tensor.py 19.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
from ..layer_helper import LayerHelper
18
from ..param_attr import ParamAttr
X
xuwei06 已提交
19 20
from ..framework import convert_np_dtype_to_dtype_
from ..framework import Variable
21
from ..initializer import Constant, force_init_on_cpu
22
from ..core import VarDesc
23
from .layer_function_generator import templatedoc
X
xuwei06 已提交
24
import numpy
Y
Yu Yang 已提交
25 26

__all__ = [
27 28
    'create_tensor',
    'create_parameter',
Q
Qiao Longfei 已提交
29
    'create_global_var',
30 31 32 33 34 35
    'cast',
    'concat',
    'sums',
    'assign',
    'fill_constant_batch_size_like',
    'fill_constant',
S
sneaxiy 已提交
36 37
    'argmin',
    'argmax',
Y
Yibing Liu 已提交
38
    'argsort',
39 40
    'ones',
    'zeros',
Q
qiaolongfei 已提交
41
    'reverse',
Y
Yu Yang 已提交
42 43 44
]


X
xuwei06 已提交
45
def create_tensor(dtype, name=None, persistable=False):
46
    """
Q
update  
qiaolongfei 已提交
47
    Create an variable, which will hold a LoDTensor with data type dtype.
48 49

    Args:
Q
update  
qiaolongfei 已提交
50
        dtype(string): 'float32'|'int32'|..., the data type of the
51
            created tensor.
Q
update  
qiaolongfei 已提交
52
        name(string): The name of the created tensor, if not set,
53
            the name will be a random unique one.
Q
update  
qiaolongfei 已提交
54
        persistable(bool): Set the persistable flag of the create tensor.
55 56 57 58 59 60 61 62 63

    Returns:
        Variable: The tensor variable storing the created tensor.

    Examples:
        .. code-block:: python

          tensor = fluid.layers.create_tensor(dtype='float32')
    """
Y
Yu Yang 已提交
64
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
65 66
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
67 68


69 70
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
71
                     name=None,
72 73 74 75
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
Y
yuyang18 已提交
76 77 78 79 80 81
    Create a parameter. The parameter is a learnable variable, which can have
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

82 83 84 85 86 87 88 89 90 91 92
    Args:
        shape(list[int]): shape of the parameter
        dtype(string): element type of the parameter
        attr(ParamAttr): attributes of the parameter
        is_bias(bool): This can affect which default initializer is chosen
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
        default_initializer(Initializer): initializer for the parameter

    Returns:
Y
yuyang18 已提交
93 94 95 96 97 98
        the created parameter.

    Examples:
        >>> W = fluid.layers.create_parameter(shape=[784, 200], dtype='float32')
        >>> data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
        >>> hidden = fluid.layers.matmul(x=data, y=W)
99
    """
Q
Qiao Longfei 已提交
100
    helper = LayerHelper("create_parameter", **locals())
101
    if attr is None:
X
xuwei06 已提交
102
        attr = ParamAttr(name=name)
103 104 105 106
    return helper.create_parameter(attr, shape, dtype, is_bias,
                                   default_initializer)


107 108 109 110 111 112 113
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
F
fengjiayi 已提交
114 115
    Create a new variable in the global block(block 0).

116 117
    Args:
        shape(list[int]): shape of the variable
F
fengjiayi 已提交
118 119 120 121 122 123 124 125 126 127
        value(float): the value of the variable. The new created 
                      variable will be filled with it.
        dtype(string): data type of the variable
        persistable(bool): if this variable is persistable. 
                           Default: False
        force_cpu(bool): force this variable to be on CPU. 
                         Default: False
        name(str|None): The name of the variable. If set to None the variable 
                        name will be generated automatically. 
                        Default: None
128 129 130

    Returns:
        Variable: the created Variable
F
fengjiayi 已提交
131 132 133 134 135 136

    Examples:
        .. code-block:: python

            var = fluid.create_global_var(shape=[2,3], value=1.0, dtype='float32', 
                                 persistable=True, force_cpu=True, name='new_var')
137
    """
Q
Qiao Longfei 已提交
138 139 140 141
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
        dtype=dtype, shape=shape, persistable=persistable, name=name)
    helper.set_variable_initializer(
142 143
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
Q
Qiao Longfei 已提交
144 145 146
    return var


147
def cast(x, dtype):
Y
Yu Yang 已提交
148
    """
Y
Yibing Liu 已提交
149 150 151 152 153 154 155 156 157 158 159 160
    This layer takes in the Variable :attr:`x` with :attr:`x.dtype` and casts 
    it to the output with :attr:`dtype`.

