tensor.py 25.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
from ..layer_helper import LayerHelper
18
from ..param_attr import ParamAttr
X
xuwei06 已提交
19 20
from ..framework import convert_np_dtype_to_dtype_
from ..framework import Variable
21
from ..initializer import Constant, force_init_on_cpu
22
from ..core import VarDesc
M
minqiyang 已提交
23
from ..imperative import base as imperative_base
24
from .layer_function_generator import templatedoc
X
xuwei06 已提交
25
import numpy
Y
Yu Yang 已提交
26 27

__all__ = [
W
whs 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
    'create_tensor',
    'create_parameter',
    'create_global_var',
    'cast',
    'tensor_array_to_tensor',
    'concat',
    'sums',
    'assign',
    'fill_constant_batch_size_like',
    'fill_constant',
    'argmin',
    'argmax',
    'argsort',
    'ones',
    'zeros',
    'reverse',
    'has_inf',
    'has_nan',
    'isfinite',
    'range',
Y
Yu Yang 已提交
48 49 50
]


X
xuwei06 已提交
51
def create_tensor(dtype, name=None, persistable=False):
52
    """
Q
update  
qiaolongfei 已提交
53
    Create an variable, which will hold a LoDTensor with data type dtype.
54 55

    Args:
Q
update  
qiaolongfei 已提交
56
        dtype(string): 'float32'|'int32'|..., the data type of the
57
            created tensor.
Q
update  
qiaolongfei 已提交
58
        name(string): The name of the created tensor, if not set,
59
            the name will be a random unique one.
Q
update  
qiaolongfei 已提交
60
        persistable(bool): Set the persistable flag of the create tensor.
61 62 63 64 65 66 67 68 69

    Returns:
        Variable: The tensor variable storing the created tensor.

    Examples:
        .. code-block:: python

          tensor = fluid.layers.create_tensor(dtype='float32')
    """
Y
Yu Yang 已提交
70
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
71 72
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
73 74


75 76
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
77
                     name=None,
78 79 80 81
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
Y
yuyang18 已提交
82 83 84 85 86 87
    Create a parameter. The parameter is a learnable variable, which can have
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

88 89 90 91 92 93 94 95 96 97 98
    Args:
        shape(list[int]): shape of the parameter
        dtype(string): element type of the parameter
        attr(ParamAttr): attributes of the parameter
        is_bias(bool): This can affect which default initializer is chosen
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
        default_initializer(Initializer): initializer for the parameter

    Returns:
Y
yuyang18 已提交
99 100 101 102 103 104
        the created parameter.

    Examples:
        >>> W = fluid.layers.create_parameter(shape=[784, 200], dtype='float32')
        >>> data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
        >>> hidden = fluid.layers.matmul(x=data, y=W)
105
    """
Q
Qiao Longfei 已提交
106
    helper = LayerHelper("create_parameter", **locals())
107
    if attr is None:
X
xuwei06 已提交
108
        attr = ParamAttr(name=name)
109 110 111 112
    return helper.create_parameter(attr, shape, dtype, is_bias,
                                   default_initializer)


113 114 115 116 117 118 119
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
X
Xin Pan 已提交
120
    Create a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
121

122 123
    Args:
        shape(list[int]): shape of the variable
M
minqiyang 已提交
124
        value(float): the value of the variable. The new created
F
fengjiayi 已提交
125 126
                      variable will be filled with it.
        dtype(string): data type of the variable
M
minqiyang 已提交
127
        persistable(bool): if this variable is persistable.
F
fengjiayi 已提交
128
                           Default: False
M
minqiyang 已提交
129
        force_cpu(bool): force this variable to be on CPU.
F
fengjiayi 已提交
130
                         Default: False
M
minqiyang 已提交
131 132
        name(str|None): The name of the variable. If set to None the variable
                        name will be generated automatically.
F
fengjiayi 已提交
133
                        Default: None
134 135 136

    Returns:
        Variable: the created Variable
F
fengjiayi 已提交
137 138 139 140

    Examples:
        .. code-block:: python

M
minqiyang 已提交
141
            var = fluid.create_global_var(shape=[2,3], value=1.0, dtype='float32',
F
fengjiayi 已提交
142
                                 persistable=True, force_cpu=True, name='new_var')
143
    """
Q
Qiao Longfei 已提交
144 145
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
146 147 148 149 150
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
151 152 153
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
154

Q
Qiao Longfei 已提交
155 156 157
    return var


158
def cast(x, dtype):
Y
Yu Yang 已提交
159
    """
M
minqiyang 已提交
160
    This layer takes in the Variable :attr:`x` with :attr:`x.dtype` and casts
T
tensor-tang 已提交
161 162
    it to the output with :attr:`dtype`. It's meaningless if the output
    dtype equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
163 164 165 166 167 168 169 170 171 172

    Args:
        x (Variable): The input Variable for casting.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output Variable.

