tensor.py 65.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16

17
import math
18
import numpy
19
import six
20
import warnings
21
from six.moves import reduce
22

Y
Yu Yang 已提交
23
from ..layer_helper import LayerHelper
24
from ..param_attr import ParamAttr
25
from ..initializer import Initializer
26
from ..framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator, device_guard
X
xuwei06 已提交
27
from ..framework import Variable
28
from ..initializer import Constant
29
from ..core import VarDesc
30
from .. import core
31
from .layer_function_generator import templatedoc
L
Leo Chen 已提交
32
from . import utils
33
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
34
from paddle.utils import deprecated
35

36
from .utils import check_shape
Y
Yu Yang 已提交
37 38

__all__ = [
L
li099 已提交
39 40 41
    'create_tensor', 'create_parameter', 'create_global_var', 'cast',
    'tensor_array_to_tensor', 'concat', 'sums', 'assign',
    'fill_constant_batch_size_like', 'fill_constant', 'argmin', 'argmax',
Z
zhoukunsheng 已提交
42
    'argsort', 'ones', 'zeros', 'reverse', 'has_inf', 'has_nan', 'isfinite',
Y
yaoxuefeng 已提交
43
    'range', 'linspace', 'zeros_like', 'ones_like', 'diag', 'eye', 'triu'
Y
Yu Yang 已提交
44 45 46
]


X
xuwei06 已提交
47
def create_tensor(dtype, name=None, persistable=False):
48
    """
W
wangchaochaohu 已提交
49
    Create a variable, which will hold a Tensor with data type dtype.
50 51

    Args:
W
wangchaochaohu 已提交
52 53 54 55
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
56
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
57
            default value is False.
58 59

    Returns:
W
wangchaochaohu 已提交
60
        Variable: The tensor to be created according to dtype.
61 62 63 64

    Examples:
        .. code-block:: python

65
          import paddle.fluid as fluid
66 67
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
68 69 70 71
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int32',
        'int64'
    ], 'create_tensor')
Y
Yu Yang 已提交
72
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
73 74
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
75 76


77 78
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
79
                     name=None,
80 81 82 83
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
84
	:api_attr: Static Graph
S
swtkiwi 已提交
85

86
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
87 88 89 90 91
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

92 93 94 95 96 97 98
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
99 100 101
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
102
        default_initializer (Initializer, optional): Initializer for the parameter
103 104

    Returns:
105
        The created parameter.
Y
yuyang18 已提交
106 107

    Examples:
108 109
        .. code-block:: python

110 111 112
            import paddle
            paddle.enable_static()
            W = paddle.static.create_parameter(shape=[784, 200], dtype='float32')
113
    """
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
    check_type(shape, 'shape', (list, tuple, numpy.ndarray), 'create_parameter')
    for item in shape:
        if six.PY2:
            check_type(item, 'item of shape',
                       (int, long, numpy.uint8, numpy.int8, numpy.int16,
                        numpy.int32, numpy.int64), 'create_parameter')
        else:
            check_type(item, 'item of shape',
                       (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                        numpy.int64), 'create_parameter')

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_parameter')
    check_type(attr, 'attr', (type(None), ParamAttr), 'create_parameter')
    check_type(default_initializer, 'default_initializer',
               (type(None), Initializer), 'create_parameter')

Q
Qiao Longfei 已提交
133
    helper = LayerHelper("create_parameter", **locals())
134
    if attr is None:
X
xuwei06 已提交
135
        attr = ParamAttr(name=name)
136 137
    return helper.create_parameter(attr, shape,
                                   convert_dtype(dtype), is_bias,
138 139 140
                                   default_initializer)


141 142 143 144 145 146 147
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
148
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
149

150 151 152
    Parameters:
        shape (list of int): Shape of the variable
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
153
                      variable will be filled with it.
154 155
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
156
                           Default: False
157
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
158
                         Default: False
159 160
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
161 162

    Returns:
163
        Variable: The created Variable
F
fengjiayi 已提交
164 165 166 167

    Examples:
        .. code-block:: python

168 169 170
            import paddle
            paddle.enable_static()
            var = paddle.static.create_global_var(shape=[2,3], value=1.0, dtype='float32',
171
                                           persistable=True, force_cpu=True, name='new_var')
172
    """
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
    check_type(shape, 'shape', (list, tuple, numpy.ndarray),
               'create_global_var')
    for item in shape:
        if six.PY2:
            check_type(item, 'item of shape',
                       (int, long, numpy.uint8, numpy.int8, numpy.int16,
                        numpy.int32, numpy.int64), 'create_global_var')
        else:
            check_type(item, 'item of shape',
                       (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                        numpy.int64), 'create_global_var')

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_global_var')

Q
Qiao Longfei 已提交
190 191
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
192 193 194 195 196
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
197 198 199
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
200

Q
Qiao Longfei 已提交
201 202 203
    return var


204
def cast(x, dtype):
Y
Yu Yang 已提交
205
    """
S
swtkiwi 已提交
206

207
    This OP takes in the Tensor :attr:`x` with :attr:`x.dtype` and casts it
208 209
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
210 211

    Args:
212
        x(Tensor): An input N-D Tensor with data type bool, float16,
213 214
            float32, float64, int32, int64, uint8.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output:
215
            bool, float16, float32, float64, int8, int32, int64, uint8.
Y
Yibing Liu 已提交
216 217

    Returns:
218
        Tensor: A Tensor with the same shape as input's.
Y
Yibing Liu 已提交
219 220 221

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
222

223
            import paddle
224

225 226
            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.cast(x, 'uint8')
Y
Yu Yang 已提交
227
    """
228 229 230 231
    if in_dygraph_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
        out = core.ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
Z
Zhang Ting 已提交
232
        return out
233

234 235
    check_variable_and_dtype(
        x, 'x',
236 237
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'cast')
238 239 240 241 242 243
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int64',
        'uint8'
    ], 'cast')

    helper = LayerHelper('cast', **locals())
244 245
    out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=x.stop_gradient)
Y
Yu Yang 已提交
246 247 248 249 250 251 252 253 254
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