    Args:
        x (Variable): The input Variable for casting.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output Variable.

    Returns:
        Variable: The output Variable after casting.

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
161

Y
Yibing Liu 已提交
162 163
            data = fluid.layers.data(name='x', shape=[13], dtype='float32')
            result = fluid.layers.cast(x=data, dtype='float64')
Y
Yu Yang 已提交
164 165 166 167 168 169 170 171 172 173 174 175
    """
    helper = LayerHelper('cast', **locals())
    out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


176
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
177
    """
178 179 180
    **Concat**

    This function concatenates the input along the axis mentioned
Y
Yu Yang 已提交
181
    and returns that as the output.
182 183 184 185

    Args:
        input(list): List of tensors to be concatenated
        axis(int): Integer axis along which the tensors will be concatenated
186 187
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
188 189 190 191 192 193

    Returns:
        Variable: Output variable of the concatenation

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
194

F
fengjiayi 已提交
195
           out = fluid.layers.concat(input=[Efirst, Esecond, Ethird, Efourth])
Y
Yu Yang 已提交
196 197 198 199 200 201 202 203 204 205 206
    """
    helper = LayerHelper('concat', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='concat',
        inputs={'X': input},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


207
def sums(input, out=None):
F
fengjiayi 已提交
208 209
    """
    This function performs the sum operation on the input and returns the
K
kavyasrinet 已提交
210 211 212 213 214
    result as the output.

    Args:
        input (Variable|list): The input tensor that has the elements
                               that need to be summed up.
F
fengjiayi 已提交
215
        out (Variable|None): Output parameter. The sum result.
F
fengjiayi 已提交
216
                             Default: None
K
kavyasrinet 已提交
217 218

    Returns:
F
fengjiayi 已提交
219
        Variable: the sum of input. The same as the argument 'out'
K
kavyasrinet 已提交
220 221

    Examples:
F
fengjiayi 已提交
222
        .. code-block:: python
K
kavyasrinet 已提交
223 224 225 226 227 228

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          a0 = layers.array_read(array=tmp, i=i)
          i = layers.increment(x=i)
          a1 = layers.array_read(array=tmp, i=i)
Y
Yu Yang 已提交
229 230
          mean_a0 = layers.mean(a0)
          mean_a1 = layers.mean(a1)
K
kavyasrinet 已提交
231
          a_sum = layers.sums(input=[mean_a0, mean_a1])
Y
Yu Yang 已提交
232 233 234 235
    """
    helper = LayerHelper('sum', **locals())
    if out is None:
        out = helper.create_tmp_variable(dtype=helper.input_dtype())
T
tensor-tang 已提交
236 237 238 239 240
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
241 242 243
    return out


F
fengjiayi 已提交
244
def assign(input, output=None):
245 246 247 248 249 250
    """
    **Assign**

    This function copies the *input* Variable to the *output* Variable.

    Args:
X
xuwei06 已提交
251
        input(Variable|numpy.ndarray): The source variable
F
fengjiayi 已提交
252
        output(Variable|None): The destination variable
253 254 255 256 257 258

    Returns:
        Variable: The destination variable that was supplied as the *output*.

    Examples:
        .. code-block:: python
259

260 261 262 263
          out = fluid.layers.create_tensor(dtype='float32')
          hidden = fluid.layers.fc(input=data, size=10)
          fluid.layers.assign(hidden, out)
    """
Y
Yu Yang 已提交
264
    helper = LayerHelper('assign', **locals())
F
fengjiayi 已提交
265 266
    if output is None:
        output = helper.create_tmp_variable(dtype=input.dtype)
X
xuwei06 已提交
267 268
    if isinstance(input, Variable):
        helper.append_op(
R
robot 已提交
269
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
270 271
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
272
        if dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
273
            value_name = "fp32_values"
274
            values = [float(v) for v in input.flat]
275
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
276
            value_name = "int32_values"
277
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
278 279
        else:
            raise ValueError("Unsupported dtype %s", input.dtype)
280 281 282
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
X
xuwei06 已提交
283 284 285 286 287 288 289

