindVar(filter_name);
      const auto filter_shape = filter_desc->GetShape();

R
Ruibiao Chen 已提交
329
      int groups = PADDLE_GET_CONST(int, desc.GetAttr("groups"));
W
wangxinxin08 已提交
330 331 332 333 334 335 336 337
      if (input_shape[1] != filter_shape[1] * groups) {
        VLOG(3) << "The number of input channels should be equal to filter "
                << "channels * groups. But got input channels "
                << input_shape[1] << "filter channels " << filter_shape[1];
        return false;
      }

      const std::vector<int> strides =
R
Ruibiao Chen 已提交
338
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("strides"));
W
wangxinxin08 已提交
339 340 341 342 343 344 345
      if (strides.size() != 2) {
        VLOG(3) << "The size of strides should be 2, but got "
                << strides.size();
        return false;
      }

      const std::vector<int> paddings =
R
Ruibiao Chen 已提交
346
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("paddings"));
W
wangxinxin08 已提交
347 348 349 350 351 352 353
      if (paddings.size() != 2) {
        VLOG(3) << "The size of paddings shoule be 2, but got "
                << paddings.size();
        return false;
      }
    }

354 355 356 357 358 359
    if (op_type == "bmm") {
      if (!with_dynamic_shape) {
        return false;
      }
    }

360 361 362 363
    if (op_type == "range") {
      if (!with_dynamic_shape) {
        return false;
      }
364 365 366 367 368 369 370 371 372
#if IS_TRT_VERSION_LT(8400)
      auto* block = desc.Block();
      auto start_var_name = desc.Input("Start")[0];
      auto* start_var_desc = block->FindVar(start_var_name);
      auto start_dtype = start_var_desc->GetDataType();
      if (start_dtype == framework::proto::VarType::FP32) {
        return false;
      }
#endif
373 374
    }

375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
    if (op_type == "sign") {
#if IS_TRT_VERSION_GE(8200)
      if (!with_dynamic_shape) {
        return false;
      }
#else
      VLOG(3) << "sign op is only supported by trt8.2 above ";
      return false;
#endif
    }

    if (op_type == "logical_not") {
#if IS_TRT_VERSION_GE(8400)
      if (!with_dynamic_shape) {
        return false;
      }
#else
      VLOG(3) << "logical_not op is only supported by trt8.4 above because of "
                 "cast op";
      return false;
#endif
    }
W
Wilber 已提交
397 398 399 400 401 402 403 404 405 406 407 408
    if (op_type == "softmax") {
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
    }
409
    if (op_type == "group_norm") {
410 411 412 413
      if (!desc.HasAttr("epsilon") || !desc.HasAttr("groups") ||
          !desc.HasAttr("data_layout"))
        return false;

414 415
      auto registry = GetPluginRegistry();
      if (registry == nullptr) return false;
416 417 418 419 420 421 422
      std::string layout_str =
          PADDLE_GET_CONST(std::string, desc.GetAttr("data_layout"));
      if (layout_str != "NCHW") {
        VLOG(3) << "Group norm trt plugin only support NCHW layout, but got "
                << layout_str;
        return false;
      }
423 424 425 426
    }
    if (op_type == "concat") {
      if (!desc.HasAttr("axis")) {
        return false;
W
Wilber 已提交
427
      }
R
Ruibiao Chen 已提交
428
      int axis = PADDLE_GET_CONST(int, desc.GetAttr("axis"));
429 430
      if (!with_dynamic_shape) {
        if (axis == 0) return false;
W
Wilber 已提交
431 432 433 434 435
      }
      auto concat_inputs = desc.Inputs();
      if (concat_inputs.find("AxisTensor") != concat_inputs.end()) {
        if (desc.Input("AxisTensor").size() >= 1) {
          return false;
436
        }
437 438
      }
    }
439 440 441
    if (op_type == "transpose2" || op_type == "transpose") {
      if (!desc.HasAttr("axis")) {
        return false;
442 443
      }
      std::vector<int> axis =
R
Ruibiao Chen 已提交
444
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("axis"));
445 446 447 448
      if (!with_dynamic_shape && axis[0] != 0) return false;
      if (axis.size() >= nvinfer1::Dims::MAX_DIMS) return false;

      auto* block = desc.Block();
449 450 451 452 453 454
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
455 456 457
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
W
wenbin 已提交
458
      if (axis.size() != x_shape.size()) return false;
459
      int dims = x_shape.size();
W
wenbin 已提交
460

461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
      std::vector<int> perm(nvinfer1::Dims::MAX_DIMS);
      for (int i = 0; i < dims; i++) {
        perm[i] = axis[i];
      }
      auto is_valid_permutation = [&](int dims,
                                      const std::vector<int>& permutation) {
        std::bitset<nvinfer1::Dims::MAX_DIMS> found;
        for (int i = 0; i < dims; ++i) {
          const int x = permutation[i];
          if ((x < 0) || (x >= dims) || found[x])
            return false;  // Out of bounds or duplicate
          found.set(x);
        }
        return true;
      };
      if (!is_valid_permutation(dims, perm)) {
        VLOG(3) << "Invalid permutation dimensions for trt transpose op "
                   "converter: duplicate or out of bound.";
W
wenbin 已提交
479
        return false;
480 481
      }
    }
482
    if (op_type == "flatten2" || op_type == "flatten") {
483 484 485
      if (!desc.HasAttr("axis")) {
        return false;
      } else {
486 487
#if IS_TRT_VERSION_GE(7130)
#else
488
        if (with_dynamic_shape) return false;
489
#endif
R
Ruibiao Chen 已提交
490
        int axis = PADDLE_GET_CONST(int, desc.GetAttr("axis"));
491 492 493
        if (axis != 1) return false;
      }
    }
494 495
    if (op_type == "flatten_contiguous_range") {
      if (!with_dynamic_shape) {
496 497 498
        if (!desc.HasAttr("start_axis") || !desc.HasAttr("stop_axis")) {
          return false;
        }
R
Ruibiao Chen 已提交
499 500
        int start_axis = PADDLE_GET_CONST(int, desc.GetAttr("start_axis"));
        int stop_axis = PADDLE_GET_CONST(int, desc.GetAttr("stop_axis"));
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
        auto x_var_name = desc.Input("X")[0];
        auto* block = desc.Block();
        if (block == nullptr) {
          VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                     "Developers need to check whether block_desc is passed in "
                     "the pass.";
          return false;
        }
        auto* x_var_desc = block->FindVar(x_var_name);
        const auto x_shape = x_var_desc->GetShape();
        int dims = x_shape.size();
        if (start_axis < 0) start_axis += dims;
        if (start_axis == 0) {
          VLOG(3) << "TRT flatten_contiguous_range not support the "
                     "batch-dimension being changed";
          return false;
        }
        if (stop_axis < 0) stop_axis += dims;
        for (int i = start_axis; i <= stop_axis; ++i) {
          if (x_shape[i] < 0) {
            VLOG(3) << "On TRT static shape,flatten_contiguous_range input dim "
                       "should be > 0";
            return false;
          }
        }
      }
    }
528

529
    if (op_type == "gather") {
530 531 532 533 534 535 536 537 538
      auto gather_inputs = desc.Inputs();
      if (gather_inputs.find("Axis") != gather_inputs.end()) {
        if (desc.Input("Axis").size() >= 1) {
          return false;
        }
      }
      if (!with_dynamic_shape) {
        return false;
      } else {
539
        auto* block = desc.Block();
540 541 542 543 544 545
        if (block == nullptr) {
          VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                     "Developers need to check whether block_desc is passed in "
                     "the pass.";
          return false;
        }
F
feng_shuai 已提交
546
#if !IS_TRT_VERSION_GE(7000)
547 548 549 550 551 552
        auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
        const auto x_shape = x_var_desc->GetShape();
        if (x_shape.size() == 1) {
          VLOG(3) << "Gather does not support 1-dimensional input in tensorrt";
          return false;
        }
F
feng_shuai 已提交
553
#endif
554
      }
555
    }
Z
zlsh80826 已提交
556

557
    if (op_type == "gather_nd") {
558 559
      if (!with_dynamic_shape) return false;

560
      auto* block = desc.Block();
561 562 563 564 565 566
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
567
#if IS_TRT_VERSION_LT(8200)
568 569
      auto index_var_name = desc.Input("Index")[0];
      auto* index_var_desc = block->FindVar(index_var_name);
570 571
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
572 573
      const auto index_shape = index_var_desc->GetShape();
      const auto x_shape = x_var_desc->GetShape();
574 575 576 577 578 579
      if (x_shape.size() <= 2) {
        VLOG(3) << "gather_nd op requires the input's dimension to be greater "
                   "than 2";
        return false;
      }

580 581 582 583 584
      if (x_shape.size() != index_shape.size()) {
        VLOG(3) << "gather_nd op Index input dims size [" << index_shape.size()
                << " ] not equal to x dims size [" << x_shape.size() << "]";
        return false;
      }
585
#endif
586
    }
X
xjmxyt 已提交
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
    if (op_type == "index_select") {
#if !IS_TRT_VERSION_GE(8200)
      return false;
#endif
      auto gather_inputs = desc.Inputs();
      if (!with_dynamic_shape) {
        return false;
      } else {
        auto* block = desc.Block();
        if (block == nullptr) {
          VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                     "Developers need to check whether block_desc is passed in "
                     "the pass.";
          return false;
        }

        auto index_var_name = desc.Input("Index")[0];
        auto* index_var_desc = block->FindVar(index_var_name);
605

X
xjmxyt 已提交
606 607 608 609 610 611 612 613 614 615 616
        // The index input must be int32 or int64 datatype.
        if (index_var_desc->GetDataType() !=
                paddle::framework::proto::VarType_Type::VarType_Type_INT32 &&
            index_var_desc->GetDataType() !=
                paddle::framework::proto::VarType_Type::VarType_Type_INT64) {
          VLOG(3)
              << "Index select op Index input data type must be int32 or int64";
          return false;
        }
      }
    }
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
    if (op_type == "take_along_axis") {
#if IS_TRT_VERSION_GE(8200)
      if (!with_dynamic_shape) return false;
      auto* block = desc.Block();
      auto input_var_name = desc.Input("Input")[0];
      auto index_var_name = desc.Input("Index")[0];
      auto* input_var_desc = block->FindVar(input_var_name);
      auto* index_var_desc = block->FindVar(index_var_name);

      // The index input must be int32 datatype.
      if (index_var_desc->GetDataType() !=
          paddle::framework::proto::VarType_Type::VarType_Type_INT32) {
        VLOG(3) << "take_along_axis op Index input data type must be int32";
        return false;
      }

      const auto input_shape = input_var_desc->GetShape();
      const auto index_shape = index_var_desc->GetShape();
      if (input_shape.size() != index_shape.size()) {
        VLOG(3) << "take_along_axis op Index input dims size ["
                << index_shape.size() << " ] not equal to input dims size ["
                << input_shape.size() << "]";
        return false;
      }
#else
      VLOG(3) << "take_along_axis op is only supported by trt8.2 above ";
      return false;
#endif
    }

647 648 649 650
    if (op_type == "anchor_generator") {
      if (!with_dynamic_shape) return false;
    }

Z
zlsh80826 已提交
651 652 653 654 655 656
    if (op_type == "yolo_box") {
      if (with_dynamic_shape) return false;
      bool has_attrs =
          (desc.HasAttr("class_num") && desc.HasAttr("anchors") &&
           desc.HasAttr("downsample_ratio") && desc.HasAttr("conf_thresh") &&
           desc.HasAttr("clip_bbox") && desc.HasAttr("scale_x_y"));
Z
zlsh80826 已提交
657
      if (!has_attrs) return false;
Z
zlsh80826 已提交
658 659
    }

660 661 662 663 664 665
    if (op_type == "yolo_box_head") {
      if (with_dynamic_shape) return false;
      bool has_attrs = desc.HasAttr("class_num") && desc.HasAttr("anchors");
      if (!has_attrs) return false;
    }

666
    if (op_type == "arg_max" || op_type == "arg_min") {
667 668 669 670 671 672
      if (!desc.HasAttr("axis", /*with_attr_var=*/false)) {
        VLOG(3) << "Skip to convert into TRT while found Attribute('axis') is "
                   "Variable type in arg_max.";
        return false;
      }