255
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
256
    """
257
    This OP concatenates the input along the axis.
258 259

    Args:
260 261
        input(list|tuple|Tensor): ``input`` can be Tensor, Tensor list or Tensor tuple which is with data type
            bool, float16, float32, float64, int32, int64. All the Tensors in ``input`` must have the same data type. 
262 263
        axis(int|Tensor, optional): Specify the axis to operate on the input Tensors.
            It's a scalar with data type int or a Tensor with shape [1] and data type int32 or int64.
264
            The effective range is [-R, R), where R is Rank(x). When ``axis < 0``, it works the same way
265
            as ``axis+R``. Default is 0.
266 267 268
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
269 270

    Returns:
271
        Tensor: A Tensor with the same data type as ``input``.
272 273 274

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
275

276
            import paddle.fluid as fluid
277 278
            import numpy as np

279 280 281 282 283 284
            in1 = np.array([[1, 2, 3],
                            [4, 5, 6]])
            in2 = np.array([[11, 12, 13],
                            [14, 15, 16]])
            in3 = np.array([[21, 22],
                            [23, 24]])
285 286 287 288
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                x2 = fluid.dygraph.to_variable(in2)
                x3 = fluid.dygraph.to_variable(in3)
289 290
                # When the axis is negative, the real axis is (axis + Rank(x)).
                # As follows, axis is -1, Rank(x) is 2, the real axis is 1
291 292
                out1 = fluid.layers.concat(input=[x1, x2, x3], axis=-1)
                out2 = fluid.layers.concat(input=[x1, x2], axis=0)
293 294 295 296 297 298 299 300
                print(out1.numpy())
                # [[ 1  2  3 11 12 13 21 22]
                #  [ 4  5  6 14 15 16 23 24]]
                print(out2.numpy())
                # [[ 1  2  3]
                #  [ 4  5  6]
                #  [11 12 13]
                #  [14 15 16]]
Y
Yu Yang 已提交
301
    """
302 303

    if in_dygraph_mode():
S
songyouwei 已提交
304 305
        if isinstance(axis, Variable):
            axis = axis.numpy()
306
            axis = axis.item(0)
307
        return core.ops.concat(input, 'axis', axis)
308

309 310 311 312 313 314 315 316 317 318 319
    check_type(input, 'input', (list, tuple, Variable), 'concat')
    if not isinstance(input, Variable):
        for id, x in enumerate(input):
            check_variable_and_dtype(
                x, 'input[' + str(id) + ']',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'concat')
            if x.dtype != input[0].dtype:
                raise TypeError(
                    "All the Tensors in the input must have the same data type.")
    else:
320
        input = [input]
321
    check_type(axis, 'axis', (int, Variable), 'concat')
322

323 324 325 326 327
    if isinstance(axis, Variable):
        check_dtype(
            axis.dtype, 'axis', ['int32', 'int64'], 'concat',
            "The data type of axis must be int32 or int64 when axis is a Tensor")

328
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
329
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
330 331

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
332 333 334 335
        # NOTE(liym27): Don't remove this if branch!
        # This feature is supported for Dynamic-to-Static, because after transformed, the type of inputs[0]
        # is LOD_TENSOR_ARRAY in some scenarios. And this feature can be used in static mode.

336
        assert len(input) == 1, "If the elements of 'input' in concat are Variable(LoDTensorArray), " \
337
                "number of the elements must be 1, but received %s." % len(input)
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
        out_index = helper.create_variable_for_type_inference(dtype="int32")
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': input[0]},
            outputs={'Out': [out],
                     'OutIndex': [out_index]},
            attrs={'axis': axis,
                   'use_stack': False})
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
            inputs['AxisTensor'] = axis
        else:
            attrs['axis'] = axis

        helper.append_op(
            type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs)
Y
Yu Yang 已提交
357 358 359
    return out


G
Guo Sheng 已提交
360
def tensor_array_to_tensor(input, axis=1, name=None, use_stack=False):
361
    r"""
G
Guo Sheng 已提交
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]
L
li099 已提交
412 413

    Args:
G
Guo Sheng 已提交
414 415 416 417 418 419 420
        input(Variable): A LodTensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
L
li099 已提交
421 422

    Returns:
G
Guo Sheng 已提交
423 424 425
        Variable: The concatenated or stacked tensor variable.
        Variable: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.
L
li099 已提交
426 427 428 429

    Examples:
        .. code-block:: python

430
            import paddle.fluid as fluid
431
            import numpy as np
G
Guo Sheng 已提交
432 433 434 435 436 437 438
            x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0)
            array = fluid.layers.create_array(dtype='float32')
            fluid.layers.array_write(x0, i, array)
            fluid.layers.array_write(x1, i + 1, array)
            output, output_index = fluid.layers.tensor_array_to_tensor(input=array)
L
li099 已提交
439
    """
440 441 442 443 444 445 446 447 448 449 450
    if in_dygraph_mode():
        assert isinstance(
            input, list), "The 'input' in tensor_array_to_tensor must be list"
        from .nn import stack, concat
        from ..dygraph import to_variable
        op = stack if use_stack else concat
        res = op(input, axis=axis)
        sizes = to_variable(
            numpy.array(list(map(lambda x: int(x.shape[axis]), input))))
        return res, sizes

451 452 453 454 455
    check_type(input, 'input', (list, Variable), 'tensor_array_to_tensor')
    if isinstance(input, list):
        for i, input_x in enumerate(input):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'tensor_array_to_tensor')
L
li099 已提交
456
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
457 458 459
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
460
        type='tensor_array_to_tensor',
L
li099 已提交
461 462 463
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
G
Guo Sheng 已提交
464 465
        attrs={'axis': axis,
               'use_stack': use_stack})
L
li099 已提交
466 467 468
    return out, out_index


469
def sums(input, out=None):
470
    r"""
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
    This function computes the sum of multiple input Tensors elementwisely.

    - Case 1, sum of 3 Tensors

    .. code-block:: text

        # Input Tensors
        x0.shape = [2, 3]
        x0.data = [[1., 2., 3.],
                   [4., 5., 6.]]
        x1.shape = [2, 3]
        x1.data = [[10., 20., 30.],
                   [40., 50., 60.]]
        x2.shape = [2, 3]
        x2.data = [[100., 200., 300.],
                   [400., 500., 600.]]