    Returns:
        Variable: The output Variable after casting.

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
173

Y
Yibing Liu 已提交
174 175
            data = fluid.layers.data(name='x', shape=[13], dtype='float32')
            result = fluid.layers.cast(x=data, dtype='float64')
Y
Yu Yang 已提交
176 177
    """
    helper = LayerHelper('cast', **locals())
X
Xin Pan 已提交
178
    out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
179 180 181 182 183 184 185 186 187
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


188
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
189
    """
190 191 192
    **Concat**

    This function concatenates the input along the axis mentioned
Y
Yu Yang 已提交
193
    and returns that as the output.
194 195 196 197

    Args:
        input(list): List of tensors to be concatenated
        axis(int): Integer axis along which the tensors will be concatenated
198 199
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
200 201 202 203 204 205

    Returns:
        Variable: Output variable of the concatenation

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
206

F
fengjiayi 已提交
207
           out = fluid.layers.concat(input=[Efirst, Esecond, Ethird, Efourth])
Y
Yu Yang 已提交
208 209
    """
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
210
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
Y
Yu Yang 已提交
211 212 213 214 215 216 217 218
    helper.append_op(
        type='concat',
        inputs={'X': input},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


L
li099 已提交
219 220 221 222 223 224
def tensor_array_to_tensor(input, axis=1, name=None):
    """
    This function concatenates the input LodTensorArray along the axis mentioned
    and returns that as the output.

    A simple example as below:
M
minqiyang 已提交
225

L
li099 已提交
226
    .. code-block:: text
M
minqiyang 已提交
227

L
li099 已提交
228 229 230 231 232 233 234 235
        Given:

        input.data = {[[0.6, 0.1, 0.3],
                       [0.5, 0.3, 0.2]],
                      [[1.3],
                       [1.8]],
                      [[2.3, 2.1],
                       [2.5, 2.4]]}
M
minqiyang 已提交
236

L
li099 已提交
237
        axis = 1
M
minqiyang 已提交
238

L
li099 已提交
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
        Then:

        output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                       [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

        output_index.data = [3, 1, 2]

    Args:
        input(list): Input LodTensorArray
        axis(int): Integer axis along which the tensors will be concatenated
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation
        Variable: The input LodTensorArray items' dims along the axis

    Examples:
        .. code-block:: python

           output, output_index = fluid.layers.tensor_array_to_tensor(input=tensor_array)
    """
L
li099 已提交
261
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
262 263 264
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
265
        type='tensor_array_to_tensor',
L
li099 已提交
266 267 268 269 270 271 272
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
        attrs={'axis': axis})
    return out, out_index


273
def sums(input, out=None):
F
fengjiayi 已提交
274 275
    """
    This function performs the sum operation on the input and returns the
K
kavyasrinet 已提交
276 277 278 279 280
    result as the output.

    Args:
        input (Variable|list): The input tensor that has the elements
                               that need to be summed up.
F
fengjiayi 已提交
281
        out (Variable|None): Output parameter. The sum result.
F
fengjiayi 已提交
282
                             Default: None
K
kavyasrinet 已提交
283 284

    Returns:
F
fengjiayi 已提交
285
        Variable: the sum of input. The same as the argument 'out'
K
kavyasrinet 已提交
286 287

    Examples:
F
fengjiayi 已提交
288
        .. code-block:: python
K
kavyasrinet 已提交
289 290 291 292 293 294

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          a0 = layers.array_read(array=tmp, i=i)
          i = layers.increment(x=i)
          a1 = layers.array_read(array=tmp, i=i)
Y
Yu Yang 已提交
295 296
          mean_a0 = layers.mean(a0)
          mean_a1 = layers.mean(a1)
K
kavyasrinet 已提交
297
          a_sum = layers.sums(input=[mean_a0, mean_a1])
Y
Yu Yang 已提交
298 299 300
    """
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
301 302
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
T
tensor-tang 已提交
303 304 305 306 307
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
308 309 310
    return out


F
fengjiayi 已提交
311
def assign(input, output=None):
312 313 314 315 316 317
    """
    **Assign**

    This function copies the *input* Variable to the *output* Variable.