        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
290
                value_name: values
X
xuwei06 已提交
291 292 293 294
            })
    else:
        raise ValueError("Wrong type for assign input: %s" % type(input))

Y
Yu Yang 已提交
295 296 297
    return output


Q
QI JUN 已提交
298
def fill_constant(shape, dtype, value, force_cpu=False, out=None):
Y
Yu Yang 已提交
299
    """
300 301
    **fill_constant**

302 303
    This function creates a tensor with specified `shape` and `dtype`, and
    initializes it with a constant specifed by `value`.
K
kavyasrinet 已提交
304

305
    The attribute `stop_gradient` of the created tensor is set to True.
306 307

    Args:
308
        shape(tuple|list|None): Shape of the output tensor.
309
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output tensor.
310 311
        value(float): The constant value used to initialize the output tensor.
        out(Variable): The output tensor.
312
        force_cpu(True|False): data should be on CPU if set true.
313 314

    Returns:
315
        Variable: The tensor variable storing the output.
316 317 318 319 320

    Examples:
        .. code-block:: python

          data = fluid.layers.fill_constant(shape=[1], value=0, dtype='int64')
Y
Yu Yang 已提交
321
    """
322

Y
Yu Yang 已提交
323 324 325 326 327 328 329
    helper = LayerHelper("fill_constant", **locals())
    if out is None:
        out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='fill_constant',
        inputs={},
        outputs={'Out': [out]},
Q
QI JUN 已提交
330 331 332 333
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
334
            'force_cpu': force_cpu or force_init_on_cpu()
Q
QI JUN 已提交
335
        })
Y
Yu Yang 已提交
336 337 338 339
    out.stop_gradient = True
    return out


Y
yuyang18 已提交
340
@templatedoc()
Y
Yu Yang 已提交
341 342 343 344 345
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
346
                                  output_dim_idx=0):
347
    """
Y
yuyang18 已提交
348
    ${comment}
349 350 351

    It also sets *stop_gradient* to True.

Y
yuyang18 已提交
352 353 354
    >>> data = fluid.layers.fill_constant_batch_size_like(
    >>>             input=like, shape=[1], value=0, dtype='int64')

355
    Args:
Y
yuyang18 已提交
356
        input(${input_type}): ${input_comment}.
357

Y
yuyang18 已提交
358
        shape(${shape_type}): ${shape_comment}.
359

Y
yuyang18 已提交
360 361 362
        dtype(${dtype_type}): ${dtype_comment}.

        value(${value_type}): ${value_comment}.
363

Y
yuyang18 已提交
364 365 366 367 368
        input_dim_idx(${input_dim_idx_type}): ${input_dim_idx_comment}.

        output_dim_idx(${output_dim_idx_type}): ${output_dim_idx_comment}.

    Returns:
Y
yuyang18 已提交
369
        ${out_comment}.
370
    """
Y
Yu Yang 已提交
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
    out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx
        })
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
388 389 390 391
def argmin(x, axis=0):
    """
    **argmin**

392
    This function computes the indices of the min elements
S
sneaxiy 已提交
393 394 395 396 397 398
    of the input tensor's element along the provided axis.

    Args:
        x(Variable): The input to compute the indices of
                     the min elements.
        axis(int): Axis to compute indices along.
F
fengjiayi 已提交
399

S
sneaxiy 已提交
400 401
    Returns:
        Variable: The tensor variable storing the output
F
fengjiayi 已提交
402

S
sneaxiy 已提交
403 404
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
405

S
sneaxiy 已提交
406
          out = fluid.layers.argmin(x=in, axis=0)
407
          out = fluid.layers.argmin(x=in, axis=-1)
S
sneaxiy 已提交
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
    """
    helper = LayerHelper("arg_min", **locals())
    out = helper.create_tmp_variable(VarDesc.VarType.INT64)
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


def argmax(x, axis=0):
    """
    **argmax**

423
    This function computes the indices of the max elements
S
sneaxiy 已提交
424 425 426 427 428 429
    of the input tensor's element along the provided axis.