        # Output Tensor
        out.shape = [2, 3]
        out.data = [[111., 222., 333.],
                    [444., 555., 666.]]
K
kavyasrinet 已提交
492 493

    Args:
494 495 496 497
        input (list): A list of Variables which hold input Tensors with the same
            data type and shape. Optional data types are: float32, float64, int32, int64.
        out (Variable, optional): Output Tensor. It can be any existing Variable.
            The default value is None, then a new Variable will be created and returned.
K
kavyasrinet 已提交
498 499

    Returns:
500 501
        Variable: The sum of inputs. The shape and data type is the same with input. \
            If :code:`out` is not None, the returned value is :code:`out` .
K
kavyasrinet 已提交
502 503

    Examples:
F
fengjiayi 已提交
504
        .. code-block:: python
K
kavyasrinet 已提交
505

506 507 508 509 510 511 512 513 514
            import paddle.fluid as fluid

            x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1)
            x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2)
            x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3)
            x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0)

            # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum0 = fluid.layers.sums(input=[x0, x1, x2])
515

516 517
            # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3)
Y
Yu Yang 已提交
518
    """
519 520 521 522 523 524 525 526 527
    check_type(input, 'input', (Variable, tuple, list), 'sums')
    if isinstance(input, list) or isinstance(input, tuple):
        for input_section in input:
            check_variable_and_dtype(input_section, "input", \
                    ['float32', 'float64', 'int32', 'int64'], 'sums')
    else:
        check_variable_and_dtype(input, "input", \
                ['float32', 'float64', 'int32', 'int64'], 'sums')

Y
Yu Yang 已提交
528 529
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
530 531
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
532 533 534 535
    else:
        check_variable_and_dtype(
            out, "out", ['float32', 'float64', 'int32', 'int64'], 'sums')

T
tensor-tang 已提交
536 537 538 539 540
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
541 542 543
    return out


F
fengjiayi 已提交
544
def assign(input, output=None):
545
    """
S
swtkiwi 已提交
546

547
    The OP copies the :attr:`input` to the :attr:`output`.
548

549
    Parameters:
550 551 552 553
        input (Tensor|numpy.ndarray|list|tuple|scalar): A tensor, numpy ndarray, tuple/list of scalar,
            or scalar. Its data type supports float16, float32, float64, int32, int64, and bool.
            Note: the float64 data will be converted to float32 because of current platform protobuf
            data limitation.
554
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
555
            be created as :attr:`output`. Default: None.
556 557

    Returns:
558
        Tensor: A tensor with the same shape, data type and value as :attr:`input`.
559 560 561

    Examples:
        .. code-block:: python
562

563
          import paddle
564
          import numpy as np
565
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
566 567 568 569
          array = np.array([[1, 1],
                            [3, 4],
                            [1, 3]]).astype(np.int64)
          result1 = paddle.zeros(shape=[3, 3], dtype='float32')
570 571 572
          paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
          result2 = paddle.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
573
    """
Y
Yu Yang 已提交
574
    helper = LayerHelper('assign', **locals())
575 576
    check_type(input, 'input', (Variable, numpy.ndarray, list, tuple, float,
                                int, bool), 'assign')
577 578
    is_inplace = True if output is not None else False

579 580 581 582 583
    if numpy.isscalar(input) and not isinstance(input, str):
        input = numpy.array([input])
    elif isinstance(input, (list, tuple)):
        input = numpy.array(input)

X
xuwei06 已提交
584
    if isinstance(input, Variable):
585 586 587 588
        check_dtype(
            input.dtype, 'input',
            ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
            'assign', '(When the type of input in assign is Variable.)')
589 590 591
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
592
        helper.append_op(
R
robot 已提交
593
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
594 595
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
596 597 598 599 600 601 602 603
        if dtype == VarDesc.VarType.FP64:
            # Setting FP64 numpy data is not supported in Paddle, so we
            # use FP32 here
            warnings.warn(
                "paddle.assign doesn't support float64 input now due "
                "to current platform protobuf data limitation, we convert "
                "it to float32")
            dtype = VarDesc.VarType.FP32
604 605 606 607
        if dtype == VarDesc.VarType.BOOL:
            value_name = "bool_values"
            values = [bool(v) for v in input.flat]
        elif dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
608
            value_name = "fp32_values"
609
            values = [float(v) for v in input.flat]
610
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
611
            value_name = "int32_values"
612
            values = [int(v) for v in input.flat]
613 614 615
        elif dtype == VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
616
        else:
617 618
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
619
                "the data type of 'input' must be bool, float32, int32 or int64, but "
620
                "received %s." % convert_dtype(dtype))
621 622 623
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
624 625 626
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
627 628 629 630 631 632
        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
633
                value_name: values
X
xuwei06 已提交
634 635
            })

636 637 638
    if is_inplace and in_dygraph_mode():
        output._bump_inplace_version()

Y
Yu Yang 已提交
639 640 641
    return output


642
def fill_constant(shape, dtype, value, force_cpu=False, out=None, name=None):
Y
Yu Yang 已提交
643
    """
S
swtkiwi 已提交
644

W
wangchaochaohu 已提交
645
    This OP creates a Tensor with specified `shape` and `dtype`, and
T
tianshuo78520a 已提交
646
    initializes it with a constant specified by `value`.
K
kavyasrinet 已提交
647

T
tianshuo78520a 已提交
648
    The attribute `stop_gradient` of the created Tensor is set to True.
649 650

    Args:
651 652 653
        shape(list|tuple|Tensor): Shape of the output Tensor, the data type of ``shape`` is int32 or int64.
            If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
            If ``shape`` is an Tensor, it should be an 1-D Tensor with date type int32 or int64.
W
wangchaochaohu 已提交
654
        dtype(np.dtype|str): Data type of the output Tensor which can
655
            be float16, float32, float64, uint8, int32, int64.
656 657 658 659 660 661
        value(bool|float|int|Tensor): The constant value used to initialize 
            the Tensor to be created. If ``value`` is an Tensor, it should be an 1-D Tensor.
        force_cpu(bool, optional): data should be on CPU if it's true, default value is False.
        out(Tensor, optional): Optional output which can be any created 
            Tensor that meets the requirements to store the result of operation.
            if ``out`` is None, a new Tensor will be create to store the result.
662 663
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
664 665