673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      auto x_dtype = x_var_desc->GetDataType();

      if (!(x_dtype == framework::proto::VarType::FP32 ||
            x_dtype == framework::proto::VarType::FP16)) {
        return false;
      }

689
      int axis = desc.HasAttr("axis")
R
Ruibiao Chen 已提交
690
                     ? PADDLE_GET_CONST(int64_t, desc.GetAttr("axis"))
691
                     : -1;
X
xiaoxiaohehe001 已提交
692 693 694 695 696 697
      bool flatten = desc.HasAttr("flatten")
                         ? PADDLE_GET_CONST(bool, desc.GetAttr("flatten"))
                         : false;
      int dtype = desc.HasAttr("dtype")
                      ? PADDLE_GET_CONST(int, desc.GetAttr("dtype"))
                      : 3;
698
      if (axis == 0 || flatten || (dtype != 2 && dtype != 3)) return false;
699 700
    }

701 702
    if (op_type == "affine_channel") {
      if (!desc.HasAttr("data_layout")) return false;
703
      auto data_layout = phi::StringToDataLayout(
R
Ruibiao Chen 已提交
704
          PADDLE_GET_CONST(std::string, desc.GetAttr("data_layout")));
705
      if (data_layout != phi::DataLayout::kNCHW) return false;
706 707

      auto* block = desc.Block();
708 709 710 711 712 713
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
714 715 716 717 718 719
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 2) {
        return false;
      }
720 721
    }

722
    if (op_type == "multiclass_nms" || op_type == "multiclass_nms3") {
Z
zlsh80826 已提交
723
      auto* block = desc.Block();
724 725 726 727 728 729
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
730 731 732 733 734 735 736 737
      auto multiclass_nms_inputs = desc.Inputs();
      if (multiclass_nms_inputs.find("RoisNum") !=
          multiclass_nms_inputs.end()) {
        if (desc.Input("RoisNum").size() >= 1) {
          return false;
        }
      }
      for (auto& param_name : multiclass_nms_inputs) {
Z
zlsh80826 已提交
738 739 740 741
        for (auto& var_name : param_name.second) {
          auto* var_desc = block->FindVar(var_name);
          const auto shape = var_desc->GetShape();
          if (shape.size() != 3) {
742
            VLOG(3) << "multiclass_nms op dims != 3 not supported in tensorrt, "
Z
zlsh80826 已提交
743 744 745 746 747 748 749 750 751 752 753 754
                       "but got dims "
                    << shape.size() << ", so jump it.";
            return false;
          }
        }
      }
      bool has_attrs =
          (desc.HasAttr("background_label") &&
           desc.HasAttr("score_threshold") && desc.HasAttr("nms_top_k") &&
           desc.HasAttr("keep_top_k") && desc.HasAttr("normalized"));
      if (has_attrs == false) return false;

755 756 757
      // TODO(wangxinxin08): tricky solution because the outputs of batchedNMS
      // plugin are not constient with those of multiclass_nms3
      if (desc.HasAttr("nms_eta") == false) return false;
R
Ruibiao Chen 已提交
758
      auto nms_eta = PADDLE_GET_CONST(float, desc.GetAttr("nms_eta"));
759 760
      if (nms_eta <= 1.0) return false;

R
Ruibiao Chen 已提交
761
      auto nms_top_k = PADDLE_GET_CONST(int, desc.GetAttr("nms_top_k"));
Z
zlsh80826 已提交
762 763
      if (nms_top_k < 0) return false;

R
Ruibiao Chen 已提交
764
      auto keep_top_k = PADDLE_GET_CONST(int, desc.GetAttr("keep_top_k"));
Z
zlsh80826 已提交
765 766 767 768 769 770
      if (keep_top_k < 0) return false;

      auto registry = GetPluginRegistry();
      if (registry == nullptr) return false;
    }

771
    if (op_type == "nearest_interp") {
C
ccrrong 已提交
772 773
      std::vector<std::string> attrs{
          "interp_method", "align_corners", "scale", "out_h", "out_w"};
774
      for (auto const& attr : attrs) {
775 776
        if (!desc.HasAttr(attr)) return false;
      }
777
      if (desc.HasAttr("data_layout")) {
778
        auto data_layout = phi::StringToDataLayout(
R
Ruibiao Chen 已提交
779
            PADDLE_GET_CONST(std::string, desc.GetAttr("data_layout")));
780 781
        if (data_layout != phi::DataLayout::kNCHW &&
            data_layout != phi::DataLayout::kNHWC)
782 783
          return false;
      }
784
      auto interp_method =
R
Ruibiao Chen 已提交
785
          PADDLE_GET_CONST(std::string, desc.GetAttr("interp_method"));
786
      if (interp_method != "nearest") return false;
R
Ruibiao Chen 已提交
787 788 789 790 791
      auto scale = PADDLE_GET_CONST(float, desc.GetAttr("scale"));
      auto out_h = PADDLE_GET_CONST(int, desc.GetAttr("out_h"));
      auto out_w = PADDLE_GET_CONST(int, desc.GetAttr("out_w"));
      auto align_corners =
          PADDLE_GET_CONST(bool, desc.GetAttr("align_corners"));
792 793 794 795
      if (!(scale > 0.f && (out_h <= 0 && out_w <= 0))) {
        if (out_h <= 0) {
          VLOG(3) << "out_h must be greater than 0 if scale is not set.";
          return false;
796
        }
797 798
        if (out_w <= 0) {
          VLOG(3) << "out_w must be greater than 0 if scale is not set.";
已提交
799 800
          return false;
        }
801
      }
802 803 804 805 806 807 808 809 810
      if ((scale <= 0.f) && with_dynamic_shape) {
        VLOG(3) << "dynamic shape not support scale not set.";
        return false;
      }
      // When align_corners = true, the paddle's and trt_layer's results has
      // diff
      if (align_corners && scale != 1) {
        return false;
      }
811
    }
812

813
    if (op_type == "nearest_interp_v2") {
C
ccrrong 已提交
814 815 816 817 818 819
      std::vector<std::string> attrs{"data_layout",
                                     "interp_method",
                                     "align_corners",
                                     "scale",
                                     "out_h",
                                     "out_w"};
820
      for (auto const& attr : attrs) {
821 822
        if (!desc.HasAttr(attr)) return false;
      }
823
      auto data_layout = phi::StringToDataLayout(
R
Ruibiao Chen 已提交
824
          PADDLE_GET_CONST(std::string, desc.GetAttr("data_layout")));
825 826
      if (data_layout != phi::DataLayout::kNCHW &&
          data_layout != phi::DataLayout::kNHWC)
827 828
        return false;
      auto interp_method =
R
Ruibiao Chen 已提交
829
          PADDLE_GET_CONST(std::string, desc.GetAttr("interp_method"));
830
      if (interp_method != "nearest") return false;
831

832
#if IS_TRT_VERSION_GE(8200)
833 834 835 836 837 838
      auto resize_inputs = desc.Inputs();
      if (with_dynamic_shape &&
          resize_inputs.find("SizeTensor") != resize_inputs.end() &&
          desc.Input("SizeTensor").size() == 2) {
        return true;
      }
839
#endif
840

R
Ruibiao Chen 已提交
841 842 843
      auto scale = PADDLE_GET_CONST(std::vector<float>, desc.GetAttr("scale"));
      auto out_h = PADDLE_GET_CONST(int, desc.GetAttr("out_h"));
      auto out_w = PADDLE_GET_CONST(int, desc.GetAttr("out_w"));
844
      if (!(out_h > 0 && out_w > 0)) {
W
wenbin 已提交
845
        if (scale.size() < 2) return false;
846 847 848 849 850 851 852 853
        if (scale[0] <= 0.f || scale[1] <= 0.f) {
          VLOG(3) << "scale factor must be greater than 0 if out_h or out_w is "
                     "not set.";
          return false;
        }
      }
    }

854
    if (op_type == "bilinear_interp_v2") {
855 856 857 858
      // trt 7011 result in test_solov2_trt_fp32.py TRT fp32 diff
#if IS_TRT_VERSION_LT(7100)
      return false;
#endif
C
ccrrong 已提交
859 860 861 862 863 864
      std::vector<std::string> attrs{"data_layout",
                                     "interp_method",
                                     "align_corners",
                                     "scale",
                                     "out_h",
                                     "out_w"};
865
      for (auto const& attr : attrs) {
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
        if (!desc.HasAttr(attr)) {
          VLOG(3) << "The op_type " << op_type << " doesn't have the attr "
                  << attr << " and return false";
          return false;
        }
      }

      auto resize_inputs = desc.Inputs();
      if (resize_inputs.find("SizeTensor") != resize_inputs.end()) {
        if (desc.Input("SizeTensor").size() >= 1) {
          VLOG(3)
              << "The Paddle-TRT doesn't support the SizeTensor for op_type "
              << op_type;
          return false;
        }
      }

      if (resize_inputs.find("OutSize") != resize_inputs.end()) {
884 885
        if (!with_dynamic_shape) {
          VLOG(3) << "Static shape don't support the OutSize for op_type "
886 887 888 889 890
                  << op_type;
          return false;
        }
      }

891
      auto data_layout = phi::StringToDataLayout(
R
Ruibiao Chen 已提交
892
          PADDLE_GET_CONST(std::string, desc.GetAttr("data_layout")));
893 894
      if (data_layout != phi::DataLayout::kNCHW &&
          data_layout != phi::DataLayout::kNHWC) {
895 896 897 898 899
        VLOG(3) << "The op_type " << op_type
                << " is not NCHW or NHWC return false";
        return false;
      }
      auto interp_method =
R
Ruibiao Chen 已提交
900
          PADDLE_GET_CONST(std::string, desc.GetAttr("interp_method"));
901 902 903 904 905 906
      if (interp_method != "bilinear") {
        VLOG(3) << "The interp_method of op_type " << op_type
                << " is not bilinear";
        return false;
      }

R
Ruibiao Chen 已提交
907 908
      auto align_corners =
          PADDLE_GET_CONST(bool, desc.GetAttr("align_corners"));
909 910 911 912 913 914 915 916 917 918 919
      if (align_corners != false) {
        VLOG(3)
            << "The bilinear_interp_v2 only supports align_corners with false.";
        return false;
      }

      bool has_scale_input_size =
          (resize_inputs.find("Scale") != resize_inputs.end());

      if (has_scale_input_size && desc.Input("Scale").size() != 1) {
        const std::vector<float> scale =
R
Ruibiao Chen 已提交
920
            PADDLE_GET_CONST(std::vector<float>, desc.GetAttr("scale"));
921 922 923 924 925 926 927
        if (scale.size() <= 1) {
          if (!desc.HasAttr("out_h") || !desc.HasAttr("out_w")) {
            VLOG(3) << "The op_type " << op_type
                    << " doesn't have Scale and the scale size <=1 and without "
                       "out_h / out_w, it will return false";
            return false;
          }
R
Ruibiao Chen 已提交
928 929
          auto out_h = PADDLE_GET_CONST(int, desc.GetAttr("out_h"));
          auto out_w = PADDLE_GET_CONST(int, desc.GetAttr("out_w"));
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
          if (!(out_h <= 0 && out_w <= 0)) {
            if (out_h <= 0) {
              VLOG(3) << "The op_type " << op_type
                      << "'s out_h must be greater than 0 if scale is not set.";
              return false;
            }
            if (out_w <= 0) {
              VLOG(3) << "The op_type " << op_type
                      << "'s out_w must be greater than 0 if scale is not set.";
              return false;
            }
          }
        } else {
          for (size_t i = 0; i < scale.size(); i++) {
            if (scale[i] <= 0 && with_dynamic_shape) {
              VLOG(3) << "dynamic shape not support Attr(scale[" << i << "]) "
                      << scale[i]
                      << " less than 1 and Input(Scale) vector not set.";
              return false;
            }
          }
        }
      }
    }

955 956 957 958 959 960 961 962 963 964 965 966 967 968
    if (op_type == "hard_swish") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "HardSwish op has only 1 input, but got "
                << desc.Input("X").size();
        return false;
      }

      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "HardSwish op has only 1 output, but got "
                << desc.Output("Out").size();
        return false;
      }
    }

969
    if (op_type == "squeeze2") {
970 971 972 973 974 975 976
      // If Attribute is Variable(s), HasAttr() will return False
      if (!desc.HasAttr("axes", /*with_attr_var=*/false)) {
        VLOG(3) << "Skip to convert into TRT while found Attribute('axes') is "
                   "Variable type in squeeze2.";
        return false;
      }