    Args:
X
xuwei06 已提交
318
        input(Variable|numpy.ndarray): The source variable
F
fengjiayi 已提交
319
        output(Variable|None): The destination variable
320 321 322 323 324 325

    Returns:
        Variable: The destination variable that was supplied as the *output*.

    Examples:
        .. code-block:: python
326

327 328 329 330
          out = fluid.layers.create_tensor(dtype='float32')
          hidden = fluid.layers.fc(input=data, size=10)
          fluid.layers.assign(hidden, out)
    """
Y
Yu Yang 已提交
331
    helper = LayerHelper('assign', **locals())
F
fengjiayi 已提交
332
    if output is None:
X
Xin Pan 已提交
333
        output = helper.create_variable_for_type_inference(dtype=input.dtype)
X
xuwei06 已提交
334 335
    if isinstance(input, Variable):
        helper.append_op(
R
robot 已提交
336
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
337 338
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
339
        if dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
340
            value_name = "fp32_values"
341
            values = [float(v) for v in input.flat]
342
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
343
            value_name = "int32_values"
344
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
345 346
        else:
            raise ValueError("Unsupported dtype %s", input.dtype)
347 348 349
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
X
xuwei06 已提交
350 351 352 353 354 355 356

        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
357
                value_name: values
X
xuwei06 已提交
358 359 360 361
            })
    else:
        raise ValueError("Wrong type for assign input: %s" % type(input))

Y
Yu Yang 已提交
362 363 364
    return output


Q
QI JUN 已提交
365
def fill_constant(shape, dtype, value, force_cpu=False, out=None):
Y
Yu Yang 已提交
366
    """
367 368
    **fill_constant**

369 370
    This function creates a tensor with specified `shape` and `dtype`, and
    initializes it with a constant specifed by `value`.
K
kavyasrinet 已提交
371

372
    The attribute `stop_gradient` of the created tensor is set to True.
373 374

    Args:
375
        shape(tuple|list|None): Shape of the output tensor.
376
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output tensor.
377 378
        value(float): The constant value used to initialize the output tensor.
        out(Variable): The output tensor.
379
        force_cpu(True|False): data should be on CPU if set true.
380 381

    Returns:
382
        Variable: The tensor variable storing the output.
383 384 385 386 387

    Examples:
        .. code-block:: python

          data = fluid.layers.fill_constant(shape=[1], value=0, dtype='int64')
Y
Yu Yang 已提交
388
    """
389

Y
Yu Yang 已提交
390 391
    helper = LayerHelper("fill_constant", **locals())
    if out is None:
X
Xin Pan 已提交
392
        out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
393 394 395 396
    helper.append_op(
        type='fill_constant',
        inputs={},
        outputs={'Out': [out]},
Q
QI JUN 已提交
397 398 399 400
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
401
            'force_cpu': force_cpu or force_init_on_cpu()
M
minqiyang 已提交
402 403
        },
        stop_gradient=True)
Y
Yu Yang 已提交
404 405 406 407
    out.stop_gradient = True
    return out


Y
yuyang18 已提交
408
@templatedoc()
Y
Yu Yang 已提交
409 410 411 412 413
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
414
                                  output_dim_idx=0):
415
    """
Y
yuyang18 已提交
416
    ${comment}
417 418 419 420

    It also sets *stop_gradient* to True.

    Args:
Y
yuyang18 已提交
421
        input(${input_type}): ${input_comment}.
422

Y
yuyang18 已提交
423
        shape(${shape_type}): ${shape_comment}.
424

Y
yuyang18 已提交
425 426 427
        dtype(${dtype_type}): ${dtype_comment}.

        value(${value_type}): ${value_comment}.
428

Y
yuyang18 已提交
429 430 431 432 433
        input_dim_idx(${input_dim_idx_type}): ${input_dim_idx_comment}.

        output_dim_idx(${output_dim_idx_type}): ${output_dim_idx_comment}.