    Returns:
666
        Tensor: Tensor which is created according to shape and dtype.
W
wangchaochaohu 已提交
667

668 669 670
    Examples:
        .. code-block:: python

671
          import paddle.fluid as fluid
672
          # attr shape is a list which doesn't contain  Tensor.
673 674
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') # data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1)
675
          # data1=[[5], [5]] data2=[[5], [5]]
676

677
          # attr shape is a list which contains Tensor.
678
          positive_2 = fluid.layers.fill_constant([1], "int32", 2)
679
          data3 = fluid.layers.fill_constant(shape=[1, positive_2], dtype='float32', value=1.5) # data3=[[1.5, 1.5]]
680

681
          # attr shape is a Tensor.
682
          shape = fluid.layers.fill_constant([2], "int32", 2) # shape=[2,2]
683
          data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]]
W
wangchaochaohu 已提交
684
          
685
          # attr value is a Tensor.
W
wangchaochaohu 已提交
686 687
          val = fluid.layers.fill_constant([1], "float32", 2.0) # val=[2.0]
          data5 = fluid.layers.fill_constant(shape=[2,1], value=val, dtype='float32') #data5=[[2.0],[2.0]]
Y
Yu Yang 已提交
688
    """
689

W
wangchaochaohu 已提交
690
    attrs = {'force_cpu': force_cpu}
691
    dtype = convert_dtype(dtype)
692
    if not isinstance(value, Variable):
693
        if dtype in ['uint8', 'int64', 'int32']:
W
wangchaochaohu 已提交
694
            attrs['str_value'] = str(int(value))
695
            attrs['value'] = int(value)
W
wangchaochaohu 已提交
696 697
        else:
            attrs['str_value'] = str(float(value))
698
            attrs['value'] = float(value)
699 700

    if in_dygraph_mode():
701
        shape = utils.convert_shape_to_list(shape)
702 703
        if out is None:
            out = _varbase_creator(dtype=dtype)
W
wangchaochaohu 已提交
704 705

        if isinstance(value, Variable):
706
            if dtype in ['uint8', 'int64', 'int32']:
707
                attrs['str_value'] = str(int(value.numpy().item(0)))
W
wangchaochaohu 已提交
708
            else:
709
                attrs['str_value'] = str(float(value.numpy().item(0)))
W
wangchaochaohu 已提交
710

711 712
        core.ops.fill_constant(out, 'value',
                               float(value), 'force_cpu', force_cpu, 'dtype',
713 714
                               out.dtype, 'str_value', attrs['str_value'],
                               'shape', shape)
715 716 717
        out.stop_gradient = True
        return out

718 719 720
    helper = LayerHelper("fill_constant", **locals())
    inputs = {}
    if isinstance(value, Variable):
721 722
        if convert_dtype(value.dtype) != dtype:
            value = cast(value, dtype)
723 724
        inputs['ValueTensor'] = value

725
    check_shape(shape)
726 727 728 729
    check_dtype(
        dtype, 'dtype',
        ['bool', 'float16', 'float32', 'float64', 'uint8', 'int32', 'int64'],
        'fill_constant')
730
    check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')
731

732 733 734 735 736
    if out is not None:
        check_variable_and_dtype(out, 'out', [convert_dtype(dtype)],
                                 'fill_constant')

    helper = LayerHelper("fill_constant", **locals())
737
    utils.get_shape_tensor_inputs(
738
        inputs=inputs, attrs=attrs, shape=shape, op_type='fill_constant')
L
liym27 已提交
739

Y
Yu Yang 已提交
740
    if out is None:
X
Xin Pan 已提交
741
        out = helper.create_variable_for_type_inference(dtype=dtype)
L
liym27 已提交
742
    attrs['dtype'] = out.dtype
Y
Yu Yang 已提交
743 744
    helper.append_op(
        type='fill_constant',
L
liym27 已提交
745
        inputs=inputs,
Y
Yu Yang 已提交
746
        outputs={'Out': [out]},
L
liym27 已提交
747
        attrs=attrs,
M
minqiyang 已提交
748
        stop_gradient=True)
Y
Yu Yang 已提交
749 750 751 752
    out.stop_gradient = True
    return out


753
@deprecated(since='1.8.0', update_to="paddle.fluid.layers.fill_constant")
Y
yuyang18 已提交
754
@templatedoc()
Y
Yu Yang 已提交
755 756 757 758 759
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
G
Guo Sheng 已提交
760 761
                                  output_dim_idx=0,
                                  force_cpu=False):
762
    """
T
tianshuo78520a 已提交
763
    This OP creates a Tesnor according the shape and dtype, and initializes the
W
wangchaochaohu 已提交
764 765 766 767
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
768 769

    Args:
W
wangchaochaohu 已提交
770 771 772 773 774 775 776 777 778 779 780
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
        value(float|int): The constant value used to initialize the Tensor to be created. 
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
T
tianshuo78520a 已提交
781
        force_cpu(bool): data should be on CPU if it's true, default value is False.
Y
yuyang18 已提交
782 783

    Returns:
W
wangchaochaohu 已提交
784
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
785 786 787 788 789

    Examples:

        .. code-block:: python

790
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
791
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
792
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
793
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
794

795
    """
Y
Yu Yang 已提交
796
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
797
    out = helper.create_variable_for_type_inference(dtype=dtype)
798 799 800 801 802 803
    attrs = {
        'shape': shape,
        'dtype': out.dtype,
        'value': float(value),
        'input_dim_idx': input_dim_idx,
        'output_dim_idx': output_dim_idx,
804
        'force_cpu': force_cpu
805 806 807 808 809
    }
    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))
Y
Yu Yang 已提交
810 811 812 813
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
814
        attrs=attrs)
Y
Yu Yang 已提交
815 816 817 818
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
819 820
def argmin(x, axis=0):
    """
821 822 823
	:alias_main: paddle.argmin
	:alias: paddle.argmin,paddle.tensor.argmin,paddle.tensor.search.argmin
	:old_api: paddle.fluid.layers.argmin
S
swtkiwi 已提交
824