977 978
      std::vector<int> axes;
      if (desc.HasAttr("axes")) {
R
Ruibiao Chen 已提交
979
        axes = PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("axes"));
980 981
      }
      if (axes.size() == 0) {
W
wenbin 已提交
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
        auto* block = desc.Block();
        if (block) {
          auto input_var_name = desc.Input("X")[0];
          auto* input_var_desc = block->FindVar(input_var_name);
          const auto input_shape = input_var_desc->GetShape();
          for (int s : input_shape) {
            if (s == -1) {
              VLOG(3) << "The necessary attributes of the squeeze2 operator "
                         "axes is "
                         "missing. ss ==== -1";
              return false;
            } else if (s == 1) {
              axes.push_back(s);
            }
          }
        }
        if (axes.size() == 0) {
          VLOG(3)
              << "The necessary attributes of the squeeze2 operator axes is "
                 "missing.";
          return false;
        }
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
      }
      if (!with_dynamic_shape) {
        if (std::find(axes.begin(), axes.end(), 0) != axes.end()) {
          VLOG(3) << "Invalid squeeze axes. Axes having batch axis is not "
                     "supported in static shape";
          return false;
        }
      }
    }

    if (op_type == "unsqueeze2") {
      std::vector<int> axes;
      if (desc.HasAttr("axes")) {
R
Ruibiao Chen 已提交
1017
        axes = PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("axes"));
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
      }
      if (axes.size() == 0) {
        VLOG(3) << "The necessary attributes of the squeeze2 operator axes is "
                   "missing.";
        return false;
      }
      if (!with_dynamic_shape) {
        if (std::find(axes.begin(), axes.end(), 0) != axes.end()) {
          VLOG(3) << "Invalid squeeze axes. Axes having batch axis is not "
                     "supported in static shape";
          return false;
        }
      }
    }

1033
    if (op_type == "batch_norm") {
C
ccrrong 已提交
1034 1035
      const std::vector<std::string> bn_inputs = {
          "X", "Bias", "Mean", "Scale", "Variance"};
1036 1037 1038 1039 1040 1041 1042 1043 1044
      for (unsigned int i = 0; i < bn_inputs.size(); i++) {
        if (desc.Input(bn_inputs[i]).size() != 1) {
          VLOG(3) << "Invalid " << bn_inputs[i]
                  << "'s size of batch_norm TRT "
                     "converter. Expected 1, received "
                  << desc.Input(bn_inputs[i]).size() << ".";
          return false;
        }
      }
1045 1046 1047 1048 1049 1050
      auto batch_norm_inputs = desc.Inputs();
      if (batch_norm_inputs.find("MomentumTensor") != batch_norm_inputs.end()) {
        if (desc.Input("MomentumTensor").size() >= 1) {
          return false;
        }
      }
1051 1052 1053 1054 1055 1056
      if (desc.Output("Y").size() != 1) {
        VLOG(3) << "Invalid output Y's size of batch_norm TRT "
                   "converter. Expected 1, received "
                << desc.Output("Y").size() << ".";
        return false;
      }
W
Wilber 已提交
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
1067 1068 1069 1070 1071 1072 1073 1074 1075
    }

    if (op_type == "split") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "Invalid input X's size of split TRT converter. "
                   "Expected 1, received "
                << desc.Input("X").size() << ".";
        return false;
      }
1076 1077 1078 1079 1080 1081 1082 1083
      auto split_inputs = desc.Inputs();
      if (split_inputs.find("AxisTensor") != split_inputs.end()) {
        if (desc.Input("AxisTensor").size() >= 1) {
          return false;
        }
      }
      if (split_inputs.find("SectionsTensorList") != split_inputs.end()) {
        if (desc.Input("SectionsTensorList").size() >= 1) {
1084 1085 1086
          if (!with_dynamic_shape) {
            return false;
          }
1087 1088
        }
      }
1089 1090
      if (!desc.HasAttr("axis")) {
        return false;
1091
      }
R
Ruibiao Chen 已提交
1092
      int axis = PADDLE_GET_CONST(int, desc.GetAttr("axis"));
1093

1094
      if (!with_dynamic_shape && axis == 0) {
1095
        VLOG(3) << "Invalid split axis. Split on batch is not supported in "
1096
                   "TensorRT with static shape";
1097 1098 1099
        return false;
      }
      auto* block = desc.Block();
1100 1101 1102 1103 1104 1105
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1106 1107 1108 1109 1110 1111 1112
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      size_t output_num = desc.Output("Out").size();
      std::vector<int> output_lengths;
      int num = 0;
      if (desc.HasAttr("num")) {
R
Ruibiao Chen 已提交
1113
        num = PADDLE_GET_CONST(int, desc.GetAttr("num"));
1114 1115 1116
      }
      if (desc.HasAttr("sections")) {
        output_lengths =
R
Ruibiao Chen 已提交
1117
            PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("sections"));
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
      }
      if (output_lengths.size() == 0 && num == 0) {
        VLOG(3) << "sections and num cannot be equal to 0 at the same time";
        return false;
      }
      if (with_dynamic_shape) {
#if IS_TRT_VERSION_GE(6000)
#else
        VLOG(3) << "You are running the TRT Dynamic Shape mode, need to "
                   "confirm that "
                   "your TRT version is no less than 6.0";
        return false;
#endif
      }
      axis += (axis < 0) ? x_shape.size() : 0;
      if (x_shape[axis] == -1) {
        VLOG(3) << "The (" << axis << ") dim of input should not be -1";
        return false;
      }
      if (output_lengths.size() == 0) {
        if (num > 0) {
          int64_t in_axis_dim = x_shape[axis];
          if (in_axis_dim % num != 0) {
            VLOG(3) << "Invalid number to split. Tensor split does not result"
                       " in an equal division of dimensions. Axis dim = "
                    << in_axis_dim << " num = " << num << "!= 0";
            return false;
          }
          size_t out_axis_dim = in_axis_dim / num;
          for (int i = 0; i < num; ++i) {
            output_lengths.push_back(out_axis_dim);
          }
1150 1151
        }
      }
1152 1153 1154 1155
      if (output_lengths.size() != output_num) {
        VLOG(3) << "The output_length should be equal to the output size.";
        return false;
      }
1156
    }
1157

1158 1159 1160 1161 1162 1163 1164 1165
    if (op_type == "scale") {
      auto scale_inputs = desc.Inputs();
      if (scale_inputs.find("ScaleTensor") != scale_inputs.end()) {
        if (desc.Input("ScaleTensor").size() >= 1) {
          return false;
        }
      }
      auto* block = desc.Block();
1166 1167 1168 1169 1170 1171
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1172 1173 1174
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
1175
      auto dtype = x_var_desc->GetDataType();
W
wenbin 已提交
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
      if (!with_dynamic_shape) {
        // At present, only support float32 or float16 into trt.
        if (!(dtype == framework::proto::VarType::FP32 ||
              dtype == framework::proto::VarType::FP16)) {
          return false;
        }
        if (x_shape.size() == 1) {
          VLOG(3)
              << "Scale op does not support 1-dimensional input in tensorrt";
          return false;
        }
      } else {
1188 1189
        // At present, only support float32 or float16 or int32 or int64 into
        // trt.
W
wenbin 已提交
1190 1191
        if (!(dtype == framework::proto::VarType::FP32 ||
              dtype == framework::proto::VarType::FP16 ||
1192 1193
              dtype == framework::proto::VarType::INT32 ||
              dtype == framework::proto::VarType::INT64)) {
W
wenbin 已提交
1194 1195
          return false;
        }
1196
      }
1197
    }
1198

F
feng_shuai 已提交
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
    if (op_type == "roll") {
#if !IS_TRT_VERSION_GE(7000)
      VLOG(3) << "roll converter does not support trt versions below 7.0";
      return false;
#endif
      if (!with_dynamic_shape) {
        return false;
      }
    }

    if (op_type == "strided_slice") {
1210 1211 1212 1213 1214
#if !IS_TRT_VERSION_GE(7000)
      VLOG(3)
          << "strided_slice converter does not support trt versions below 7.0";
      return false;
#endif
F
feng_shuai 已提交
1215 1216 1217 1218 1219 1220 1221 1222
      if (!desc.HasAttr("axes") || !desc.HasAttr("starts") ||
          !desc.HasAttr("ends") || !desc.HasAttr("strides")) {
        VLOG(3)
            << "The necessary attributes of the strided_slice operator miss ";
        return false;
      }
    }

Z
zhoutianzi666 已提交
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
    if (op_type == "rnn") {
      if (!with_dynamic_shape) {
        return false;
      }
      if (desc.HasAttr("mode")) {
        std::string mode = PADDLE_GET_CONST(std::string, desc.GetAttr("mode"));
        if (mode != "LSTM") return false;
      }
      if (desc.HasAttr("dropout_prob")) {
        float dropout_prob =
            PADDLE_GET_CONST(float, desc.GetAttr("dropout_prob"));
        if (dropout_prob > 1e-5) return false;
      }
      // not support following four inputs for rnn in paddle-trt
      auto rnn_inputs = desc.Inputs();
      if (rnn_inputs.find("SequenceLength") != rnn_inputs.end()) {
        if (desc.Input("SequenceLength").size()) {
          return false;
        }
      }
    }

    if (op_type == "fill_constant_batch_size_like") {
      if (!with_dynamic_shape) {
        return false;
      }
      if (!desc.HasAttr("input_dim_idx")) {
        return false;
      }
      if (!desc.HasAttr("output_dim_idx")) {
        return false;
      }
      if (!desc.HasAttr("shape")) {
        return false;
      }
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("Input")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      auto dtype = x_var_desc->GetDataType();
      // At present, only support float32 into trt.
      if (dtype != 5) {
        return false;
      }
    }

1274 1275 1276 1277 1278
    if (op_type == "fill_any_like") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the fill_any_like does not support static shape yet";
        return false;
      }
1279 1280 1281
      int dtype = desc.HasAttr("dtype")
                      ? PADDLE_GET_CONST(int, desc.GetAttr("dtype"))
                      : -1;
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
      auto* block = desc.Block();
      auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
      auto input_type = x_var_desc->GetDataType();
#if IS_TRT_VERSION_GE(8400)
      if (dtype == 0 ||
          (dtype == -1 && input_type == framework::proto::VarType::BOOL)) {
        VLOG(3) << "the fill_any_like supports input of BOOL by trt8.4 above";
        return true;
      }
#endif
1292
      if (dtype != -1 && dtype != 2 && dtype != 5) {
1293 1294
        VLOG(3) << "the fill_any_like only supports int32 and float32 by "
                   "trt8.4 below";
1295 1296 1297 1298 1299
        return false;
      }
      if (dtype == -1) {
        if (input_type != framework::proto::VarType::INT32 &&
            input_type != framework::proto::VarType::FP32) {
1300 1301
          VLOG(3) << "the fill_any_like only supports int32 and float32 by "
                     "trt8.4 below";
1302 1303 1304 1305 1306
          return false;
        }
      }
    }