    Args:
        x(Variable): The input to compute the indices of
                     the max elements.
        axis(int): Axis to compute indices along.
F
fengjiayi 已提交
430

S
sneaxiy 已提交
431 432
    Returns:
        Variable: The tensor variable storing the output
F
fengjiayi 已提交
433

S
sneaxiy 已提交
434 435
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
436

S
sneaxiy 已提交
437
          out = fluid.layers.argmax(x=in, axis=0)
438
          out = fluid.layers.argmax(x=in, axis=-1)
S
sneaxiy 已提交
439 440 441 442 443 444 445 446 447 448 449
    """
    helper = LayerHelper("arg_max", **locals())
    out = helper.create_tmp_variable(VarDesc.VarType.INT64)
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


450
def argsort(input, axis=-1, name=None):
Y
Yibing Liu 已提交
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
    """
    Performs sorting on the input Variable along the given axis, and outputs 
    sorted data Varibale and its corresponding index Variable with the same 
    shape as :attr:`input`.

    .. code-block:: text
    
        For example, the given axis is -1 and the input Variable

            input = [[0.15849551, 0.45865775, 0.8563702 ],
                     [0.12070083, 0.28766365, 0.18776911]],

        after argsort, the sorted Vairable becomes

            out = [[0.15849551, 0.45865775, 0.8563702 ],
                   [0.12070083, 0.18776911, 0.28766365]],

        and the sorted indices along the given axis turn outs to be

            indices = [[0, 1, 2], 
                       [0, 2, 1]]

    Args:
        input(Variable): The input Variable for sorting.
        axis(int): The axis along which to sort the input Variable. When 
                   :attr:`axis` < 0, the actual axis will be :attr:`axis` + 
                   rank(:attr:`input`). Default -1, the last dimension.
478 479
        name(str|None): (optional) A name for this layer. If set None, the 
                   layer will be named automatically.
Y
Yibing Liu 已提交
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496

    Returns:
        tuple: A tuple of sorted data Variable and the sorted indices.

    Examples:
        .. code-block:: python

            input = fluid.layers.data(data=[2, 3])
            out, indices = fluid.layers.argsort(input, axis=0)
    """
    helper = LayerHelper("argsort", **locals())
    out = helper.create_tmp_variable(dtype=input.dtype, stop_gradient=True)
    ids = helper.create_tmp_variable(VarDesc.VarType.INT64, stop_gradient=True)
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
497 498
                 'Indices': ids},
        attrs={'axis': axis})
Y
Yibing Liu 已提交
499 500 501
    return out, ids


Y
Yang Yu 已提交
502
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
503
    """
504 505 506 507 508 509 510 511 512
    **ones**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 1.

    It also sets *stop_gradient* to True.

    Args:
        shape(tuple|list|None): Shape of output tensor
513
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor
514 515 516 517 518 519 520 521

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

          data = fluid.layers.ones(shape=[1], dtype='int64')
Y
Yu Yang 已提交
522 523 524 525
    """
    return fill_constant(value=1.0, **locals())


Y
Yang Yu 已提交
526
def zeros(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
527
    """
528 529 530 531 532 533 534 535
    **zeros**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 0.

    It also sets *stop_gradient* to True.

    Args:
W
wanghaoshuang 已提交
536 537 538
        shape(tuple|list|None): Shape of output tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor.
        force_cpu(bool, default False): Whether to make output stay on CPU.
539 540

    Returns:
W
wanghaoshuang 已提交
541
        Variable: The tensor variable storing the output.
542 543 544 545 546

    Examples:
        .. code-block:: python

          data = fluid.layers.zeros(shape=[1], dtype='int64')
Y
Yu Yang 已提交
547 548
    """
    return fill_constant(value=0.0, **locals())
549 550


F
fengjiayi 已提交
551 552 553 554 555 556 557 558
def reverse(x, axis):
    """
    **reverse**

    This function reverse the input 'x' along given axises.

    Args:
        x(Vairbale): the input to be reversed.
559 560 561
        axis(int|tuple|list): Axis that along which order of elements
                    is reversed. If it is a tuple or a list, reversing
                    will be apply on each axis in the tuple or list.
F
fengjiayi 已提交
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584

    Returns:
        Variable: The reversed tensor.

    Examples:
        .. code-block:: python

          out = fluid.layers.reverse(x=in, axis=0)
          # or:
          out = fluid.layers.reverse(x=in, axis=[0,1])
    """
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='reverse',
        inputs={'Input': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


585 586 587 588 589 590 591
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
592 593 594
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
610 611
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
612
        file_path(str): The file path where variables will be saved.
613
        overwrite(bool): Whether or not cover the given file when it has already
614 615
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
    Loads a list of vairables from a single file.

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})