S
sneaxiy 已提交
825 826
    **argmin**

827 828
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
829 830

    Args:
831 832 833 834 835
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
836

S
sneaxiy 已提交
837
    Returns:
838
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
839

S
sneaxiy 已提交
840 841
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
842

843
            import paddle.fluid as fluid
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmin(x=x, axis=-1)
                out2 = fluid.layers.argmin(x=x, axis=0)
                out3 = fluid.layers.argmin(x=x, axis=1)
                out4 = fluid.layers.argmin(x=x, axis=2)
                print(out1.numpy())
                # [[0 0 2]
                #  [1 0 2]]
                print(out2.numpy())
                # [[0 1 1 1]
                #  [0 0 0 0]
                #  [1 1 1 0]]
                print(out3.numpy())
                # [[1 1 1 2]
                #  [2 0 2 0]]
                print(out4.numpy())
                # [[0 0 2]
                #  [1 0 2]]
S
sneaxiy 已提交
871
    """
872 873 874
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmin')
S
sneaxiy 已提交
875
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
876
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
877 878 879 880 881
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
882
    out.stop_gradient = True
S
sneaxiy 已提交
883 884 885 886 887 888 889
    return out


def argmax(x, axis=0):
    """
    **argmax**

890 891
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
892 893

    Args:
894 895 896 897 898
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
899

S
sneaxiy 已提交
900
    Returns:
901
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
902

S
sneaxiy 已提交
903 904
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
905

906
            import paddle.fluid as fluid
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmax(x=x, axis=-1)
                out2 = fluid.layers.argmax(x=x, axis=0)
                out3 = fluid.layers.argmax(x=x, axis=1)
                out4 = fluid.layers.argmax(x=x, axis=2)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
S
sneaxiy 已提交
934
    """
935 936 937
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmax')
S
sneaxiy 已提交
938
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
939
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
940 941 942 943 944
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
945
    out.stop_gradient = True
S
sneaxiy 已提交
946 947 948
    return out


949
def argsort(input, axis=-1, descending=False, name=None):
Y
Yibing Liu 已提交
950
    """
951 952 953
	:alias_main: paddle.argsort
	:alias: paddle.argsort,paddle.tensor.argsort,paddle.tensor.search.argsort
	:old_api: paddle.fluid.layers.argsort
S
swtkiwi 已提交
954

955 956 957
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
Y
Yibing Liu 已提交
958 959

    Args:
960 961 962 963 964
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
965 966 967
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
968 969 970
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
Y
Yibing Liu 已提交
971 972

    Returns:
973 974 975
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
Y
Yibing Liu 已提交
976 977 978 979

    Examples:
        .. code-block:: python

980
            import paddle.fluid as fluid
981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argsort(input=x, axis=-1)
                out2 = fluid.layers.argsort(input=x, axis=0)
                out3 = fluid.layers.argsort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
Y
Yibing Liu 已提交
1022
    """
1023 1024 1025
    check_variable_and_dtype(
        input, 'input',
        ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'], 'argsort')
Y
Yibing Liu 已提交
1026
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
1027 1028 1029 1030
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
1031 1032 1033 1034
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
1035
                 'Indices': ids},
1036 1037
        attrs={'axis': axis,
               'descending': descending})
Y
Yibing Liu 已提交
1038 1039 1040
    return out, ids


Y
Yang Yu 已提交
1041
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
1042
    """
1043 1044
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1045

1046
    Parameters:
1047
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of shape is int32 or int64.
W
wangchaochaohu 已提交
1048
        dtype (np.dtype|str): Data type of output Tensor, it supports
1049
            bool, float16, float32, float64, int32 and int64.
1050 1051
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1052
            Default: False.
1053 1054

    Returns:
1055
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
1056 1057 1058 1059

    Examples:
        .. code-block:: python

1060
          import paddle.fluid as fluid
1061 1062 1063 1064 1065
          data0 = fluid.layers.ones(shape=[2, 4], dtype='float32') # [[1., 1., 1., 1.], [1., 1., 1., 1.]]
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.ones(shape=shape, dtype='int32') #[[1, 1], [1, 1]]
Y
Yu Yang 已提交
1066 1067 1068 1069
    """
    return fill_constant(value=1.0, **locals())


1070
def zeros(shape, dtype, force_cpu=False, name=None):
Y
Yu Yang 已提交
1071
    """
1072 1073
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1074

1075
    Parameters:
1076
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
1077
        dtype (np.dtype|str): Data type of output Tensor, it supports
1078
            bool, float16, float32, float64, int32 and int64.
1079 1080
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1081
            Default: False.
1082 1083
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
1084 1085

    Returns:
1086
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
1087 1088 1089 1090

    Examples:
        .. code-block:: python

1091
          import paddle.fluid as fluid
1092
          data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
1093 1094 1095 1096
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.zeros(shape=shape, dtype='int32') #[[0, 0], [0, 0]]
Y
Yu Yang 已提交
1097 1098
    """
    return fill_constant(value=0.0, **locals())
1099 1100


F
fengjiayi 已提交
1101 1102
def reverse(x, axis):
    """
1103 1104 1105
	:alias_main: paddle.reverse
	:alias: paddle.reverse,paddle.tensor.reverse,paddle.tensor.manipulation.reverse
	:old_api: paddle.fluid.layers.reverse
S
swtkiwi 已提交
1106

1107
    The OP reverses the tensor :attr:`x` along the given :attr:`axis`.
F
fengjiayi 已提交
1108

1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
    .. code-block:: text

        Case 1:

            Given a LoDTensor:
                x = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
                axis = [0, 1]

            Then:
                output = [[8, 7, 6], [5, 4, 3], [2, 1, 0]]

        Case 2:

            Given a LoDTensorArray:
                x = {[[0, 1], [2, 3]],
                     [[4, 5, 6]],
                     [[7],[8], [9]]}
                axis = 0

            Then:
                output = {[[7],[8], [9]],
                          [[4, 5, 6]],
                          [[0, 1], [2, 3]]}

1133
    Parameters:
1134 1135
        x (Variable): A tensor or LoDTensorArray to be reversed, its data type supports bool, float32, float64, int32, int64 and uint8.
                      If input is a LoDTensorArray, returns a new reversed LoDTensorArray without changing the internal order of each inner tensor.
1136 1137
        axis (int|tuple|list): A dimension or a set of dimensions of :attr:`x` to reverse. Must be
            in the range [-rank( :attr:`x` ), rank( :attr:`x` )). If it is a tuple or a list, reversing
1138 1139
            will be apply on each axis in the tuple or list. If input is a LoDTensorArray, the value of axis shall be 0, or a
            list [0] or tuple (0, ) with shape [1].
F
fengjiayi 已提交
1140 1141

    Returns:
1142
        Variable: The reversed tensor with the same shape and data type as :attr:`x`.
F
fengjiayi 已提交
1143 1144 1145 1146

    Examples:
        .. code-block:: python

1147
          import paddle.fluid as fluid
1148 1149 1150 1151
          import numpy as np
          data = fluid.layers.assign(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype='float32')) # [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]
          result1 = fluid.layers.reverse(data, 0) # [[6., 7., 8.], [3., 4., 5.], [0., 1., 2.]]
          result2 = fluid.layers.reverse(data, [0, 1]) # [[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]]
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161

          # example of LoDTensorArray
          data1 = fluid.layers.assign(np.array([[0, 1, 2]], dtype='float32'))
          data2 = fluid.layers.assign(np.array([[3, 4, 5]], dtype='float32'))
          tensor_array = fluid.layers.create_array(dtype='float32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
          fluid.layers.array_write(data1, i, tensor_array)
          fluid.layers.array_write(data2, i+1, tensor_array)

          reversed_tensor_array = fluid.layers.reverse(tensor_array, 0) # {[[3, 4, 5]], [[0, 1, 2]]}
F
fengjiayi 已提交
1162
    """
1163 1164 1165
    check_variable_and_dtype(
        x, 'x', ('float32', 'float64', 'int32', 'int64', 'uint8'), 'reverse')
    check_type(axis, 'axis', (int, tuple, list), 'reverse')
F
fengjiayi 已提交
1166 1167 1168
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
1169
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
1170 1171
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
1172
        inputs={'X': x},
F
fengjiayi 已提交
1173 1174 1175 1176 1177
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


1178 1179 1180 1181 1182 1183 1184
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
1185 1186 1187
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
1203 1204
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
1205
        file_path(str): The file path where variables will be saved.
1206
        overwrite(bool): Whether or not cover the given file when it has already
1207 1208
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1209 1210 1211 1212 1213 1214 1215 1216

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

1217
            import paddle.fluid as fluid
1218 1219 1220 1221 1222 1223 1224
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
T
tianshuo78520a 已提交
1237
    Loads a list of variable from a single file.
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
1249 1250 1251 1252 1253 1254 1255


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
S
Steffy-zxf 已提交
1256
       x (Tensor): The Tensor to be checked.
1257 1258

    Returns:
S
Steffy-zxf 已提交
1259
       Tensor: The tensor storing the output, only a bool value, indicating that whether there is infinity number in x or not.
1260 1261 1262 1263
    
    Examples:
        .. code-block:: python
          
S
Steffy-zxf 已提交
1264 1265
          import paddle
          data = paddle.randn(shape=[4, 32, 32], dtype="float32")
1266
          res = paddle.fluid.layers.has_inf(data)
S
Steffy-zxf 已提交
1267
          # [False]
1268

1269
    """
S
Steffy-zxf 已提交
1270 1271 1272
    if in_dygraph_mode():
        return core.ops.isinf(x)

1273
    check_type(x, 'x', (Variable), 'has_inf')
1274
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
1275
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1276 1277 1278 1279 1280 1281 1282 1283 1284
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
S
Steffy-zxf 已提交
1285
       x (Tensor): The Tensor to be checked.
1286 1287

    Returns:
S
Steffy-zxf 已提交
1288
       Tensor: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
1289 1290 1291 1292
    
    Examples:
        .. code-block:: python
    
S
Steffy-zxf 已提交
1293 1294
          import paddle
          data = paddle.randn(shape=[2,3], dtype="float32")
1295
          res = paddle.fluid.layers.has_nan(data)
S
Steffy-zxf 已提交
1296
          # [False]
1297

1298
    """
S
Steffy-zxf 已提交
1299 1300 1301
    if in_dygraph_mode():
        return core.ops.isnan(x)

1302
    check_type(x, 'x', (Variable), 'has_nan')
1303
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
1304
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1305 1306 1307 1308 1309 1310
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
S
swtkiwi 已提交
1311

1312 1313 1314 1315
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
N
Noel 已提交
1316
        x(Tensor): The Tensor to be checked.
1317 1318

    Returns:
N
Noel 已提交
1319
        Tensor: The tensor storing the output, contains a bool value.
1320 1321 1322 1323 1324

    Examples:

        .. code-block:: python

N
Noel 已提交
1325 1326 1327 1328 1329 1330
            import paddle

            x = paddle.rand(shape=[4, 6], dtype='float32')
            y = paddle.fluid.layers.isfinite(x)
            print(y)

1331
    """
1332 1333
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "isfinite")
1334
    helper = LayerHelper("isfinite", **locals())
1335

1336
    out = helper.create_variable_for_type_inference(dtype='bool')
1337 1338
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
1339 1340


1341
def range(start, end, step, dtype, name=None):
W
whs 已提交
1342
    """
1343
    This OP returns a 1-D Tensor with spaced values within a given interval.
W
whs 已提交
1344

1345 1346
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
1347

1348 1349
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
W
whs 已提交
1350

L
Liufang Sang 已提交
1351
    Parameters:
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``start`` is a Tensor, it is a 1-D Tensor with shape [1],
            with data type int32, int64, float32, float64.
        end(float|int|Tensor): End of interval. The interval does not include
            this value. If ``end`` is a Tensor, it is a 1-D Tensor with shape
            [1], with data type int32, int64, float32, float64.
        step(float|int|Tensor): Spacing between values. For any out, it is
            the istance between two adjacent values, out[i+1] - out[i]. If
            ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with data
            type int32, int64, float32, float64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: int32, int64, float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns: 
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
            taken with common difference ``step`` beginning from ``start``. Its
            data type is set by ``dtype``.