1307
    if (op_type == "slice") {
1308 1309
      if (desc.HasAttr("decrease_axis")) {
        std::vector<int> decrease_axis =
R
Ruibiao Chen 已提交
1310
            PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("decrease_axis"));
1311 1312 1313
        if (!with_dynamic_shape) {
          if (decrease_axis.end() !=
              std::find(decrease_axis.begin(), decrease_axis.end(), 0)) {
1314 1315
            return false;
          }
1316 1317
        }
      }
1318 1319
      std::vector<int> axes;
      if (!desc.HasAttr("axes")) {
1320
        VLOG(3) << "The necessary attributes of the slice operator axes "
1321
                   " are missing.";
1322 1323
        return false;
      } else {
1324
        axes = PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("axes"));
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
        if (!with_dynamic_shape) {
          for (size_t i = 0; i < axes.size(); i++) {
            if (axes[i] == 0) {
              VLOG(3) << "Invalid slice axis. Slice on batch axis is not "
                         "supported in TensorRT";
              return false;
            }
          }
        }
      }
1335 1336
      // not support following four inputs for slice in paddle-trt
      auto slice_inputs = desc.Inputs();  // its size == 5
1337 1338 1339 1340 1341 1342 1343 1344
      if (slice_inputs.find("StartsTensor") != slice_inputs.end() &&
          desc.Input("StartsTensor").size()) {
        VLOG(3) << "The Slice has StartsTensor input.";
      } else {
        if (!desc.HasAttr("starts")) {
          VLOG(3) << "The necessary attributes of the slice operator starts or "
                     "StartsTensor"
                     " are missing.";
1345
          return false;
1346 1347 1348 1349 1350 1351 1352 1353
        } else {
          std::vector<int> starts =
              PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("starts"));
          if (axes.size() != starts.size()) {
            VLOG(3) << "The shape of attributes of the slice operator axes "
                       "and starts are not equal.";
            return false;
          }
1354 1355
        }
      }
1356 1357 1358 1359 1360 1361 1362 1363
      if (slice_inputs.find("EndsTensor") != slice_inputs.end() &&
          desc.Input("EndsTensor").size()) {
        VLOG(3) << "The Slice has EndsTensor input.";
      } else {
        if (!desc.HasAttr("ends")) {
          VLOG(3) << "The necessary attributes of the slice operator ends or "
                     "EndsTensor"
                     " are missing.";
1364
          return false;
1365 1366 1367 1368 1369 1370 1371 1372
        } else {
          std::vector<int> ends =
              PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("ends"));
          if (axes.size() != ends.size()) {
            VLOG(3) << "The shape of attributes of the slice operator axes "
                       "and ends are not equal.";
            return false;
          }
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
        }
      }
      if (slice_inputs.find("StartsTensorList") != slice_inputs.end()) {
        if (desc.Input("StartsTensorList").size()) {
          return false;
        }
      }
      if (slice_inputs.find("EndsTensorList") != slice_inputs.end()) {
        if (desc.Input("EndsTensorList").size()) {
          return false;
        }
      }
1385 1386
    }

1387 1388
    if (op_type == "less_than" || op_type == "greater_than" ||
        op_type == "logical_or" || op_type == "logical_xor" ||
1389 1390
        op_type == "logical_and" || op_type == "less_equal" ||
        op_type == "greater_equal") {
1391
#if IS_TRT_VERSION_GE(8400)
1392
      // TRT does not support kEQUAL/kGREATER/kLESS work with implicit batch
1393
      if (!with_dynamic_shape) {
1394
        VLOG(3) << "Ops(" << op_type << ") do not support static shape yet.";
1395 1396
        return false;
      }
1397 1398 1399 1400 1401
      auto* block = desc.Block();
      auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
      auto* y_var_desc = block->FindVar(desc.Input("Y")[0]);
      auto x_dtype = x_var_desc->GetDataType();
      auto y_dtype = y_var_desc->GetDataType();
1402 1403 1404 1405
      if (op_type == "logical_or" || op_type == "logical_xor" ||
          op_type == "logical_and") {
        if (x_dtype != framework::proto::VarType::BOOL ||
            y_dtype != framework::proto::VarType::BOOL) {
1406 1407 1408 1409 1410
          VLOG(3) << "the op (" << op_type << ") only support input of BOOL.";
          return false;
        }
      }
      if (op_type == "less_than" || op_type == "greater_than" ||
1411
          op_type == "less_equal" || op_type == "greater_equal") {
1412 1413 1414 1415 1416
        if (x_dtype == framework::proto::VarType::BOOL ||
            y_dtype == framework::proto::VarType::BOOL) {
          VLOG(3)
              << "ElementWiseOperation::kLESS/ElementWiseOperation::kGREATER "
                 "do not support boolean datatype.";
1417 1418 1419 1420 1421 1422 1423 1424
          return false;
        }
      }
#else
      VLOG(3) << "these are not supported when TensorRT < 8.4";
      return false;
#endif
    }
1425
    if (op_type == "elementwise_add" || op_type == "elementwise_mul" ||
S
shentanyue 已提交
1426
        op_type == "elementwise_sub" || op_type == "elementwise_div" ||
1427
        op_type == "elementwise_pow" || op_type == "elementwise_min" ||
1428 1429
        op_type == "elementwise_max" || op_type == "elementwise_floordiv" ||
        op_type == "elementwise_mod") {
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "The input op's Input(\"X\").size() "
                   "should equal to 1, but received Input(\"X\").size() = "
                << desc.Input("X").size() << ".";
        return false;
      }
      if (desc.Input("Y").size() != 1) {
        VLOG(3) << "The input op's Input(\"Y\").size() "
                   "should equal to 1, but received Input(\"Y\").size() = "
                << desc.Input("Y").size() << ".";
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "The input op's Output(\"Out\").size() "
                   "should equal to 1, but reveceid Output(\"Out\").size() = "
                << desc.Output("Out").size() << ".";
        return false;
      }
1448
      auto* block = desc.Block();
1449 1450 1451 1452 1453 1454
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1455 1456 1457 1458
      auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
      auto* y_var_desc = block->FindVar(desc.Input("Y")[0]);
      const auto x_shape = x_var_desc->GetShape();
      const auto y_shape = y_var_desc->GetShape();
1459

1460 1461 1462 1463
      // These operations do not support boolean datatype.
      if (op_type == "elementwise_add" || op_type == "elementwise_mul" ||
          op_type == "elementwise_sub" || op_type == "elementwise_div" ||
          op_type == "elementwise_pow" || op_type == "elementwise_min" ||
1464 1465
          op_type == "elementwise_max" || op_type == "elementwise_floordiv" ||
          op_type == "elementwise_mod") {
1466 1467
        if (x_var_desc->GetDataType() ==
            paddle::framework::proto::VarType_Type::VarType_Type_BOOL) {
1468 1469 1470 1471
          VLOG(3)
              << "These operations "
                 "(elementwise_add/mul/sub/div/pow/min/max/floordiv/mod) do "
                 "not support boolean datatype.";
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
          return false;
        }
      }
      // These operations input do not support int32 datatype.
      if (op_type == "elementwise_pow") {
        if (x_var_desc->GetDataType() ==
            paddle::framework::proto::VarType_Type::VarType_Type_INT32) {
          VLOG(3) << "These operations (elementwise_pow) do not support int32 "
                     "datatype.";
          return false;
        }
      }

1485 1486 1487 1488 1489 1490
      // The case when x_shape.size() == 1 is dealt with in common case
      if (!with_dynamic_shape && (!y_var_desc->Persistable()) &&
          y_shape.size() == 1) {
        VLOG(3) << "Static shape in trt not support y is  a 1D intermediate "
                   "tensor in "
                   "elementwise op.";
1491 1492
        return false;
      }
1493 1494 1495 1496
      if (x_var_desc->Persistable() && !with_dynamic_shape) {
        VLOG(3)
            << "Input X is a parameter which is not supported for "
               "elementwise in tensorrt's static shape, swap x and y will work";
S
shentanyue 已提交
1497
        return false;
1498
      }
1499 1500
    }

W
Wilber 已提交
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
    if (op_type == "pow") {
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
      const auto x_shape = x_var_desc->GetShape();
      if (!with_dynamic_shape && (x_shape.size() == 1 || x_shape.size() == 0)) {
        VLOG(3) << op_type
                << " op does not support input's dim is 1 or 0 in tensorrt "
                   "static shape mode.";
        return false;
      }
      // the same as `elementwise_pow`.
      if (x_var_desc->GetDataType() ==
          paddle::framework::proto::VarType_Type::VarType_Type_INT32) {
        VLOG(3) << "These operations (pow) do not support int32 "
                   "datatype.";
        return false;
      }
    }

1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
    if (op_type == "stack") {
      if (!with_dynamic_shape) {
        VLOG(3)
            << "static shape mode is not supported for TRT stack.\n"
               "You can use the config.SetTRTDynamicShapeInfo(...) interface"
               " to set the shape information to run the dynamic shape "
               "mode.";
        return false;
      }
    }
1536 1537 1538 1539 1540 1541 1542 1543
    // remember that 1D input in static shape mode is filtered at the beginning
    if (op_type == "sum") {
      return true;
    }

    if (op_type == "shape" && !with_dynamic_shape) {
      return false;
    }
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554

    if (op_type == "fused_embedding_eltwise_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "fused_embedding_eltwise_layernorm should run on dynamic "
                   "shape mode.";
        return false;
      }
      if (desc.Input("Ids").size() != desc.Input("Embs").size()) {
        return false;
      }
    }
W
Wang Bojun 已提交
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
    if (op_type == "fused_bias_dropout_residual_layer_norm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "fused_bias_dropout_residual_layer_norm should run on "
                   "dynamic shape mode.";
        return false;
      }
      float dropout_rate =
          PADDLE_GET_CONST(float, desc.GetAttr("dropout_rate"));
      if (dropout_rate != 0.0f) {
        VLOG(4) << "preln_residual_bias trt layer can not work with "
                   "fused_bias_dropout_residual_layer_norm op in which the "
                   "dropout_rate != 0, stop convert";
        return false;
      }
    }
1570 1571
    if (op_type == "fused_preln_embedding_eltwise_layernorm") {
      if (!with_dynamic_shape) {
1572 1573 1574
        VLOG(3) << "fused_preln_embedding_eltwise_layernorm should run on "
                   "dynamic "
                   "shape mode.";
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
        return false;
      }
      if (desc.Input("Ids").size() != desc.Input("Embs").size()) {
        VLOG(3) << "The id and emb size of fused PrelnEmbEltwiseLayerNormOp "
                   "should be same ";
        return false;
      }
      if (!desc.HasAttr("enable_int8")) {
        VLOG(3) << "PrelnEmbEltwiseLayerNormOp must use int8 mode.";
        return false;
      }
    }

1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
    if (op_type == "gelu") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "gelu op has only 1 input, but got "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "gelu op has only 1 output, but got "
                << desc.Output("Out").size();
        return false;
      }
1599

1600
#if IS_TRT_VERSION_LT(7000)
1601
      if (desc.HasAttr("approximate")) {
1602
        VLOG(3) << "approximate gelu op needs TensorRT 7.0 and after";
R
Ruibiao Chen 已提交
1603
        if (PADDLE_GET_CONST(bool, desc.GetAttr("approximate"))) return false;
1604
      }
1605
#endif
1606 1607

      auto* block = desc.Block();
1608 1609 1610 1611 1612 1613
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1614

1615 1616 1617 1618 1619 1620 1621
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 1) {
        VLOG(3) << "gelu op does not support input's dim is 1 in tensorrt.";
        return false;
      }
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
    }

    if (op_type == "layer_norm") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "input of layer_norm op converter should be 1, got "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Input("Bias").size() != 1) {
        VLOG(3) << "Bias of layer_norm op converter should be 1, got "
                << desc.Input("Bias").size();
        return false;
      }
      if (desc.Input("Scale").size() != 1) {
        VLOG(3) << "Scale of layer_norm op converter should be 1, got "
                << desc.Input("Scale").size();
        return false;
      }
      if (desc.Output("Y").size() != 1) {
        VLOG(3) << "output of layer_norm op converter should be 1, got "
                << desc.Output("Y").size();
        return false;
      }
    }

1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
    if (op_type == "fill_constant") {
      auto fill_constant_inputs = desc.Inputs();
      if (fill_constant_inputs.find("ValueTensor") !=
          fill_constant_inputs.end()) {
        if (desc.Input("ValueTensor").size()) return false;
      }
      if (fill_constant_inputs.find("ShapeTensor") !=
          fill_constant_inputs.end()) {
        if (desc.Input("ShapeTensor").size()) return false;
      }
      if (fill_constant_inputs.find("ShapeTensorList") !=
          fill_constant_inputs.end()) {
        if (desc.Input("ShapeTensorList").size()) return false;
      }
1661 1662 1663
      int dtype = desc.HasAttr("dtype")
                      ? PADDLE_GET_CONST(int, desc.GetAttr("dtype"))
                      : 5;
1664 1665 1666 1667 1668 1669
      // only support int32, int64, float32
      if (!(dtype == 2 || dtype == 3 || dtype == 5)) {
        return false;
      }
    }

已提交
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
    if (op_type == "instance_norm") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "input of instance_norm op converter should be 1, got "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Input("Bias").size() != 1) {
        VLOG(3) << "Bias of instance_norm op converter should be 1, got "
                << desc.Input("Bias").size();
        return false;
      }
      if (desc.Input("Scale").size() != 1) {
        VLOG(3) << "Scale of instance_norm op converter should be 1, got "
                << desc.Input("Scale").size();
        return false;
      }
      if (desc.Output("Y").size() != 1) {
        VLOG(3) << "output of layer_norm op converter should be 1, got "
                << desc.Output("Y").size();
        return false;
      }
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() != 4) {
        VLOG(3) << "The instance_norm op only support 4-dimensional input in "
                   "tensorrt.";
        return false;
      }
已提交
1707 1708
    }