    Returns:
Y
yuyang18 已提交
434
        ${out_comment}.
H
haowang101779990 已提交
435 436 437 438 439 440 441 442

    Examples:

        .. code-block:: python

             data = fluid.layers.fill_constant_batch_size_like(
                         input=like, shape=[1], value=0, dtype='int64')

443
    """
Y
Yu Yang 已提交
444
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
445
    out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx
        })
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
461 462 463 464
def argmin(x, axis=0):
    """
    **argmin**

465
    This function computes the indices of the min elements
S
sneaxiy 已提交
466 467 468 469 470 471
    of the input tensor's element along the provided axis.

    Args:
        x(Variable): The input to compute the indices of
                     the min elements.
        axis(int): Axis to compute indices along.
F
fengjiayi 已提交
472

S
sneaxiy 已提交
473 474
    Returns:
        Variable: The tensor variable storing the output
F
fengjiayi 已提交
475

S
sneaxiy 已提交
476 477
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
478

S
sneaxiy 已提交
479
          out = fluid.layers.argmin(x=in, axis=0)
480
          out = fluid.layers.argmin(x=in, axis=-1)
S
sneaxiy 已提交
481 482
    """
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
483
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
484 485 486 487 488 489 490 491 492 493 494 495
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


def argmax(x, axis=0):
    """
    **argmax**

496
    This function computes the indices of the max elements
S
sneaxiy 已提交
497 498 499 500 501 502
    of the input tensor's element along the provided axis.

    Args:
        x(Variable): The input to compute the indices of
                     the max elements.
        axis(int): Axis to compute indices along.
F
fengjiayi 已提交
503

S
sneaxiy 已提交
504 505
    Returns:
        Variable: The tensor variable storing the output
F
fengjiayi 已提交
506

S
sneaxiy 已提交
507 508
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
509

S
sneaxiy 已提交
510
          out = fluid.layers.argmax(x=in, axis=0)
511
          out = fluid.layers.argmax(x=in, axis=-1)
S
sneaxiy 已提交
512 513
    """
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
514
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
515 516 517 518 519 520 521 522
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


523
def argsort(input, axis=-1, name=None):
Y
Yibing Liu 已提交
524
    """
M
minqiyang 已提交
525 526
    Performs sorting on the input Variable along the given axis, and outputs
    sorted data Varibale and its corresponding index Variable with the same
Y
Yibing Liu 已提交
527 528 529
    shape as :attr:`input`.

    .. code-block:: text
M
minqiyang 已提交
530

Y
Yibing Liu 已提交
531 532 533 534 535 536 537 538 539 540 541 542
        For example, the given axis is -1 and the input Variable

            input = [[0.15849551, 0.45865775, 0.8563702 ],
                     [0.12070083, 0.28766365, 0.18776911]],

        after argsort, the sorted Vairable becomes

            out = [[0.15849551, 0.45865775, 0.8563702 ],
                   [0.12070083, 0.18776911, 0.28766365]],

        and the sorted indices along the given axis turn outs to be

M
minqiyang 已提交
543
            indices = [[0, 1, 2],
Y
Yibing Liu 已提交
544 545 546 547
                       [0, 2, 1]]

    Args:
        input(Variable): The input Variable for sorting.
M
minqiyang 已提交
548 549
        axis(int): The axis along which to sort the input Variable. When
                   :attr:`axis` < 0, the actual axis will be :attr:`axis` +
Y
Yibing Liu 已提交
550
                   rank(:attr:`input`). Default -1, the last dimension.
M
minqiyang 已提交
551
        name(str|None): (optional) A name for this layer. If set None, the
552
                   layer will be named automatically.
Y
Yibing Liu 已提交
553 554 555 556 557 558 559 560 561 562 563

    Returns:
        tuple: A tuple of sorted data Variable and the sorted indices.

    Examples:
        .. code-block:: python

            input = fluid.layers.data(data=[2, 3])
            out, indices = fluid.layers.argsort(input, axis=0)
    """
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
564 565 566 567
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
568 569 570 571
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
572 573
                 'Indices': ids},
        attrs={'axis': axis})
Y
Yibing Liu 已提交
574 575 576
    return out, ids


Y
Yang Yu 已提交
577
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
578
    """
579 580 581 582 583 584 585 586
    **ones**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 1.

    It also sets *stop_gradient* to True.