    Raises:
        TypeError: If ``dtype`` is not int32, int64, float32, float64.
W
whs 已提交
1375 1376 1377 1378 1379

    examples:

        .. code-block:: python

1380
            import paddle.fluid as fluid
W
whs 已提交
1381

1382 1383
            out1 = fluid.layers.range(0, 10, 2, 'int32')
            # [0, 2, 4, 6, 8]
W
whs 已提交
1384

1385 1386 1387 1388 1389 1390 1391
            start_var = fluid.layers.fill_constant([1], 'int64', 3)
            out2 = fluid.layers.range(start_var, 7, 1, 'int64')
            # [3, 4, 5, 6]

    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1392

1393 1394 1395 1396 1397
    out_shape = None
    if not isinstance(start, Variable) and not isinstance(
            end, Variable) and not isinstance(step, Variable):
        out_shape = [int(math.ceil((end - start) / step))]

W
whs 已提交
1398
    if not isinstance(start, Variable):
1399
        with device_guard("cpu"):
1400
            start = fill_constant([1], dtype, start, force_cpu=True)
1401 1402
    elif start.dtype != dtype:
        start = cast(start, dtype)
1403

W
whs 已提交
1404
    if not isinstance(end, Variable):
1405
        with device_guard("cpu"):
1406
            end = fill_constant([1], dtype, end, force_cpu=True)
1407 1408
    elif end.dtype != dtype:
        end = cast(end, dtype)
1409

W
whs 已提交
1410
    if not isinstance(step, Variable):
1411
        with device_guard("cpu"):
1412
            step = fill_constant([1], dtype, step, force_cpu=True)
1413 1414
    elif step.dtype != dtype:
        step = cast(step, dtype)
W
whs 已提交
1415

1416 1417
    if in_dygraph_mode():
        return core.ops.range(start, end, step)
W
whs 已提交
1418

1419 1420 1421
    check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'],
                'range/arange')
    helper = LayerHelper('range', **locals())
1422
    out = helper.create_variable_for_type_inference(dtype, shape=out_shape)
W
whs 已提交
1423 1424 1425 1426 1427
    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
1428
        outputs={'Out': out})
1429
    out.stop_gradient = True
W
whs 已提交
1430
    return out
Z
zhoukunsheng 已提交
1431 1432


1433
def linspace(start, stop, num, dtype=None, name=None):
1434
    r"""
1435
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
1436 1437

    Args:
1438 1439 1440 1441
        start(int|float|Tensor): The input :attr:`start` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
1442
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int scalar, \
1443
            or a Tensor of shape [1] with data type int32.
W
wangchaochaohu 已提交
1444
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
1445
            int32, int64, float32 and float64. Default: if None, the data type is float32.
1446 1447
        name(str, optional): Normally there is no need for user to set this property. 
            For more information, please refer to :ref:`api_guide_Name`.Default: None.
Z
zhoukunsheng 已提交
1448 1449

    Returns:
1450
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
1451 1452
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 
Z
zhoukunsheng 已提交
1453

Z
zhoukunsheng 已提交
1454
    Examples:
Z
zhoukunsheng 已提交
1455 1456
        .. code-block:: python

1457 1458 1459
             import paddle
             data = paddle.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = paddle.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
1460 1461

    """
1462 1463
    if dtype is None:
        dtype = 'float32'
1464 1465 1466
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
1467 1468
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'linspace')
1469 1470
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
Z
zhoukunsheng 已提交
1471
    if not isinstance(start, Variable):
1472 1473
        with device_guard("cpu"):
            tensor_start = fill_constant([1], dtype, start)
Z
zhoukunsheng 已提交
1474
    if not isinstance(stop, Variable):
1475 1476
        with device_guard("cpu"):
            tensor_stop = fill_constant([1], dtype, stop)
Z
zhoukunsheng 已提交
1477
    if not isinstance(num, Variable):
1478 1479
        with device_guard("cpu"):
            tensor_num = fill_constant([1], 'int32', num)
1480
    if in_dygraph_mode():
1481 1482
        return core.ops.linspace(tensor_start, tensor_stop, tensor_num, 'dtype',
                                 dtype)
1483 1484 1485

    helper = LayerHelper("linspace", **locals())

1486 1487 1488
    start_dtype = convert_dtype(tensor_start.dtype)
    stop_dtype = convert_dtype(tensor_stop.dtype)
    out_dtype = convert_dtype(dtype)
1489
    if isinstance(start, Variable):
1490 1491
        check_dtype(start.dtype, 'start',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1492 1493
    else:
        check_type(start, 'start', (int, float), 'linspace')
Z
zhoukunsheng 已提交
1494

1495
    if isinstance(stop, Variable):
1496 1497
        check_dtype(stop.dtype, 'stop',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1498 1499 1500 1501 1502 1503
    else:
        check_type(stop, 'stop', (int, float), 'linspace')
    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'linspace')
    check_dtype(dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'],
                'linspace')
1504 1505 1506 1507 1508 1509 1510 1511
    if ((stop_dtype == "float64" or start_dtype == "float64") and
            out_dtype in ["float32", "int32"]) or ((stop_dtype == "int64" or
                                                    start_dtype == "int64") and
                                                   out_dtype == "int32"):
        raise ValueError(
            "The dtype of start/stop is {}/{} but the attr(dtype) of linspace is {}, "
            "which may cause data type overflows. Please reset attr(dtype) of linspace."
            .format(start_dtype, stop_dtype, dtype))
1512 1513

    out = helper.create_variable_for_type_inference(dtype=dtype)
Z
zhoukunsheng 已提交
1514 1515 1516

    helper.append_op(
        type='linspace',
1517 1518 1519 1520
        inputs={'Start': tensor_start,
                'Stop': tensor_stop,
                'Num': tensor_num},
        attrs={'dtype': dtype},
Z
zhoukunsheng 已提交
1521
        outputs={'Out': [out]})
1522 1523
    if isinstance(num, int):
        out.desc.set_shape((num, ))
Z
zhoukunsheng 已提交
1524
    return out
1525 1526


Z
zhoukunsheng 已提交
1527 1528
def zeros_like(x, out=None):
    """
1529
    This OP creates a zeros tensor which has identical shape and dtype 
Z
zhoukunsheng 已提交
1530 1531 1532
    with `x`.