1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
    if (op_type == "leaky_relu") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "Invalid number of TRT leaky_relu op converter "
                   "inputs. Expected 1, but received "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "output of leaky_relu op converter should be 1, got "
                << desc.Output("Out").size();
        return false;
      }
    }

    if (op_type == "pad") {
1724
      if (!desc.HasAttr("pad_value") || !desc.HasAttr("paddings")) return false;
R
Ruibiao Chen 已提交
1725 1726
      const float pad_value =
          PADDLE_GET_CONST(float, desc.GetAttr("pad_value"));
1727 1728 1729 1730
      if (pad_value != 0.0f) {
        VLOG(3) << "The pad layer of TRT only support zero.";
        return false;
      }
已提交
1731 1732
      std::vector<int64_t> shape;
      auto* block = desc.Block();
1733 1734 1735 1736 1737 1738
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
已提交
1739 1740 1741 1742 1743 1744 1745 1746
      for (auto& param_name : desc.Inputs()) {
        for (auto& var_name : param_name.second) {
          auto* var_desc = block->FindVar(var_name);
          shape = var_desc->GetShape();
        }
      }
      int nbDims = shape.size();
      std::vector<int> paddings =
R
Ruibiao Chen 已提交
1747
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("paddings"));
已提交
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
      int pad_size = paddings.size();
      if (nbDims < 2) {
        return false;
      }
      if (nbDims * 2 != pad_size) {
        return false;
      }
      for (int i = 0; i < pad_size - 4; i++) {
        if (paddings[i] != 0) {
          return false;
        }
      }
1760 1761
    }

1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
    if (op_type == "pad3d") {
#if !IS_TRT_VERSION_GE(8200)
      VLOG(3) << "pad3d is not supported when TensorRT < 8.2";
      return false;
#endif
      if (!with_dynamic_shape) {
        VLOG(3) << "pad3d is not supported static shape";
        return false;
      }
      if (!desc.HasAttr("paddings") && !desc.HasInput("Paddings")) {
        return false;
      }
      if (desc.HasAttr("mode")) {
        std::string mode = PADDLE_GET_CONST(std::string, desc.GetAttr("mode"));
        if (mode != "constant" && mode != "reflect" && mode != "replicate") {
          VLOG(3) << "The pad3d layer of TRT only support "
                     "constant/reflect/replicate mode.";
          return false;
        }
      }
      if (desc.HasAttr("data_format")) {
        std::string data_format =
            PADDLE_GET_CONST(std::string, desc.GetAttr("data_format"));
        if (data_format != "NCDHW") {
          VLOG(3) << "The pad3d layer of TRT only support NCDHW data format.";
          return false;
        }
      }
    }
1791 1792
    if (op_type == "swish") {
      auto* block = desc.Block();
1793 1794 1795 1796 1797 1798
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1799 1800 1801 1802 1803 1804 1805 1806
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 1) {
        VLOG(3) << "swish op does not support input's dim is 1 in tensorrt.";
        return false;
      }
    }
1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
    if (op_type == "prelu") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "Invalid input X's size of prelu TRT converter. "
                   "Expected 1, received "
                << desc.Input("X").size() << ".";
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "Invalid output Out's size of prelu TRT converter. "
                   "Expected 1, received "
                << desc.Output("Out").size() << ".";
        return false;
      }
1820 1821

      auto* block = desc.Block();
1822 1823 1824 1825 1826 1827
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1828 1829 1830 1831 1832 1833 1834 1835 1836
      auto* var_desc = block->FindVar(desc.Input("Alpha")[0]);
      if (!var_desc) {
        VLOG(3) << "Variable Alpha of prelu TRT converter not found.";
        return false;
      }

      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
1837 1838 1839
      if (!with_dynamic_shape && x_shape.size() == 1) {
        VLOG(3) << "prelu op does not support input's dim is 1 in tensorrt "
                   "with static shape.";
1840 1841 1842
        return false;
      }

W
Wilber 已提交
1843 1844 1845 1846 1847 1848 1849
#if IS_TRT_VERSION_LT(7000)
      if (!with_dynamic_shape) {
        // TODO(inference): fix trt6 static plugin error.
        VLOG(3) << "prelu static plugin in trt6 has bug.";
        return false;
      }
#endif
1850 1851
    }

W
wangxinxin08 已提交
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
    if (op_type == "mish") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "Invalid input X's size of mish TRT converter. "
                   "Expected 1, received "
                << desc.Input("X").size() << ".";
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "Invalid output Out's size of mish TRT converter. "
                   "Expected 1, received "
                << desc.Output("Out").size() << ".";
        return false;
      }

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }

      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 1) {
        VLOG(3) << "mish op does not support input's dim is 1 in tensorrt.";
        return false;
      }
    }

1883 1884 1885 1886 1887 1888 1889
    if (op_type == "roi_align") {
      if (!with_dynamic_shape) {
        VLOG(3) << "TRT roi align plugin only accept the dynamic shape, "
                   "because that "
                   "the roi_align will change the batch size.";
        return false;
      }
C
ccrrong 已提交
1890 1891 1892 1893
      std::vector<std::string> attrs{"pooled_height",
                                     "pooled_width",
                                     "spatial_scale",
                                     "sampling_ratio",
F
fengkuangxiaxia 已提交
1894
                                     "aligned"};
1895
      for (auto const& attr : attrs) {
1896 1897 1898 1899
        if (!desc.HasAttr(attr)) return false;
      }

      const auto pooled_height =
R
Ruibiao Chen 已提交
1900
          PADDLE_GET_CONST(int, desc.GetAttr("pooled_height"));
1901 1902 1903
      if (pooled_height <= 0) return false;

      const auto pooled_width =
R
Ruibiao Chen 已提交
1904
          PADDLE_GET_CONST(int, desc.GetAttr("pooled_width"));
1905 1906 1907
      if (pooled_width <= 0) return false;

      const auto spatial_scale =
R
Ruibiao Chen 已提交
1908
          PADDLE_GET_CONST(float, desc.GetAttr("spatial_scale"));
1909 1910 1911 1912 1913 1914 1915 1916
      if (spatial_scale <= 0.f) return false;

      auto roi_align_inputs = desc.Inputs();
      if (roi_align_inputs.find("RoisNum") != roi_align_inputs.end()) {
        if (desc.Input("RoisNum").size() >= 1) {
          return false;
        }
      }
1917 1918 1919
    }

    if (op_type == "shuffle_channel") {
1920
#if !IS_TRT_VERSION_GE(8000)
1921 1922
      if (with_dynamic_shape) {
        VLOG(3) << "You are running the TRT Dynamic Shape mode, "
1923 1924
                   "the shuffle_channel op does not support dynamic shape "
                   "trt versions below 8.0 yet";
1925 1926
        return false;
      }
1927
#endif
1928 1929
    }

1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
    if (op_type == "where") {
#if !IS_TRT_VERSION_GE(8400)
      VLOG(3) << "where is not supported when TensorRT < 8.4";
      return false;
#endif
      if (!with_dynamic_shape) {
        VLOG(3) << "the where op does not support static shape yet";
        return false;
      }
    }

1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
    if (op_type == "bitwise_not") {
#if !IS_TRT_VERSION_GE(8400)
      auto* block = desc.Block();
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      auto dtype = x_var_desc->GetDataType();
      if (dtype == framework::proto::VarType::BOOL ||
          dtype == framework::proto::VarType::INT8 ||
          dtype == framework::proto::VarType::UINT8) {
        VLOG(3) << "BOOL / INT8 / UINT8 type support requires TensorRT 8.4";
        return false;
      }
#endif
    }

1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
    if (op_type == "one_hot" || op_type == "one_hot_v2") {
#if IS_TRT_VERSION_LT(8510)
      VLOG(3) << "one_hot/one_hot_v2 is not supported when TensorRT < 8.5.1";
      return false;
#endif
      if (!with_dynamic_shape) {
        VLOG(3)
            << "the one_hot/one_hot_v2 op does not support static shape yet";
        return false;
      }
      if (desc.HasAttr("allow_out_of_range")) {
        VLOG(3)
            << "allow_out_of_range one_hot/one_hot_v2 op is not supported now.";
        if (PADDLE_GET_CONST(bool, desc.GetAttr("allow_out_of_range")))
          return false;
      }
      if (desc.HasAttr("dtype")) {
        const int dtype = PADDLE_GET_CONST(int, desc.GetAttr("dtype"));
        if (dtype != 2 && dtype != 3 && dtype != 5) {
          VLOG(3) << "one_hot/one_hot_v2 op only support int32, int64, float.";
          return false;
        }
      }
      auto one_hot_inputs = desc.Inputs();
      if (one_hot_inputs.find("depth_tensor") != one_hot_inputs.end()) {
        if (desc.Input("depth_tensor").size() != 0) {
          return true;
        }
      }

      if (desc.HasAttr("depth")) {
        const int depth = PADDLE_GET_CONST(int, desc.GetAttr("depth"));
        if (depth <= 0) {
          VLOG(3) << "depth only support positive in one_hot/one_hot_v2 op.";
          return false;
        }
      }
    }

1995 1996 1997 1998 1999 2000 2001
    if (op_type == "skip_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the skip_layernorm does not support static shape yet";
        return false;
      }
    }

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
    if (op_type == "preln_skip_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the preln_skip_layernorm does not support static shape yet";
        return false;
      }
      if (!desc.HasAttr("enable_int8")) {
        VLOG(3) << "PrelnEmbEltwiseLayerNormOp must use int8 mode.";
        return false;
      }
    }

2013 2014 2015 2016 2017
    if (op_type == "multihead_matmul") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the multihead_matmul does not support static shape yet";
        return false;
      }
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033

      if (desc.HasAttr("enable_int8") && !desc.HasAttr("Input_scale")) {
        VLOG(3) << "Multihead layers must have input scale in int8 mode.";
        return false;
      }

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto* input_desc = block->FindVar(desc.Input("Input").front());
      const auto input_shape = input_desc->GetShape();
      const auto head_number =
R
Ruibiao Chen 已提交
2034
          PADDLE_GET_CONST(int, desc.GetAttr("head_number"));
F
feng_shuai 已提交
2035 2036 2037 2038 2039 2040 2041 2042 2043
      auto inputs = desc.Inputs();
      bool has_bias_qk = (inputs.find("BiasQK") == inputs.end()) ? false : true;
      if (has_bias_qk) {
        auto* biasqk_desc = block->FindVar(desc.Input("BiasQK").front());
        const auto biasqk_shape = biasqk_desc->GetShape();
        // The BiasQK's shape requires to be
        // [batch, 1, 1, length] or [batch, head, length, length].
        bool has_same_shape = head_number == biasqk_shape[1] &&
                              input_shape[1] == biasqk_shape[2] &&
2044
                              input_shape[1] == biasqk_shape[3];
F
feng_shuai 已提交
2045 2046
        bool is_broadcastable = biasqk_shape[1] == 1 && biasqk_shape[2] == 1 &&
                                input_shape[1] == biasqk_shape[3];
2047 2048 2049 2050
        is_broadcastable =
            is_broadcastable || (biasqk_shape[0] == 1 && biasqk_shape[1] == 1 &&
                                 input_shape[1] == biasqk_shape[2] &&
                                 input_shape[1] == biasqk_shape[3]);
F
feng_shuai 已提交
2051 2052
        if (!(has_same_shape || is_broadcastable)) {
          VLOG(3) << "The BiasQK's shape is invalid, expect [" << input_shape[0]
2053 2054 2055 2056 2057 2058 2059
                  << ", 1, 1, " << input_shape[1] << "] "
                  << "or [" << input_shape[0] << ", " << head_number << ", "
                  << input_shape[1] << ", " << input_shape[1] << "] "
                  << "or [" << input_shape[0] << "/1, " << 1 << ", "
                  << input_shape[1] << ", " << input_shape[1] << "] "
                  << "but got [" << biasqk_shape[0] << ", " << biasqk_shape[1]
                  << ", " << biasqk_shape[2] << ", " << biasqk_shape[3] << "].";
F
feng_shuai 已提交
2060 2061 2062
          return false;
        }
      } else {
2063 2064 2065
#if (IS_TRT_VERSION_GE(8000) && IS_TRT_VERSION_LT(8100)) || \
    (IS_TRT_VERSION_LT(7200))
        VLOG(3) << "There are some bugs with trt 8.0";
2066
        return false;
F
feng_shuai 已提交
2067
#endif
2068
      }
2069 2070
    }