    Args:
C
chengduozh 已提交
587
        shape(tuple|list): Shape of output tensor
588
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor
589 590 591 592 593 594 595 596

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

          data = fluid.layers.ones(shape=[1], dtype='int64')
Y
Yu Yang 已提交
597
    """
C
chengduozh 已提交
598 599 600 601
    assert isinstance(shape, list) or isinstance(
        shape, tuple), "The shape's type should be list or tuple."
    assert reduce(lambda x, y: x * y,
                  shape) > 0, "The shape is invalid: %s." % (str(shape))
Y
Yu Yang 已提交
602 603 604
    return fill_constant(value=1.0, **locals())


Y
Yang Yu 已提交
605
def zeros(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
606
    """
607 608 609 610 611 612 613 614
    **zeros**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 0.

    It also sets *stop_gradient* to True.

    Args:
W
wanghaoshuang 已提交
615 616 617
        shape(tuple|list|None): Shape of output tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor.
        force_cpu(bool, default False): Whether to make output stay on CPU.
618 619

    Returns:
W
wanghaoshuang 已提交
620
        Variable: The tensor variable storing the output.
621 622 623 624 625

    Examples:
        .. code-block:: python

          data = fluid.layers.zeros(shape=[1], dtype='int64')
Y
Yu Yang 已提交
626 627
    """
    return fill_constant(value=0.0, **locals())
628 629


F
fengjiayi 已提交
630 631 632 633 634 635 636 637
def reverse(x, axis):
    """
    **reverse**

    This function reverse the input 'x' along given axises.

    Args:
        x(Vairbale): the input to be reversed.
638 639 640
        axis(int|tuple|list): Axis that along which order of elements
                    is reversed. If it is a tuple or a list, reversing
                    will be apply on each axis in the tuple or list.
F
fengjiayi 已提交
641 642 643 644 645 646 647 648 649 650 651 652 653 654

    Returns:
        Variable: The reversed tensor.

    Examples:
        .. code-block:: python

          out = fluid.layers.reverse(x=in, axis=0)
          # or:
          out = fluid.layers.reverse(x=in, axis=[0,1])
    """
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
655
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
656 657
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
658
        inputs={'X': x},
F
fengjiayi 已提交
659 660 661 662 663
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


664 665 666 667 668 669 670
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
671 672 673
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
689 690
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
691
        file_path(str): The file path where variables will be saved.
692
        overwrite(bool): Whether or not cover the given file when it has already
693 694
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
    Loads a list of vairables from a single file.

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
734 735 736 737 738 739 740 741 742 743 744 745 746


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
       x(variable): The Tensor/LoDTensor to be checked.

    Returns:
        Variable: The tensor variable storing the output, only a bool value.
    """
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
747
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
       x(variable): The Tensor/LoDTensor to be checked.

    Returns:
        Variable: The tensor variable storing the output, only a bool value.
    """
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
763
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
       x(variable): The Tensor/LoDTensor to be checked.

    Returns:
        Variable: The tensor variable storing the output, contains a bool value.
    """
    helper = LayerHelper("isfinite", **locals())
X
Xin Pan 已提交
780
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
781 782
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829


def range(start, end, step, dtype):
    """
    Return evenly spaced values within a given interval.

    Values are generated within the half-open interval [start, stop) (in other words,
    the interval including start but excluding stop).

    args:
        start(int|float|Variable): Start of interval. The interval includes this value.
        end(int|float|Variable): End of interval. The interval does not include this
                                 value, except in some cases where step is not an integer
                                 and floating point round-off affects the length of out. 
        step(int|float|Variable): Spacing between values. For any output out, this is the
                                  distance between two adjacent values, out[i+1] - out[i].
                                  The default step size is 1.
        dtype(string): 'float32'|'int32'|..., the data type of the output tensor.

    returns:
        Evenly spaced values within a given interval.

    examples:

        .. code-block:: python

             data = fluid.layers.range(0, 10, 2, 'int32')

    """
    helper = LayerHelper("range", **locals())

    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
    if not isinstance(end, Variable):
        end = fill_constant([1], dtype, end)
    if not isinstance(step, Variable):
        step = fill_constant([1], dtype, step)

    out = helper.create_variable_for_type_inference(dtype=start.dtype)

    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
        outputs={'Out': [out]})
    return out