    Args:
1533 1534 1535 1536 1537 1538
        x(Variable): The input tensor which specifies shape and dtype, the
            input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the
            variable as output, the data type and shape of this variable will
            be same as input :attr:`x`. If is a tensor, the data type and shape
            need to be same as input :attr:`x`. The default value is :attr:`None` .
Z
zhoukunsheng 已提交
1539 1540

    Returns:
1541 1542 1543
        Variable: The N-D tensor, the element in tensor is related to input
            data type, if the input data type is bool, the output value is
            False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
1544 1545 1546 1547

    Examples:
        .. code-block:: python

1548
          import paddle.fluid as fluid
1549
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
1550 1551
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
1552 1553
    """

1554 1555
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1556 1557 1558
    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1559 1560 1561
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
1562
            'zeros_like')
1563

Z
zhoukunsheng 已提交
1564 1565 1566 1567
    helper.append_op(
        type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]})
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1568 1569


1570
@deprecated(since="2.0.0", update_to="paddle.diag")
Z
zhoukunsheng 已提交
1571
def diag(diagonal):
1572
    r"""
1573 1574 1575
	:alias_main: paddle.diag
	:alias: paddle.diag,paddle.tensor.diag,paddle.tensor.creation.diag
	:old_api: paddle.fluid.layers.diag
S
swtkiwi 已提交
1576

1577
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
1578 1579

    Args:
1580 1581
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
1582 1583

    Returns:
1584 1585
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
1586 1587 1588 1589 1590 1591 1592

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
1593 1594 1595

          import paddle.fluid as fluid
          import numpy as np
1596 1597 1598
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1599 1600

    """
1601 1602 1603
    check_type(diagonal, 'diagonal', (Variable, numpy.ndarray), 'diag')
    check_dtype(diagonal.dtype, 'diagonal',
                ['float32', 'float64', 'int32', 'int64'], 'diag')
Z
zhoukunsheng 已提交
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

    helper.append_op(
        type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]})

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1616 1617


1618 1619 1620 1621 1622
def eye(num_rows,
        num_columns=None,
        batch_shape=None,
        dtype='float32',
        name=None):
1623
    """
1624
    This function constructs a or a batch of 2-D tensor with ones on the diagonal and zeros elsewhere. 
1625 1626 1627

    Args:
        num_rows(int): the number of rows in each batch tensor.
1628 1629
        num_columns(int, optional): the number of columns in each batch tensor.
            If None, default: num_rows.
1630 1631
        batch_shape(list, optional): If provided, the returned tensor will have a leading
            batch size of this shape, the data type of ``batch_shape`` is int. Default is None.
W
wangchaochaohu 已提交
1632
        dtype(np.dtype|str, optional): The data type of the returned tensor.
1633 1634 1635 1636
            It should be int32, int64, float16, float32, float64, default is 'float32'.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
1637 1638

    Returns:
1639
        Tensor: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1640 1641 1642 1643 1644

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1645 1646
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1647
          #  [0, 1, 0]
1648 1649
          #  [0, 0, 1]]

1650
          data = fluid.layers.eye(2, 3, dtype='int32')
1651
          # [[1, 0, 0]
1652
          #  [0, 1, 0]]
1653 1654

          data = fluid.layers.eye(2, batch_shape=[3])
1655 1656 1657 1658 1659
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

1660 1661
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1662 1663 1664 1665 1666
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688

    if in_dygraph_mode():
        out = core.ops.eye('dtype', dtype, 'num_rows', num_rows, 'num_columns',
                           num_columns)

    else:
        helper = LayerHelper("eye", **locals())
        check_dtype(dtype, 'dtype',
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'eye')
        if not isinstance(num_rows, int) or num_rows < 0:
            raise TypeError("num_rows should be a non-negative int")
        out = helper.create_variable_for_type_inference(dtype=dtype)
        helper.append_op(
            type='eye',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'num_rows': num_rows,
                'num_columns': num_columns,
                'dtype': dtype
            },
            stop_gradient=True)
1689 1690

    if batch_shape is not None:
1691 1692 1693 1694 1695
        re_shape = [1] * len(batch_shape)
        re_shape = re_shape + [num_rows, num_columns]
        expand_times = batch_shape + [1, 1]
        if in_dygraph_mode():
            out = core.ops.reshape(out, 'shape', re_shape)
1696
            return core.ops.expand(out, None, 'expand_times', expand_times)
1697

1698 1699
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
1700
        for batch_val in (batch_shape):
1701 1702
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
1703 1704 1705 1706 1707 1708

        from .nn import reshape, expand
        out = reshape(x=out, shape=re_shape)
        out = expand(x=out, expand_times=expand_times)

    out.stop_gradient = True
1709 1710 1711
    return out


Z
zhoukunsheng 已提交
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
def ones_like(x, out=None):
    """
    **ones_like**

    This function creates a ones tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1724
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """
1735 1736
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1737 1738 1739 1740

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1741 1742 1743 1744
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
            'ones_like')
Z
zhoukunsheng 已提交
1745 1746 1747 1748 1749 1750
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': 1.0},
        outputs={'Out': [out]})
    return out
Y
yaoxuefeng 已提交
1751 1752 1753 1754 1755 1756


@deprecated(since="2.0.0", update_to="paddle.triu")
def triu(input, diagonal=0, name=None):
    import paddle
    return paddle.tensor.triu(x=input, diagonal=diagonal, name=name)