2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
    if (op_type == "multihead_matmul_roformer") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the multihead_matmul_roformer does not support static "
                   "shape yet";
        return false;
      }

      if (desc.HasAttr("enable_int8") && !desc.HasAttr("Input_scale")) {
        VLOG(3) << "Multihead layers must have input scale in int8 mode.";
        return false;
      }

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto* input_desc = block->FindVar(desc.Input("Input").front());
      const auto input_shape = input_desc->GetShape();
      const auto head_number =
          PADDLE_GET_CONST(int, desc.GetAttr("head_number"));
      auto inputs = desc.Inputs();
      bool has_bias_qk = (inputs.find("BiasQK") == inputs.end()) ? false : true;
      if (has_bias_qk) {
        auto* biasqk_desc = block->FindVar(desc.Input("BiasQK").front());
        const auto biasqk_shape = biasqk_desc->GetShape();
        // The BiasQK's shape requires to be
        // [batch, 1, 1, length] or [batch, head, length, length].
        bool has_same_shape = head_number == biasqk_shape[1] &&
                              input_shape[1] == biasqk_shape[2] &&
                              input_shape[1] == biasqk_shape[3];
        bool is_broadcastable = biasqk_shape[1] == 1 && biasqk_shape[2] == 1 &&
                                input_shape[1] == biasqk_shape[3];
        if (!(has_same_shape || is_broadcastable)) {
          VLOG(3) << "The BiasQK's shape is invalid, expect [" << input_shape[0]
                  << ", 1, 1, " << input_shape[1] << "] or [" << input_shape[0]
                  << ", " << head_number << ", " << input_shape[1] << ", "
                  << input_shape[1] << "] but [" << biasqk_shape[0] << ", "
                  << biasqk_shape[1] << ", " << biasqk_shape[2] << ", "
                  << biasqk_shape[3] << "].";
          return false;
        }
      } else {
#if !IS_TRT_VERSION_GE(8000)
        VLOG(3) << "The version of TRT must be greater than 8000";
        return false;
#endif
      }
    }

W
Wangzheee 已提交
2123 2124 2125
    if (op_type == "reshape" || op_type == "reshape2") {
      if (!desc.HasAttr("shape")) {
        return false;
W
Wilber 已提交
2126
      }
2127 2128 2129 2130
      if (with_dynamic_shape) {
        return true;
      }
      // Static shape does not support the input tensors: Shape and ShapeTensor
2131
      auto reshape_inputs = desc.Inputs();
2132 2133 2134 2135 2136 2137 2138 2139 2140
      if (reshape_inputs.find("Shape") != reshape_inputs.end()) {
        if (desc.Input("Shape").size() >= 1) {
          return false;
        }
      }
      if (reshape_inputs.find("ShapeTensor") != reshape_inputs.end()) {
        if (desc.Input("ShapeTensor").size() >= 1) {
          return false;
        }
W
Wangzheee 已提交
2141
      }
W
Wilber 已提交
2142
      std::vector<int> shape =
R
Ruibiao Chen 已提交
2143
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("shape"));
W
Wilber 已提交
2144
      if (shape.size() >= nvinfer1::Dims::MAX_DIMS) return false;
X
xiaoxiaohehe001 已提交
2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
      if (!with_dynamic_shape) {
        if (shape.size() == 1) {
          return false;
        }
        if (shape[0] == 0) {
          return true;
        } else {
          auto* block = desc.Block();
          auto x_var_name = desc.Input("X")[0];
          auto* x_var_desc = block->FindVar(x_var_name);
          const auto x_shape = x_var_desc->GetShape();
C
ccrrong 已提交
2156 2157 2158 2159
          int input_num = std::accumulate(
              x_shape.begin() + 1, x_shape.end(), 1, std::multiplies<int>());
          int shape_num = std::accumulate(
              shape.begin() + 1, shape.end(), 1, std::multiplies<int>());
X
xiaoxiaohehe001 已提交
2160 2161 2162 2163
          if (input_num == shape_num) {
            return true;
          }
        }
2164
        return false;
X
xiaoxiaohehe001 已提交
2165
      }
W
Wangzheee 已提交
2166
    }
2167

2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
    if (op_type == "clip") {
      // Paddle-TRT does not support the input tensors: Min and Max
      auto clip_inputs = desc.Inputs();
      if (clip_inputs.find("Min") != clip_inputs.end()) {
        if (desc.Input("Min").size() >= 1) {
          return false;
        }
      }
      if (clip_inputs.find("Max") != clip_inputs.end()) {
        if (desc.Input("Max").size() >= 1) {
          return false;
        }
      }

      auto* block = desc.Block();
2183 2184 2185 2186 2187 2188
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
2189 2190 2191 2192 2193
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
    }

2194
    if (op_type == "reduce_sum" || op_type == "reduce_mean" ||
2195 2196
        op_type == "reduce_max" || op_type == "reduce_min" ||
        op_type == "reduce_prod") {
2197 2198 2199 2200 2201 2202 2203
      if (!desc.HasAttr("dim", /*with_attr_var=*/false)) {
        VLOG(3) << "Skip to convert into TRT while found Attribute('dim') is "
                   "Variable type in "
                << desc.Type();
        return false;
      }

2204 2205
      if (!(desc.HasAttr("keep_dim") && desc.HasAttr("dim") &&
            desc.HasAttr("reduce_all"))) {
W
wenbin 已提交
2206 2207
        VLOG(3) << "the " << op_type
                << " does not have attr (keep_dim or dim or "
2208
                   "reduce_all)";
2209 2210 2211 2212 2213 2214 2215 2216
        return false;
      }

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
2217 2218
        return false;
      }
W
wenbin 已提交
2219 2220

      // The batch size dimension cannot be reduced if it's not dynamic shape.
2221
      auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
W
wenbin 已提交
2222
      if (!with_dynamic_shape) {
R
Ruibiao Chen 已提交
2223
        if (PADDLE_GET_CONST(bool, desc.GetAttr("reduce_all"))) return false;
W
wenbin 已提交
2224
        std::vector<int32_t> dim =
R
Ruibiao Chen 已提交
2225
            PADDLE_GET_CONST(std::vector<int32_t>, desc.GetAttr("dim"));
2226
        const auto input_shape = x_var_desc->GetShape();
W
wenbin 已提交
2227
        for (auto x : dim) {
2228
          if (x == 0 || (x + input_shape.size() == 0)) return false;
W
wenbin 已提交
2229
        }
2230

2231
      } else {
R
Ruibiao Chen 已提交
2232 2233
        if (PADDLE_GET_CONST(bool, desc.GetAttr("reduce_all")) &&
            !PADDLE_GET_CONST(bool, desc.GetAttr("keep_dim")))
2234 2235
          return false;
      }
2236

2237
#if IS_TRT_VERSION_LT(7000)
2238 2239
      auto dtype = x_var_desc->GetDataType();
      if (dtype != framework::proto::VarType::FP32) {
2240 2241
        VLOG(3) << "reduce op input data type must be float32 using TensorRT "
                   "< 7.0";
2242 2243 2244
        return false;
      }
#endif
2245
    }
W
wenbin 已提交
2246 2247 2248
#if IS_TRT_VERSION_GE(7000)
    if (op_type == "tile") {
      // Paddle-TRT does not support the input tensors.
2249
      auto tile_inputs = desc.Inputs();
2250 2251 2252 2253 2254
      if (!with_dynamic_shape) {
        if (tile_inputs.find("repeat_times_tensor") != tile_inputs.end()) {
          if (desc.Input("repeat_times_tensor").size() >= 1) {
            return false;
          }
2255
        }
2256 2257 2258 2259
        if (tile_inputs.find("RepeatTimes") != tile_inputs.end()) {
          if (desc.Input("RepeatTimes").size() >= 1) {
            return false;
          }
2260
        }
2261
        if (!desc.HasAttr("repeat_times")) return false;
W
wenbin 已提交
2262 2263 2264
      }
    }
#endif
2265

2266 2267 2268 2269 2270
    // conv3d_transpose
    if (op_type == "conv3d_transpose") {
      // trt doen't support output_padding when < 8406
      // output_padding is usually set when stride > 1
#if !IS_TRT_VERSION_GE(8400)
2271 2272
      if (desc.HasAttr("output_padding")) {
        const std::vector<int> output_padding =
R
Ruibiao Chen 已提交
2273
            PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("output_padding"));
2274 2275 2276 2277 2278 2279
        if (output_padding.size() > 0) {
          int max_padding =
              *std::max_element(output_padding.begin(), output_padding.end());
          if (max_padding > 0) return false;
        }
      }
2280
#endif
2281 2282
    }

W
wenbin 已提交
2283 2284 2285
    if (op_type == "conv3d" || op_type == "conv3d_transpose") {
      if (desc.HasAttr("padding_algorithm")) {
        std::string padding_algorithm =
R
Ruibiao Chen 已提交
2286
            PADDLE_GET_CONST(std::string, desc.GetAttr("padding_algorithm"));
W
wenbin 已提交
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300

        // trt error is arised if conv3d_transpose and SAME
        if (op_type == "conv3d_transpose" && padding_algorithm == "SAME" &&
            !with_dynamic_shape) {
          return false;
        }
      }

#if !IS_TRT_VERSION_GE(7000)
      // looks like some issues with trt6.0
      if (with_dynamic_shape) {
        return false;
      }
#endif
2301

W
wenbin 已提交
2302
      std::vector<int> paddings =
R
Ruibiao Chen 已提交
2303
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("paddings"));
W
wenbin 已提交
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324

      // conv3d and conv3d_transpose need padding check
      if (paddings.size() > 3) return false;

      if (desc.Input("Input").size() != 1) {
        VLOG(3) << "TRT Conv3d expect 1 input, but got "
                << desc.Input("Input").size() << " input.";
        return false;
      }

      if (desc.Input("Filter").size() != 1) {
        VLOG(3) << "TRT Conv3d expect 1 filter, but got "
                << desc.Input("Filter").size() << " filter.";
        return false;
      }

      if (op_type == "conv3d_transpose") {
        if (!desc.HasAttr("dilations")) {
          return false;
        } else {
          const std::vector<int> dilations =
R
Ruibiao Chen 已提交
2325
              PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("dilations"));
W
wenbin 已提交
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
          if (dilations[0] != 1 || dilations[1] != 1 || dilations[2] != 1) {
            VLOG(3) << "In conv3d_transpose, Dilations must be (1, 1, 1) for "
                       "tensorRT, but given ("
                    << dilations[0] << ", " << dilations[1] << ", "
                    << dilations[2] << ")";
            return false;
          }
        }
      }

      if (desc.Output("Output").size() != 1) {
        VLOG(3) << "TRT Conv3d expect 1 output, but got "
                << desc.Output("Output").size() << " output.";
        return false;
      }
    }

2343 2344 2345 2346
    if (op_type == "hard_sigmoid") {
      if (!with_dynamic_shape) {
        auto* block = desc.Block();
        if (block == nullptr) {
2347 2348 2349
          VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                     "Developers need to check whether block_desc is passed in "
                     "the pass.";
2350 2351 2352 2353 2354
          return false;
        }
        auto x_var_name = desc.Input("X")[0];
        auto* x_var_desc = block->FindVar(x_var_name);
        const auto x_shape = x_var_desc->GetShape();
2355 2356 2357
        if (x_shape.size() == 1) {
          VLOG(3) << "Hard sigmoid does not support 1-dimensional input in "
                     "tensorrt";
2358 2359 2360 2361 2362
          return false;
        }
      }
    }

C
ccrrong 已提交
2363
    if (op_type == "cast") {
Z
zhoutianzi666 已提交
2364 2365 2366 2367
// trt 6015 result in Windows ppyolo_mbv3 TRT fp32 diff
#if !IS_TRT_VERSION_GE(7000)
      return false;
#endif
C
ccrrong 已提交
2368 2369 2370 2371 2372 2373
      if (!(desc.HasAttr("in_dtype") && desc.HasAttr("out_dtype"))) {
        VLOG(3) << "the " << op_type
                << " does not have attr (in_dtype or "
                   "out_dtype)";
        return false;
      }
R
Ruibiao Chen 已提交
2374 2375
      int in_dtype = PADDLE_GET_CONST(int, desc.GetAttr("in_dtype"));
      int out_dtype = PADDLE_GET_CONST(int, desc.GetAttr("out_dtype"));
2376

2377
      if (in_dtype == 0 || out_dtype == 0) {
2378
#if IS_TRT_VERSION_GE(8400)
2379 2380 2381 2382 2383 2384
        if (with_dynamic_shape) {
          VLOG(3) << "the cast op supports inputs and outputs of BOOL by "
                     "trt8.4 above ";
          return true;
        }
#endif
C
ccrrong 已提交
2385 2386 2387 2388
        return false;
      }
    }

X
xjmxyt 已提交
2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
    if (op_type == "set_value") {
#if !IS_TRT_VERSION_GE(8200)
      return false;
#endif
      if (!(desc.HasAttr("axes") && desc.HasAttr("starts") &&
            desc.HasAttr("steps"))) {
        VLOG(3) << "the " << op_type
                << " does not have attr (axes or "
                   "starts or steps)";
        return false;
      }
      auto* block = desc.Block();
      auto input_name = desc.Input("Input")[0];
      auto* input_desc = block->FindVar(input_name);
      const auto input_shape = input_desc->GetShape();
      auto update_name = desc.Input("ValueTensor")[0];
      auto* update_desc = block->FindVar(update_name);
      const auto update_shape = update_desc->GetShape();
      if (update_shape.size() != input_shape.size()) return false;
    }

2410 2411 2412
    if (op_type == "top_k_v2" || op_type == "top_k") {
      auto* block = desc.Block();
      auto x_var_name = desc.Input("X")[0];
2413 2414 2415 2416 2417 2418 2419

      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
2420
      auto* x_var_desc = block->FindVar(x_var_name);
2421 2422 2423 2424 2425 2426 2427
      auto x_dtype = x_var_desc->GetDataType();

      if (!(x_dtype == framework::proto::VarType::FP32 ||
            x_dtype == framework::proto::VarType::FP16)) {
        return false;
      }

2428 2429 2430 2431 2432 2433 2434
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 1) {
        VLOG(3) << "top_k/top_k_v2 does not support 1-dimensional input in "
                   "tensorrt";
        return false;
      }
      if (desc.HasAttr("axis")) {
R
Ruibiao Chen 已提交
2435
        int axis = PADDLE_GET_CONST(int, desc.GetAttr("axis"));
2436 2437 2438 2439 2440 2441 2442
        if (axis == 0) {
          VLOG(3) << "top_k_v2 does not support axis == 0 in "
                     "tensorrt";
          return false;
        }
      }
      if (desc.HasAttr("sorted")) {
R
Ruibiao Chen 已提交
2443
        bool sorted = PADDLE_GET_CONST(bool, desc.GetAttr("sorted"));
2444 2445 2446 2447 2448 2449 2450 2451
        if (!sorted) {
          VLOG(3) << "top_k_v2 does not support results not sorted in "
                     "tensorrt";
          return false;
        }
      }
    }

2452 2453 2454 2455 2456 2457 2458 2459 2460 2461
#if IS_TRT_VERSION_GE(8000)
    if (op_type == "sparse_fc" || op_type == "sparse_multihead_matmul") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the sparse_fc and sparse_multihead_matmul does not support "
                   "static shape yet";
        return false;
      }
    }
#endif

S
Sanbu 已提交
2462
    if (op_type == "equal" || op_type == "not_equal") {
C
ccrrong 已提交
2463
#if !IS_TRT_VERSION_GE(8000)
2464
      VLOG(3) << "equal is not supported when TensorRT < 8.0";
C
ccrrong 已提交
2465 2466
      return false;
#else
2467 2468 2469 2470 2471 2472
      // TRT does not support kEQUAL/kGREATER/kLESS work with implicit batch
      if (!with_dynamic_shape) {
        VLOG(3) << "the equal does not support "
                   "static shape yet";
        return false;
      }
2473 2474 2475
      if (!desc.HasAttr("axis")) {
        return false;
      }
R
Ruibiao Chen 已提交
2476
      int axis = PADDLE_GET_CONST(int, desc.GetAttr("axis"));
C
ccrrong 已提交
2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
      if (axis == 0) {
        return false;
      }
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
#endif
    }

W
wenbin 已提交
2490 2491 2492 2493 2494 2495 2496
    if (op_type == "layernorm_shift_partition") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the layernorm_shift_partition does not support "
                   "static shape yet";
        return false;
      }
    }
W
wenbin 已提交
2497 2498 2499 2500 2501 2502 2503 2504 2505

    if (op_type == "preln_layernorm_shift_partition") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the layernorm_shift_partition does not support "
                   "static shape yet";
        return false;
      }
    }

W
Wang Bojun 已提交
2506 2507 2508 2509 2510 2511 2512
    if (op_type == "merge_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "The merge_layernorm op does not support "
                   "static shape yet";
        return false;
      }
    }
W
wenbin 已提交
2513

W
Wang Bojun 已提交
2514 2515 2516 2517 2518 2519 2520
    if (op_type == "reverse_roll") {
      if (!with_dynamic_shape) {
        VLOG(3) << "The reverse roll fused op does not support static shape "
                   "mode yet.";
        return false;
      }
    }
W
wenbin 已提交
2521 2522 2523 2524 2525 2526 2527 2528
    if (op_type == "skip_merge_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "The merge_layernorm op does not support "
                   "static shape yet";
        return false;
      }
    }

W
wenbin 已提交
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
    if (op_type == "skip_groupnorm_act") {
      if (!with_dynamic_shape) {
        VLOG(3) << "The skip_groupnorm_act op does not support "
                   "static shape yet";
        return false;
      }
    }

    if (op_type == "preln_groupnorm_act") {
      if (!with_dynamic_shape) {
        VLOG(3) << "The preln_groupnorm_act op does not support "
                   "static shape yet";
        return false;
      }
    }
2544 2545 2546 2547 2548 2549 2550
    if (op_type == "trans_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "The trans_layernorm op does not support "
                   "static shape yet";
        return false;
      }
    }
2551 2552 2553 2554 2555 2556 2557
    if (op_type == "fuse_eleadd_transpose") {
      if (!with_dynamic_shape) {
        VLOG(3) << "The fuse_eleadd_transpose op does not support "
                   "static shape yet";
        return false;
      }
    }
2558 2559 2560 2561 2562 2563 2564 2565
    if (op_type == "lookup_table") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the lookup_table does not support "
                   "static shape yet";
        return false;
      }
    }

2566
    if (op_type == "expand_as_v2" || op_type == "expand_v2") {
2567
      if (!with_dynamic_shape) {
2568 2569 2570
        VLOG(3) << "the " << op_type
                << "does not support "
                   "static shape yet";
2571 2572
        return false;
      }
2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594

      auto inputs = desc.Inputs();
      if (op_type == "expand_as_v2") {
        if (!desc.HasAttr("target_shape") && inputs.find("Y") == inputs.end()) {
          VLOG(3)
              << "expand_as_v2 op need have input(Y) or attr(target_shape). ";
          return false;
        }
      } else if (op_type == "expand_v2") {
        if (!desc.HasAttr("shape") && inputs.find("Shape") == inputs.end() &&
            inputs.find("expand_shapes_tensor") == inputs.end()) {
          VLOG(3) << "expand_v2 op need have input(Shape) or "
                     "input(expand_shapes_tensor) or attr(shape) . ";
          return false;
        }
      }

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
2595 2596 2597 2598
        return false;
      }
    }

2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
    if (op_type == "grid_sampler") {
#if !IS_TRT_VERSION_GE(8510)
      VLOG(3) << "grid_sampler is not supported when TensorRT < 8.5.1";
      return false;
#else
      if (!with_dynamic_shape) {
        VLOG(3) << "the grid_sampler does not support "
                   "static shape yet";
        return false;
      }

      if (!desc.HasAttr("mode") || !desc.HasAttr("padding_mode") ||
          !desc.HasAttr("align_corners")) {
        VLOG(3) << "grid_sampler need attributes : mode, padding_mode, "
                   "align_corners";
        return false;
      }

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto input_name = desc.Input("X")[0];
      auto* input_desc = block->FindVar(input_name);
      const auto input_shape = input_desc->GetShape();

      auto grid_name = desc.Input("Grid")[0];
      auto* grid_desc = block->FindVar(grid_name);
      const auto grid_shape = grid_desc->GetShape();

      if (input_shape.size() != 4 || grid_shape.size() != 4) {
        VLOG(3) << "The input and grid tensors must be shape tensors of rank 4 "
                   "using TRT GridSample layer.";
        return false;
      }

#endif
    }

2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
    if (op_type == "cumsum") {
#if !IS_TRT_VERSION_GE(7220)
      VLOG(3) << "cumsum is not supported when TensorRT < 7.2.2";
      return false;
#endif
      if (!with_dynamic_shape) {
        VLOG(3) << "the cumsum does not support "
                   "static shape yet";
        return false;
      }
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
    }

2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
    if (op_type == "temporal_shift") {
#if !IS_TRT_VERSION_GE(8200)
      VLOG(3) << "temporal_shift is not supported when TensorRT < 8.2";
      return false;
#endif

      if (!with_dynamic_shape) {
        VLOG(3) << "the temporal shift does not support "
                   "static shape yet";
        return false;
      }

      if (!desc.HasAttr("shift_ratio") || !desc.HasAttr("seg_num")) {
        VLOG(3) << "temporal shift need attributes : shift_ratio and seg_num";
        return false;
      }

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }

      auto input_name = desc.Input("X")[0];
      auto* input_desc = block->FindVar(input_name);
      const auto input_shape = input_desc->GetShape();

      if (input_shape.size() != 4) {
        VLOG(3) << "The input and grid tensors must be shape tensors of rank 4 "
                   "using TRT TemporalShift layer.";
        return false;
      }
    }

W
weishengying 已提交
2696 2697 2698 2699 2700
    if (use_no_calib_int8) {
      return int8_teller_set.count(op_type);
    } else {
      return teller_set.count(op_type);
    }
2701
  }
W
wenbin 已提交
2702

W
weishengying 已提交
2703 2704 2705
 private:
  // use this set for no calib int8.
  std::unordered_set<std::string> int8_teller_set{
2706
      "matrix_multiply",
2707
      "bmm",
2708
      "range",
W
weishengying 已提交
2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
      "conv2d",
      "conv2d_fusion",
      "pool2d",
      "relu",
      "elu",
      "selu",
      "softsign",
      "softplus",
      "stanh",
      "thresholded_relu",
      "exp",
      "log",
      "sqrt",
      "abs",
      "sin",
      "cos",
      "tan",
      "sinh",
      "cosh",
      "asin",
      "acos",
      "atan",
      "asinh",
2732
      "acosh",
W
weishengying 已提交
2733 2734 2735
      "atanh",
      "ceil",
      "floor",
G
gem5 已提交
2736
      "rsqrt",
2737
      "sign",
G
gem5 已提交
2738
      "reciprocal",
2739
      "logical_not",
W
weishengying 已提交
2740
      "erf",
2741
      "square",
W
weishengying 已提交
2742 2743 2744 2745 2746 2747 2748
      "softmax",
      "sigmoid",
      "hard_swish",
      "depthwise_conv2d",
      "batch_norm",
      "concat",
      "tanh",
2749
      "pad3d",
W
weishengying 已提交
2750 2751 2752 2753 2754 2755
      "pad",
      "elementwise_add",
      "elementwise_sub",
      "elementwise_mul",
      "elementwise_div",
      "elementwise_pow",
2756 2757
      "elementwise_min",
      "elementwise_max",
W
wenbin 已提交
2758
      "elementwise_floordiv",
2759
      "elementwise_mod",
W
weishengying 已提交
2760
      "equal",
S
Sanbu 已提交
2761
      "not_equal",
2762 2763 2764 2765 2766 2767
      "less_than",
      "greater_than",
      "logical_or",
      "logical_xor",
      "logical_and",
      "less_equal",
2768
      "greater_equal",
W
weishengying 已提交
2769
      "dropout",
2770
      "fill_any_like",
W
weishengying 已提交
2771 2772 2773 2774 2775
      "prelu",
      "conv2d_transpose",
      "depthwise_conv2d_transpose",
      "leaky_relu",
      "shuffle_channel",
2776
      "where",
2777
      "bitwise_not",
2778 2779
      "one_hot",
      "one_hot_v2",
W
weishengying 已提交
2780 2781
      "swish",
      "silu",
2782
      "celu",
W
weishengying 已提交
2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
      "split",
      "instance_norm",
      "gelu",
      "layer_norm",
      "scale",
      "stack",
      "transpose2",
      "transpose",
      "top_k",
      "top_k_v2",
      "flatten2",
      "flatten",
      "gather",
      "gather_nd",
X
xiaoxiaohehe001 已提交
2797
      "group_norm",
W
weishengying 已提交
2798 2799 2800
      "yolo_box",
      "yolo_box_head",
      "arg_max",
2801
      "arg_min",
W
weishengying 已提交
2802 2803 2804 2805
      "roi_align",
      "affine_channel",
      "nearest_interp",
      "anchor_generator",
2806
      "reduce_max",
W
weishengying 已提交
2807
      "reduce_mean",
2808
      "reduce_sum",
W
weishengying 已提交
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
      "conv3d",
      "conv3d_transpose",
      "mish",
      "nearest_interp_v2",
      "bilinear_interp_v2",
      "pool3d",
      "deformable_conv",
      "relu6",
      "hard_sigmoid",
      "clip",
      "fused_embedding_eltwise_layernorm",
      "multihead_matmul",
2821
      "multihead_matmul_roformer",
W
weishengying 已提交
2822 2823 2824 2825
      "skip_layernorm",
      "slice",
      "strided_slice",
      "fused_preln_embedding_eltwise_layernorm",
W
Wang Bojun 已提交
2826
      "fused_bias_dropout_residual_layer_norm",
W
weishengying 已提交
2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841
      "c_allreduce_sum",
      "c_allreduce_min",
      "c_allreduce_max",
      "c_allreduce_prod",
      "roll",
      "cast",
      "preln_skip_layernorm",
      "transformer_input_convert",
      "recover_padding",
      "remove_padding",
      "fill_constant",
      "sum",
      "shape",
      "squeeze2",
      "unsqueeze2",
2842
      "layernorm_shift_partition",
W
Wang Bojun 已提交
2843
      "reverse_roll",
2844
      "take_along_axis",
2845 2846
      "tanh_shrink",
      "logsigmoid",
W
wenbin 已提交
2847
      "preln_layernorm_shift_partition",
2848
      "lookup_table",
2849
      "trans_layernorm",
W
wenbin 已提交
2850 2851
      "merge_layernorm",
      "skip_merge_layernorm",
2852
      "lookup_table_v2",
W
wenbin 已提交
2853
      "expand_v2",
2854
      "expand_as_v2",
2855
      "fuse_eleadd_transpose",
W
wenbin 已提交
2856
      "skip_groupnorm_act",
2857
      "preln_groupnorm_act",
2858
      "temporal_shift",
2859 2860
      "grid_sampler",
      "cumsum"};
W
wenbin 已提交
2861

W
weishengying 已提交
2862
  std::unordered_set<std::string> teller_set{
2863
      "matrix_multiply",
2864
      "bmm",
2865
      "range",
W
weishengying 已提交
2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
      "conv2d",
      "conv2d_fusion",
      "pool2d",
      "relu",
      "elu",
      "selu",
      "softsign",
      "softplus",
      "stanh",
      "thresholded_relu",
      "exp",
      "log",
      "sqrt",
      "abs",
      "sin",
      "cos",
      "tan",
      "sinh",
      "cosh",
      "asin",
      "acos",
      "atan",
      "asinh",
2889
      "acosh",
W
weishengying 已提交
2890 2891 2892
      "atanh",
      "ceil",
      "floor",
G
gem5 已提交
2893
      "rsqrt",
2894
      "sign",
G
gem5 已提交
2895
      "reciprocal",
2896
      "logical_not",
W
weishengying 已提交
2897
      "erf",
2898
      "square",
W
weishengying 已提交
2899 2900 2901 2902 2903 2904 2905
      "softmax",
      "sigmoid",
      "hard_swish",
      "depthwise_conv2d",
      "batch_norm",
      "concat",
      "tanh",
2906
      "pad3d",
W
weishengying 已提交
2907 2908 2909 2910 2911 2912
      "pad",
      "elementwise_add",
      "elementwise_sub",
      "elementwise_mul",
      "elementwise_div",
      "elementwise_pow",
W
Wilber 已提交
2913
      "pow",
2914 2915
      "elementwise_min",
      "elementwise_max",
W
wenbin 已提交
2916
      "elementwise_floordiv",
2917
      "elementwise_mod",
W
weishengying 已提交
2918
      "equal",
S
Sanbu 已提交
2919
      "not_equal",
2920 2921 2922 2923 2924 2925
      "less_than",
      "greater_than",
      "logical_or",
      "logical_xor",
      "logical_and",
      "less_equal",
2926
      "greater_equal",
W
weishengying 已提交
2927
      "dropout",
2928
      "fill_any_like",
W
weishengying 已提交
2929 2930 2931 2932 2933
      "prelu",
      "conv2d_transpose",
      "depthwise_conv2d_transpose",
      "leaky_relu",
      "shuffle_channel",
2934
      "where",
2935
      "bitwise_not",
2936 2937
      "one_hot",
      "one_hot_v2",
W
weishengying 已提交
2938 2939
      "swish",
      "silu",
2940
      "celu",
W
weishengying 已提交
2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957
      "split",
      "instance_norm",
      "gelu",
      "layer_norm",
      "scale",
      "stack",
      "transpose2",
      "transpose",
      "top_k",
      "top_k_v2",
      "flatten2",
      "flatten",
      "gather",
      "gather_nd",
      "yolo_box",
      "yolo_box_head",
      "arg_max",
2958
      "arg_min",
W
weishengying 已提交
2959 2960 2961 2962
      "roi_align",
      "affine_channel",
      "nearest_interp",
      "anchor_generator",
2963
      "reduce_max",
W
weishengying 已提交
2964
      "reduce_mean",
2965
      "reduce_sum",
W
weishengying 已提交
2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
      "conv3d",
      "conv3d_transpose",
      "mish",
      "bilinear_interp_v2",
      "nearest_interp_v2",
      "pool3d",
      "deformable_conv",
      "relu6",
      "hard_sigmoid",
      "clip",
      "fused_embedding_eltwise_layernorm",
      "multihead_matmul",
2978
      "multihead_matmul_roformer",
W
weishengying 已提交
2979 2980 2981 2982 2983
      "skip_layernorm",
      "slice",
      "strided_slice",
      "fused_preln_embedding_eltwise_layernorm",
      "preln_skip_layernorm",
W
Wang Bojun 已提交
2984
      "fused_bias_dropout_residual_layer_norm",
W
weishengying 已提交
2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999
      "c_allreduce_sum",
      "c_allreduce_min",
      "c_allreduce_max",
      "c_allreduce_prod",
      "roll",
      "cast",
      "transformer_input_convert",
      "recover_padding",
      "remove_padding",
      "fill_constant",
      "sum",
      "shape",
      "squeeze2",
      "unsqueeze2",
      "fused_token_prune",
3000
      "layernorm_shift_partition",
W
Wang Bojun 已提交
3001
      "reverse_roll",
3002
      "tanh_shrink",
3003
      "take_along_axis",
3004
      "logsigmoid",
W
wenbin 已提交
3005
      "preln_layernorm_shift_partition",
3006
      "trans_layernorm",
W
Wang Bojun 已提交
3007
      "merge_layernorm",
W
wenbin 已提交
3008
      "skip_merge_layernorm",
3009
      "lookup_table",
3010
      "lookup_table_v2",
W
wenbin 已提交
3011
      "expand_v2",
3012
      "expand_as_v2",
3013
      "fuse_eleadd_transpose",
W
wenbin 已提交
3014
      "skip_groupnorm_act",
3015
      "preln_groupnorm_act",
3016
      "temporal_shift",
3017 3018
      "grid_sampler",
      "cumsum"};
W
weishengying 已提交
3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031
};

struct GenericPluginTeller : public Teller {
 public:
  GenericPluginTeller() {}
  bool operator()(const framework::OpDesc& desc,
                  bool use_no_calib_int8 = false,
                  bool with_dynamic_shape = false) override {
    const std::string op_type = desc.Type();
    // only consider dynamic_shape mode
    if (!with_dynamic_shape) {
      return false;
    }
3032 3033 3034 3035
    if (op_type == "yolo_box") {
      if (!desc.HasAttr("iou_aware") && !desc.HasAttr("iou_aware_factor"))
        return false;
    }
W
weishengying 已提交
3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093
    if (use_no_calib_int8) {
      return false;
    } else {
      framework::InitDefaultKernelSignatureMap();
      bool res = phi::OpUtilsMap::Instance().HasArgumentMappingFn(op_type) ||
                 phi::DefaultKernelSignatureMap::Instance().Has(op_type);
      if (!res) {
        VLOG(3) << op_type << " has no KernelSignature";
        return false;
      }
      res = phi::KernelFactory::Instance().HasCompatiblePhiKernel(op_type);
      if (!res) {
        VLOG(3) << op_type << " has no CompatiblePhiKernel in phi.";
        return false;
      }
      auto& dynamic_infermeta_factory =
          tensorrt::DynamicMetaFnFactory::Instance();
      res = dynamic_infermeta_factory.Contains(op_type);
      if (!res) {
        VLOG(3) << op_type << " has no DynamicMetaFn.";
        return false;
      }
      return true;
    }
  }
};

struct CustomPluginTeller : public Teller {
 public:
  CustomPluginTeller() {}
  bool operator()(const framework::OpDesc& desc,
                  bool use_no_calib_int8 = false,
                  bool with_dynamic_shape = false) override {
    const std::string op_type = desc.Type();
    std::string expect_plugin_name;

    if (with_dynamic_shape) {
      expect_plugin_name = op_type + "_paddle_trt_dynamic_plugin";
    } else {
      expect_plugin_name = op_type + "_paddle_trt_plugin";
    }

    int num = 0;
    auto creators = GetPluginRegistry()->getPluginCreatorList(&num);

    for (int i = 0; i < num; i++) {
      if (std::string(creators[i]->getPluginName()) == expect_plugin_name)
        return true;
    }
    return false;
  }
};

bool OpTeller::Tell(const framework::ir::Node* node,
                    bool use_no_calib_int8,
                    bool with_dynamic_shape) {
  const std::string op_type = node->Op()->Type();
  const framework::OpDesc desc = *node->Op();
W
Wangzheee 已提交
3094 3095 3096 3097 3098 3099
  // do not support the op which is labeled the `skip_quant`
  if ((desc.HasAttr("namescope") &&
       PADDLE_GET_CONST(std::string, desc.GetAttr("op_namescope")) ==
           "/skip_quant_2/") ||
      desc.HasAttr("skip_quant"))
    return false;
W
weishengying 已提交
3100 3101
  auto& default_teller = GetDefaultTeller();
  if ((*default_teller)(desc, use_no_calib_int8, with_dynamic_shape)) {
3102
    SetOpConverterType(node->Op(), OpConverterType::Default);
W
weishengying 已提交
3103 3104 3105 3106
    return true;
  }
  auto& generic_plugin_teller = GetGenericPluginTeller();
  if ((*generic_plugin_teller)(desc, use_no_calib_int8, with_dynamic_shape)) {
3107
    SetOpConverterType(node->Op(), OpConverterType::GenericPluginCreater);
W
weishengying 已提交
3108 3109 3110 3111
    return true;
  }
  auto& custom_plugin_teller = GetCustomPluginTeller();
  if ((*custom_plugin_teller)(desc, use_no_calib_int8, with_dynamic_shape)) {
3112
    SetOpConverterType(node->Op(), OpConverterType::CustomPluginCreater);
W
weishengying 已提交
3113 3114
    return true;
  }
3115 3116
  return false;
}
3117

W
weishengying 已提交
3118 3119 3120 3121 3122
OpTeller::OpTeller() {
  tellers_.emplace_back(new tensorrt::SimpleOpTypeSetTeller);
  tellers_.emplace_back(new tensorrt::GenericPluginTeller);
  tellers_.emplace_back(new tensorrt::CustomPluginTeller);
}
3123 3124 3125
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle