tensor.py 55.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16
from six.moves import reduce
Y
Yu Yang 已提交
17
from ..layer_helper import LayerHelper
18
from ..param_attr import ParamAttr
19
from ..framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator
X
xuwei06 已提交
20
from ..framework import Variable
21
from ..initializer import Constant
22
from ..core import VarDesc
23
from .. import core
24
from .layer_function_generator import templatedoc
L
Leo Chen 已提交
25
from . import utils
26
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
X
xuwei06 已提交
27
import numpy
28
import warnings
Y
Yu Yang 已提交
29 30

__all__ = [
L
li099 已提交
31 32 33
    'create_tensor', 'create_parameter', 'create_global_var', 'cast',
    'tensor_array_to_tensor', 'concat', 'sums', 'assign',
    'fill_constant_batch_size_like', 'fill_constant', 'argmin', 'argmax',
Z
zhoukunsheng 已提交
34
    'argsort', 'ones', 'zeros', 'reverse', 'has_inf', 'has_nan', 'isfinite',
35
    'range', 'linspace', 'zeros_like', 'ones_like', 'diag', 'eye'
Y
Yu Yang 已提交
36 37 38
]


X
xuwei06 已提交
39
def create_tensor(dtype, name=None, persistable=False):
40
    """
W
wangchaochaohu 已提交
41
    Create a variable, which will hold a Tensor with data type dtype.
42 43

    Args:
W
wangchaochaohu 已提交
44 45 46 47
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
48
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
49
            default value is False.
50 51

    Returns:
W
wangchaochaohu 已提交
52
        Variable: The tensor to be created according to dtype.
53 54 55 56

    Examples:
        .. code-block:: python

57
          import paddle.fluid as fluid
58 59
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
60 61 62 63
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int32',
        'int64'
    ], 'create_tensor')
Y
Yu Yang 已提交
64
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
65 66
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
67 68


69 70
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
71
                     name=None,
72 73 74 75
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
76
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
77 78 79 80 81
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

82 83 84 85 86 87 88
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
89 90 91
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
92
        default_initializer (Initializer, optional): Initializer for the parameter
93 94

    Returns:
95
        The created parameter.
Y
yuyang18 已提交
96 97

    Examples:
98 99
        .. code-block:: python

100
            import paddle.fluid as fluid
101 102
            import paddle.fluid.layers as layers
            W = layers.create_parameter(shape=[784, 200], dtype='float32')
103
    """
Q
Qiao Longfei 已提交
104
    helper = LayerHelper("create_parameter", **locals())
105
    if attr is None:
X
xuwei06 已提交
106
        attr = ParamAttr(name=name)
107 108 109 110
    return helper.create_parameter(attr, shape, dtype, is_bias,
                                   default_initializer)


111 112 113 114 115 116 117
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
118
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
119

120 121 122
    Parameters:
        shape (list of int): Shape of the variable
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
123
                      variable will be filled with it.
124 125
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
126
                           Default: False
127
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
128
                         Default: False
129 130
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
131 132

    Returns:
133
        Variable: The created Variable
F
fengjiayi 已提交
134 135 136 137

    Examples:
        .. code-block:: python

138
            import paddle.fluid as fluid
139 140
            import paddle.fluid.layers as layers
            var = layers.create_global_var(shape=[2,3], value=1.0, dtype='float32',
141
                                           persistable=True, force_cpu=True, name='new_var')
142
    """
Q
Qiao Longfei 已提交
143 144
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
145 146 147 148 149
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
150 151 152
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
153

Q
Qiao Longfei 已提交
154 155 156
    return var


157
def cast(x, dtype):
Y
Yu Yang 已提交
158
    """
159 160 161
    This OP takes in the Variable :attr:`x` with :attr:`x.dtype` and casts it
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
162 163

    Args:
164 165 166 167
        x(Variable): An input N-D Tensor with data type bool, float16,
            float32, float64, int32, int64, uint8.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output:
            bool, float15, float32, float64, int8, int32, int64, uint8.
Y
Yibing Liu 已提交
168 169

    Returns:
170
        Variable: A Tensor with the same shape as input's.
Y
Yibing Liu 已提交
171 172 173

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
174

175
            import paddle.fluid as fluid
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
            import numpy as np

            place = fluid.core.CPUPlace()

            x_lod = fluid.data(name="x", shape=[2,2], lod_level=0)
            cast_res1 = fluid.layers.cast(x=x_lod, dtype="uint8")
            cast_res2 = fluid.layers.cast(x=x_lod, dtype=np.int32)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())

            x_i_lod = fluid.core.LoDTensor()
            x_i_lod.set(np.array([[1.3,-2.4],[0,4]]).astype("float32"), place)
            x_i_lod.set_recursive_sequence_lengths([[0,2]])
            res1 = exe.run(fluid.default_main_program(), feed={'x':x_i_lod}, fetch_list=[cast_res1], return_numpy=False)
            res2 = exe.run(fluid.default_main_program(), feed={'x':x_i_lod}, fetch_list=[cast_res2], return_numpy=False)
            print(np.array(res1[0]), np.array(res1[0]).dtype)
            # [[  1 254]
            #  [  0   4]] uint8
            print(np.array(res2[0]), np.array(res2[0]).dtype)
            # [[ 1 -2]
            #  [ 0  4]] int32
Y
Yu Yang 已提交
198
    """
199 200
    check_variable_and_dtype(
        x, 'x',
201 202
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'cast')
203 204 205 206 207 208
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int64',
        'uint8'
    ], 'cast')

    helper = LayerHelper('cast', **locals())
X
Xin Pan 已提交
209
    out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
210 211 212 213 214 215 216 217 218
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


219
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
220
    """
221 222
    **Concat**

223
    This OP concatenates the input along the axis.
224 225

    Args:
226 227
        input(list): List of input Tensors with data type float32, float64, int32,
            int64.
228
        axis(int32|Variable, optional):  A scalar with type ``int32`` or a ``Tensor`` with shape [1] and type ``int32``. Axis to compute indices along. The effective range
229 230 231 232 233
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
234 235

    Returns:
236
        Variable: A Tensor with the same data type as input's.
237 238 239

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
240

241
            import paddle.fluid as fluid
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
            import numpy as np

            in1 = np.array([[1,2,3],
                            [4,5,6]])
            in2 = np.array([[11,12,13],
                            [14,15,16]])
            in3 = np.array([[21,22],
                            [23,24]])
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                x2 = fluid.dygraph.to_variable(in2)
                x3 = fluid.dygraph.to_variable(in3)
                out1 = fluid.layers.concat(input=[x1,x2,x3], axis=-1)
                out2 = fluid.layers.concat(input=[x1,x2], axis=0)
                print(out1.numpy())
                # [[ 1  2  3 11 12 13 21 22]
                #  [ 4  5  6 14 15 16 23 24]]
                print(out2.numpy())
                # [[ 1  2  3]
                #  [ 4  5  6]
                #  [11 12 13]
                #  [14 15 16]]
Y
Yu Yang 已提交
264
    """
265 266

    if in_dygraph_mode():
S
songyouwei 已提交
267 268 269 270 271
        if isinstance(axis, Variable):
            axis = axis.numpy()
            assert axis.shape == (
                1, ), "axis of type Variable should have shape [1]"
            axis = axis[0]
272
        return core.ops.concat(input, 'axis', axis)
273

274 275 276 277 278
    if not isinstance(input, list):
        warnings.warn(
            "The type of input in concat should be list, but received %s." %
            (type(input)))
        input = [input]
279
    for id, x in enumerate(input):
280 281
        check_variable_and_dtype(
            x, 'input[' + str(id) + ']',
282 283
            ['float16', 'float32', 'float64', 'int32', 'int64'], 'concat')
    check_type(axis, 'axis', (int, Variable), 'concat')
284

285
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
286
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        assert len(input) == 1, "If the elements of 'input' in concat are Variable(LoDTensorArray), " \
                            "number of the elements must be 1, but received %s." % len(x)
        out_index = helper.create_variable_for_type_inference(dtype="int32")
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': input[0]},
            outputs={'Out': [out],
                     'OutIndex': [out_index]},
            attrs={'axis': axis,
                   'use_stack': False})
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
            inputs['AxisTensor'] = axis
        else:
            attrs['axis'] = axis

        helper.append_op(
            type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs)
Y
Yu Yang 已提交
310 311 312
    return out


G
Guo Sheng 已提交
313
def tensor_array_to_tensor(input, axis=1, name=None, use_stack=False):
L
li099 已提交
314
    """
G
Guo Sheng 已提交
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]
L
li099 已提交
365 366

    Args:
G
Guo Sheng 已提交
367 368 369 370 371 372 373
        input(Variable): A LodTensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
L
li099 已提交
374 375

    Returns:
G
Guo Sheng 已提交
376 377 378
        Variable: The concatenated or stacked tensor variable.
        Variable: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.
L
li099 已提交
379 380 381 382

    Examples:
        .. code-block:: python

383
            import paddle.fluid as fluid
384
            import numpy as np
G
Guo Sheng 已提交
385 386 387 388 389 390 391
            x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0)
            array = fluid.layers.create_array(dtype='float32')
            fluid.layers.array_write(x0, i, array)
            fluid.layers.array_write(x1, i + 1, array)
            output, output_index = fluid.layers.tensor_array_to_tensor(input=array)
L
li099 已提交
392
    """
393 394 395 396 397 398 399 400 401 402 403
    if in_dygraph_mode():
        assert isinstance(
            input, list), "The 'input' in tensor_array_to_tensor must be list"
        from .nn import stack, concat
        from ..dygraph import to_variable
        op = stack if use_stack else concat
        res = op(input, axis=axis)
        sizes = to_variable(
            numpy.array(list(map(lambda x: int(x.shape[axis]), input))))
        return res, sizes

L
li099 已提交
404
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
405 406 407
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
408
        type='tensor_array_to_tensor',
L
li099 已提交
409 410 411
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
G
Guo Sheng 已提交
412 413
        attrs={'axis': axis,
               'use_stack': use_stack})
L
li099 已提交
414 415 416
    return out, out_index


417
def sums(input, out=None):
F
fengjiayi 已提交
418
    """
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
    This function computes the sum of multiple input Tensors elementwisely.

    - Case 1, sum of 3 Tensors

    .. code-block:: text

        # Input Tensors
        x0.shape = [2, 3]
        x0.data = [[1., 2., 3.],
                   [4., 5., 6.]]
        x1.shape = [2, 3]
        x1.data = [[10., 20., 30.],
                   [40., 50., 60.]]
        x2.shape = [2, 3]
        x2.data = [[100., 200., 300.],
                   [400., 500., 600.]]

        # Output Tensor
        out.shape = [2, 3]
        out.data = [[111., 222., 333.],
                    [444., 555., 666.]]
K
kavyasrinet 已提交
440 441

    Args:
442 443 444 445
        input (list): A list of Variables which hold input Tensors with the same
            data type and shape. Optional data types are: float32, float64, int32, int64.
        out (Variable, optional): Output Tensor. It can be any existing Variable.
            The default value is None, then a new Variable will be created and returned.
K
kavyasrinet 已提交
446 447

    Returns:
448 449
        Variable: The sum of inputs. The shape and data type is the same with input. \
            If :code:`out` is not None, the returned value is :code:`out` .
K
kavyasrinet 已提交
450 451

    Examples:
F
fengjiayi 已提交
452
        .. code-block:: python
K
kavyasrinet 已提交
453

454 455 456 457 458 459 460 461 462
            import paddle.fluid as fluid

            x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1)
            x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2)
            x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3)
            x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0)

            # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum0 = fluid.layers.sums(input=[x0, x1, x2])
463

464 465
            # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3)
Y
Yu Yang 已提交
466 467 468
    """
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
469 470
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
T
tensor-tang 已提交
471 472 473 474 475
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
476 477 478
    return out


F
fengjiayi 已提交
479
def assign(input, output=None):
480
    """
481
    The OP copies the :attr:`input` to the :attr:`output`.
482

483 484 485 486 487
    Parameters:
        input (Variable|numpy.ndarray): A tensor or numpy ndarray, its data type supports
            float32, float64, int32 and int64.
        output (Variable, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.
488 489

    Returns:
490
        Variable: A tensor with the same shape, data type and value as :attr:`input`.
491 492 493

    Examples:
        .. code-block:: python
494

495
          import paddle.fluid as fluid
496 497 498 499 500 501
          import numpy as np
          data = fluid.layers.fill_constant(shape=[3, 2], value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result1 = fluid.layers.create_tensor(dtype='float64')
          fluid.layers.assign(data, result1) # result1 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result2 = fluid.layers.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = fluid.layers.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
502
    """
Y
Yu Yang 已提交
503
    helper = LayerHelper('assign', **locals())
504
    check_type(input, 'input', (Variable, numpy.ndarray), 'assign')
X
xuwei06 已提交
505
    if isinstance(input, Variable):
506 507 508
        check_dtype(input.dtype, 'input',
                    ['float32', 'float64', 'int32', 'int64', 'bool'], 'assign',
                    '(When the type of input in assign is Variable.)')
509 510 511
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
512
        helper.append_op(
R
robot 已提交
513
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
514 515
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
516
        if dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
517
            value_name = "fp32_values"
518
            values = [float(v) for v in input.flat]
519
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
520
            value_name = "int32_values"
521
            values = [int(v) for v in input.flat]
522 523 524
        elif dtype == VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
525
        else:
526 527
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
528
                "the data type of 'input' must be float32, int32 or int64, but "
529
                "received %s." % convert_dtype(dtype))
530 531 532
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
533 534 535
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
536 537 538 539 540 541
        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
542
                value_name: values
X
xuwei06 已提交
543 544
            })

Y
Yu Yang 已提交
545 546 547
    return output


Q
QI JUN 已提交
548
def fill_constant(shape, dtype, value, force_cpu=False, out=None):
Y
Yu Yang 已提交
549
    """
W
wangchaochaohu 已提交
550
    This OP creates a Tensor with specified `shape` and `dtype`, and
T
tianshuo78520a 已提交
551
    initializes it with a constant specified by `value`.
K
kavyasrinet 已提交
552

T
tianshuo78520a 已提交
553
    The attribute `stop_gradient` of the created Tensor is set to True.
554 555

    Args:
556 557 558 559
        shape(list|tuple|Variable): Shape of the Tensor to be created.
                The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
                If ``shape`` is an Variable, it should be an 1-D Tensor .
W
wangchaochaohu 已提交
560 561
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output tensor which can
            be float16, float32, float64, int32, int64.
W
wangchaochaohu 已提交
562 563 564
        value(float16|float32|float64|int32|int64|Variable): The constant value used to initialize 
            the Tensor to be created. If value is an Variable, it should be an 1-D Tensor.
        force_cpu(bool): data should be on CPU if it's true, default value is False.
W
wangchaochaohu 已提交
565 566 567
        out(Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of operation.
            if out is None, a new Varibale will be create to store the result.
568 569

    Returns:
W
wangchaochaohu 已提交
570 571 572 573 574
        Variable: Tensor which is created according to shape and dtype.

    Raise:
        TypeError: The dtype must be one of bool, float16, float32, float64, int32 and int64
        and the data type of out Tensor must be the same as the dtype. 
575 576 577 578

    Examples:
        .. code-block:: python

579
          import paddle.fluid as fluid
580 581 582
          # attr shape is a list which doesn't contain Variable Tensor.
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') # data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1)
583
          # data1=[[5], [5]] data2=[[5], [5]]
584 585 586 587 588 589 590 591

          # attr shape is a list which contains Variable Tensor.
          positive_2 = fluid.layers.fill_constant([1], "int32", 2)
          data3 = fluid.layers.fill_constant(shape=[1, positive_2], dtype='float32', value=1.5) # data3=[1.5, 1.5]

          # attr shape is an Variable Tensor.
          shape = fluid.layers.fill_constant([1,2], "int32", 2) # shape=[2,2]
          data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]]
W
wangchaochaohu 已提交
592 593 594 595
          
          # attr value is an Variable Tensor.
          val = fluid.layers.fill_constant([1], "float32", 2.0) # val=[2.0]
          data5 = fluid.layers.fill_constant(shape=[2,1], value=val, dtype='float32') #data5=[[2.0],[2.0]]
Y
Yu Yang 已提交
596
    """
W
wangchaochaohu 已提交
597 598 599 600
    inputs = {}
    attrs = {'force_cpu': force_cpu}
    if isinstance(value, Variable):
        inputs['ValueTensor'] = value
601
    else:
W
wangchaochaohu 已提交
602 603 604 605 606
        attrs['value'] = float(value)
        if convert_dtype(dtype) in ['int64', 'int32']:
            attrs['str_value'] = str(int(value))
        else:
            attrs['str_value'] = str(float(value))
607 608 609

    if in_dygraph_mode():
        if isinstance(shape, (list, tuple)):
S
songyouwei 已提交
610 611 612
            shape = list(
                map(lambda x: x.numpy()[0] if isinstance(x, Variable) else x,
                    shape))
613
        else:
S
songyouwei 已提交
614
            shape = list(shape.numpy().astype(int))
615 616
        if out is None:
            out = _varbase_creator(dtype=dtype)
W
wangchaochaohu 已提交
617 618 619 620 621 622 623

        if isinstance(value, Variable):
            if convert_dtype(dtype) in ['int64', 'int32']:
                attrs['str_value'] = str(int(value.numpy()))
            else:
                attrs['str_value'] = str(float(value.numpy()))

624 625
        core.ops.fill_constant(out, 'value',
                               float(value), 'force_cpu', force_cpu, 'dtype',
626 627
                               out.dtype, 'str_value', attrs['str_value'],
                               'shape', shape)
628 629 630
        out.stop_gradient = True
        return out

631
    check_dtype(dtype, 'dtype',
632 633 634
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'fill_constant')
    check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')
635 636 637 638 639 640 641 642
    if isinstance(shape, Variable):
        check_variable_and_dtype(shape, 'shape', ['int32', 'int64'],
                                 'fill_constant')
    if out is not None:
        check_variable_and_dtype(out, 'out', [convert_dtype(dtype)],
                                 'fill_constant')

    helper = LayerHelper("fill_constant", **locals())
W
wangchaochaohu 已提交
643 644 645 646 647 648
    inputs = utils._get_shape_tensor_inputs(
        inputs=inputs,
        helper=helper,
        attrs=attrs,
        shape=shape,
        op_type='fill_constant')
L
liym27 已提交
649

Y
Yu Yang 已提交
650
    if out is None:
X
Xin Pan 已提交
651
        out = helper.create_variable_for_type_inference(dtype=dtype)
L
liym27 已提交
652
    attrs['dtype'] = out.dtype
Y
Yu Yang 已提交
653 654
    helper.append_op(
        type='fill_constant',
L
liym27 已提交
655
        inputs=inputs,
Y
Yu Yang 已提交
656
        outputs={'Out': [out]},
L
liym27 已提交
657
        attrs=attrs,
M
minqiyang 已提交
658
        stop_gradient=True)
Y
Yu Yang 已提交
659 660 661 662
    out.stop_gradient = True
    return out


Y
yuyang18 已提交
663
@templatedoc()
Y
Yu Yang 已提交
664 665 666 667 668
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
G
Guo Sheng 已提交
669 670
                                  output_dim_idx=0,
                                  force_cpu=False):
671
    """
T
tianshuo78520a 已提交
672
    This OP creates a Tesnor according the shape and dtype, and initializes the
W
wangchaochaohu 已提交
673 674 675 676
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
677 678

    Args:
W
wangchaochaohu 已提交
679 680 681 682 683 684 685 686 687 688 689
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
        value(float|int): The constant value used to initialize the Tensor to be created. 
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
T
tianshuo78520a 已提交
690
        force_cpu(bool): data should be on CPU if it's true, default value is False.
Y
yuyang18 已提交
691 692

    Returns:
W
wangchaochaohu 已提交
693
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
694 695 696 697 698

    Examples:

        .. code-block:: python

699
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
700
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
701
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
702
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
703

704
    """
Y
Yu Yang 已提交
705
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
706
    out = helper.create_variable_for_type_inference(dtype=dtype)
707 708 709 710 711 712
    attrs = {
        'shape': shape,
        'dtype': out.dtype,
        'value': float(value),
        'input_dim_idx': input_dim_idx,
        'output_dim_idx': output_dim_idx,
713
        'force_cpu': force_cpu
714 715 716 717 718
    }
    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))
Y
Yu Yang 已提交
719 720 721 722
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
723
        attrs=attrs)
Y
Yu Yang 已提交
724 725 726 727
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
728 729 730 731
def argmin(x, axis=0):
    """
    **argmin**

732 733
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
734 735

    Args:
736 737 738 739 740
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
741

S
sneaxiy 已提交
742
    Returns:
743
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
744

S
sneaxiy 已提交
745 746
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
747

748
            import paddle.fluid as fluid
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmin(x=x, axis=-1)
                out2 = fluid.layers.argmin(x=x, axis=0)
                out3 = fluid.layers.argmin(x=x, axis=1)
                out4 = fluid.layers.argmin(x=x, axis=2)
                print(out1.numpy())
                # [[0 0 2]
                #  [1 0 2]]
                print(out2.numpy())
                # [[0 1 1 1]
                #  [0 0 0 0]
                #  [1 1 1 0]]
                print(out3.numpy())
                # [[1 1 1 2]
                #  [2 0 2 0]]
                print(out4.numpy())
                # [[0 0 2]
                #  [1 0 2]]
S
sneaxiy 已提交
776
    """
777 778 779
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmin')
S
sneaxiy 已提交
780
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
781
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
782 783 784 785 786
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
787
    out.stop_gradient = True
S
sneaxiy 已提交
788 789 790 791 792 793 794
    return out


def argmax(x, axis=0):
    """
    **argmax**

795 796
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
797 798

    Args:
799 800 801 802 803
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
804

S
sneaxiy 已提交
805
    Returns:
806
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
807

S
sneaxiy 已提交
808 809
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
810

811
            import paddle.fluid as fluid
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmax(x=x, axis=-1)
                out2 = fluid.layers.argmax(x=x, axis=0)
                out3 = fluid.layers.argmax(x=x, axis=1)
                out4 = fluid.layers.argmax(x=x, axis=2)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
S
sneaxiy 已提交
839
    """
840 841 842
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmax')
S
sneaxiy 已提交
843
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
844
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
845 846 847 848 849
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
850
    out.stop_gradient = True
S
sneaxiy 已提交
851 852 853
    return out


854
def argsort(input, axis=-1, descending=False, name=None):
Y
Yibing Liu 已提交
855
    """
856 857 858
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
Y
Yibing Liu 已提交
859 860

    Args:
861 862 863 864 865
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
866 867 868
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
869 870 871
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
Y
Yibing Liu 已提交
872 873

    Returns:
874 875 876
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
Y
Yibing Liu 已提交
877 878 879 880

    Examples:
        .. code-block:: python

881
            import paddle.fluid as fluid
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argsort(input=x, axis=-1)
                out2 = fluid.layers.argsort(input=x, axis=0)
                out3 = fluid.layers.argsort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
Y
Yibing Liu 已提交
923
    """
924 925 926
    check_variable_and_dtype(
        input, 'input',
        ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'], 'argsort')
Y
Yibing Liu 已提交
927
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
928 929 930 931
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
932 933 934 935
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
936
                 'Indices': ids},
937 938
        attrs={'axis': axis,
               'descending': descending})
Y
Yibing Liu 已提交
939 940 941
    return out, ids


Y
Yang Yu 已提交
942
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
943
    """
944 945
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
946

947 948 949 950 951 952 953
    Parameters:
        shape (tuple|list): Shape of output tensor.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of output tensor, it supports
            bool, float16, float32, float64, int32 and int64.
        force_cpu (bool, optional): Whether force to store the output tensor in CPU memory.
            If :attr:`force_cpu` is False, the output tensor will be stored in running device memory.
            Default: False.
954 955

    Returns:
956
        Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
957 958 959 960

    Examples:
        .. code-block:: python

961
          import paddle.fluid as fluid
962
          data = fluid.layers.ones(shape=[2, 4], dtype='float32') # [[1., 1., 1., 1.], [1., 1., 1., 1.]]
Y
Yu Yang 已提交
963
    """
964 965 966 967
    check_type(shape, 'shape', (list, tuple), 'ones')
    check_dtype(dtype, 'create data type',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'ones')
C
chengduozh 已提交
968 969
    assert reduce(lambda x, y: x * y,
                  shape) > 0, "The shape is invalid: %s." % (str(shape))
Y
Yu Yang 已提交
970 971 972
    return fill_constant(value=1.0, **locals())


Y
Yang Yu 已提交
973
def zeros(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
974
    """
975 976
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
977

978 979 980 981 982 983 984
    Parameters:
        shape (tuple|list): Shape of output tensor.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of output tensor, it supports
            bool, float16, float32, float64, int32 and int64.
        force_cpu (bool, optional): Whether force to store the output tensor in CPU memory.
            If :attr:`force_cpu` is False, the output tensor will be stored in running device memory.
            Default: False.
985 986

    Returns:
987
        Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
988 989 990 991

    Examples:
        .. code-block:: python

992
          import paddle.fluid as fluid
993
          data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
Y
Yu Yang 已提交
994
    """
995
    check_type(shape, 'shape', (list, tuple), 'zeros')
996 997 998
    check_dtype(dtype, 'create data type',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'zeros')
Y
Yu Yang 已提交
999
    return fill_constant(value=0.0, **locals())
1000 1001


F
fengjiayi 已提交
1002 1003
def reverse(x, axis):
    """
1004
    The OP reverses the tensor :attr:`x` along the given :attr:`axis`.
F
fengjiayi 已提交
1005

1006 1007 1008 1009 1010
    Parameters:
        x (Variable): A tensor to be reversed, its data type supports bool, float32, float64, int32, int64 and uint8.
        axis (int|tuple|list): A dimension or a set of dimensions of :attr:`x` to reverse. Must be
            in the range [-rank( :attr:`x` ), rank( :attr:`x` )). If it is a tuple or a list, reversing
            will be apply on each axis in the tuple or list.
F
fengjiayi 已提交
1011 1012

    Returns:
1013
        Variable: The reversed tensor with the same shape and data type as :attr:`x`.
F
fengjiayi 已提交
1014 1015 1016 1017

    Examples:
        .. code-block:: python

1018
          import paddle.fluid as fluid
1019 1020 1021 1022
          import numpy as np
          data = fluid.layers.assign(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype='float32')) # [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]
          result1 = fluid.layers.reverse(data, 0) # [[6., 7., 8.], [3., 4., 5.], [0., 1., 2.]]
          result2 = fluid.layers.reverse(data, [0, 1]) # [[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]]
F
fengjiayi 已提交
1023 1024 1025 1026
    """
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
1027
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
1028 1029
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
1030
        inputs={'X': x},
F
fengjiayi 已提交
1031 1032 1033 1034 1035
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


1036 1037 1038 1039 1040 1041 1042
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
1043 1044 1045
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
1061 1062
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
1063
        file_path(str): The file path where variables will be saved.
1064
        overwrite(bool): Whether or not cover the given file when it has already
1065 1066
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1067 1068 1069 1070 1071 1072 1073 1074

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

1075
            import paddle.fluid as fluid
1076 1077 1078 1079 1080 1081 1082
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
T
tianshuo78520a 已提交
1095
    Loads a list of variable from a single file.
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
1107 1108 1109 1110 1111 1112 1113


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
L
liu zhengxi 已提交
1114
       x (Variable): The Tensor/LoDTensor to be checked.
1115 1116

    Returns:
L
liu zhengxi 已提交
1117
       Variable: The tensor variable storing the output, only a bool value, indicating that whether there is infinity number in x or not.
1118 1119 1120 1121 1122 1123 1124 1125
    
    Examples:
        .. code-block:: python
          
          import paddle.fluid as fluid
          data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
          res = fluid.layers.has_inf(data)

1126
    """
1127
    # check_type(x, 'x', (Variable), 'has_inf')
1128
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
1129
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1130 1131 1132 1133 1134 1135 1136 1137 1138
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
L
liu zhengxi 已提交
1139
       x (Variable): The Tensor/LoDTensor to be checked.
1140 1141

    Returns:
L
liu zhengxi 已提交
1142
       Variable: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
1143 1144 1145 1146 1147 1148 1149 1150
    
    Examples:
        .. code-block:: python
    
          import paddle.fluid as fluid
          data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
          res = fluid.layers.has_nan(data)

1151
    """
1152
    # check_type(x, 'x', (Variable), 'has_nan')
1153
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
1154
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
       x(variable): The Tensor/LoDTensor to be checked.

    Returns:
        Variable: The tensor variable storing the output, contains a bool value.
1169 1170 1171 1172 1173

    Examples:

        .. code-block:: python

1174
            import paddle.fluid as fluid
1175 1176 1177
            var = fluid.layers.data(name="data",
                                    shape=(4, 6),
                                    dtype="float32")
石晓伟 已提交
1178
            out = fluid.layers.isfinite(var)
1179
    """
1180 1181
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "isfinite")
1182
    helper = LayerHelper("isfinite", **locals())
1183

1184
    out = helper.create_variable_for_type_inference(dtype='bool')
1185 1186
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
1187 1188 1189 1190 1191 1192 1193 1194 1195


def range(start, end, step, dtype):
    """
    Return evenly spaced values within a given interval.

    Values are generated within the half-open interval [start, stop) (in other words,
    the interval including start but excluding stop).

L
Liufang Sang 已提交
1196 1197 1198 1199
    Parameters:
        start(float32 | float64 | int32 | int64 | Variable): Start of interval. The interval includes this value.
            when start is Variable, it is a 1-D Tensor with shape [1].
        end(float32 | float64 | int32 | int64 | Variable): End of interval. The interval does not include this
W
whs 已提交
1200
                                 value, except in some cases where step is not an integer
L
Liufang Sang 已提交
1201 1202 1203
                                 and floating point round-off affects the length of out. When end is Variable,
                                 it is a 1-D Tensor with shape [1].
        step(float32 | float64 | int32 | int64 | Variable): Spacing between values. For any output out, this is the
W
whs 已提交
1204
                                  distance between two adjacent values, out[i+1] - out[i].
1205
        dtype(str|core.VarDesc.VarType): the data type of the output tensor, can be float32, float64, int32, int64.
W
whs 已提交
1206

L
Liufang Sang 已提交
1207 1208 1209
    Returns: a 1-D Tensor which is evenly spaced values within a given interval. Its data type is set by dtype.
    
    Return type: Variable
W
whs 已提交
1210 1211 1212 1213 1214

    examples:

        .. code-block:: python

1215
             import paddle.fluid as fluid
W
whs 已提交
1216 1217 1218 1219 1220
             data = fluid.layers.range(0, 10, 2, 'int32')

    """
    helper = LayerHelper("range", **locals())

1221 1222 1223 1224
    check_dtype(dtype, 'create data type',
                ['float32', 'float64', 'int32', 'int64'], 'range')

    dtype = convert_dtype(dtype)
W
whs 已提交
1225 1226
    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
1227 1228 1229 1230 1231
    elif convert_dtype(start.dtype) != dtype:
        # make sure that start, end, step has the same dtype as
        # `dtype`
        start = cast(x=start, dtype=dtype)

W
whs 已提交
1232 1233
    if not isinstance(end, Variable):
        end = fill_constant([1], dtype, end)
1234 1235 1236
    elif convert_dtype(end.dtype) != dtype:
        end = cast(x=end, dtype=dtype)

W
whs 已提交
1237 1238
    if not isinstance(step, Variable):
        step = fill_constant([1], dtype, step)
1239 1240
    elif convert_dtype(step.dtype) != dtype:
        step = cast(x=step, dtype=dtype)
W
whs 已提交
1241 1242 1243 1244 1245 1246 1247 1248 1249

    out = helper.create_variable_for_type_inference(dtype=start.dtype)

    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
        outputs={'Out': [out]})
1250
    out.stop_gradient = True
W
whs 已提交
1251
    return out
Z
zhoukunsheng 已提交
1252 1253


Z
zhoukunsheng 已提交
1254 1255
def linspace(start, stop, num, dtype):
    """
1256
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
1257 1258

    Args:
1259 1260 1261 1262 1263 1264 1265
        start(float|Variable): The input :attr:`start` is start variable of range. It is a float scalar, \
            or a tensor of shape [1] with input data type float32, float64.
        stop(float|Variable): The input :attr:`stop` is start variable of range. It is a float scalar, \
            or a tensor of shape [1] with input data type float32, float64.
        num(int|Variable): The input :attr:`num` is given num of the sequence. It is an int scalar, \
            or a tensor of shape [1] with type int32.
        dtype(string): The data type of output tensor, it could be 'float32' and 'float64'.
Z
zhoukunsheng 已提交
1266 1267

    Returns:
1268 1269 1270
        Variable, the output data type will be float32, float64.: The 1-D tensor with fixed number of evenly spaced values, \
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 
Z
zhoukunsheng 已提交
1271

Z
zhoukunsheng 已提交
1272
    Examples:
Z
zhoukunsheng 已提交
1273 1274
        .. code-block:: python

1275
             import paddle.fluid as fluid
Z
zhoukunsheng 已提交
1276 1277
             data = fluid.layers.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = fluid.layers.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
1278 1279 1280 1281

    """
    helper = LayerHelper("linspace", **locals())

1282 1283 1284 1285
    check_type(start, 'start', (Variable, float, int), linspace)
    check_type(stop, 'stop', (Variable, float, int), linspace)
    check_type(num, 'num', (Variable, float, int), linspace)

Z
zhoukunsheng 已提交
1286 1287
    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
1288 1289 1290 1291
    else:
        check_variable_and_dtype(start, "start", ["float32", "float64"],
                                 "linspace")

Z
zhoukunsheng 已提交
1292 1293
    if not isinstance(stop, Variable):
        stop = fill_constant([1], dtype, stop)
1294 1295 1296
    else:
        check_variable_and_dtype(stop, "stop", ["float32", "float64"],
                                 "linspace")
Z
zhoukunsheng 已提交
1297 1298
    if not isinstance(num, Variable):
        num = fill_constant([1], 'int32', num)
1299 1300
    else:
        check_variable_and_dtype(num, "num", ["int32"], "linspace")
Z
zhoukunsheng 已提交
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310

    out = helper.create_variable_for_type_inference(dtype=start.dtype)

    helper.append_op(
        type='linspace',
        inputs={'Start': start,
                'Stop': stop,
                'Num': num},
        outputs={'Out': [out]})
    return out
1311 1312


Z
zhoukunsheng 已提交
1313 1314
def zeros_like(x, out=None):
    """
1315
    This OP creates a zeros tensor which has identical shape and dtype 
Z
zhoukunsheng 已提交
1316 1317 1318
    with `x`.

    Args:
1319 1320 1321
        x(Variable): The input tensor which specifies shape and dtype, the input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the variable as output, the data type and shape of \
            this variable will be same as input :attr:`x`. If is a tensor, the data type and shape need to be same as input :attr:`x`. 
T
tianshuo78520a 已提交
1322
            The default value is :attr:`None` .
Z
zhoukunsheng 已提交
1323 1324

    Returns:
1325 1326
        Variable: The N-D tensor, the element in tensor is related to input data type, if the input data type is bool, \
            the output value is False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
1327 1328 1329 1330

    Examples:
        .. code-block:: python

1331
          import paddle.fluid as fluid
1332
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
1333 1334
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
1335 1336
    """

1337 1338
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1339 1340 1341
    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1342 1343 1344 1345 1346
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
            'ones_like')

Z
zhoukunsheng 已提交
1347 1348 1349 1350
    helper.append_op(
        type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]})
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1351 1352 1353 1354


def diag(diagonal):
    """
1355
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
1356 1357

    Args:
1358 1359
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
1360 1361

    Returns:
1362 1363
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
1364 1365 1366 1367 1368 1369 1370

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
1371 1372 1373

          import paddle.fluid as fluid
          import numpy as np
1374 1375 1376
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1377 1378

    """
1379 1380 1381
    check_type(diagonal, 'diagonal', (Variable, numpy.ndarray), 'diag')
    check_dtype(diagonal.dtype, 'diagonal',
                ['float32', 'float64', 'int32', 'int64'], 'diag')
Z
zhoukunsheng 已提交
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

    helper.append_op(
        type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]})

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1394 1395


1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
def eye(num_rows, num_columns=None, batch_shape=None, dtype='float32'):
    """
    **eye**

    This function constructs an identity tensor, or a batch of tensor.

    Args:
        num_rows(int): the number of rows in each batch tensor.
        num_columns(int): the number of columns in each batch tensor.
                          If None, default: num_rows.
        batch_shape(list(int)): If provided, the returned tensor will have a leading
                                batch size of this shape.
1408 1409
        dtype(string): The data type of the returned tensor.
                       It should be int32, int64, float16, float32, float64.
1410 1411

    Returns:
1412
        Variable: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1413 1414 1415 1416 1417

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1418 1419
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1420
          #  [0, 1, 0]
1421 1422
          #  [0, 0, 1]]

1423
          data = fluid.layers.eye(2, 3, dtype='int32')
1424
          # [[1, 0, 0]
1425
          #  [0, 1, 0]]
1426 1427

          data = fluid.layers.eye(2, batch_shape=[3])
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

    helper = LayerHelper("eye", **locals())
    if not isinstance(num_rows, int) or num_rows < 0:
        raise TypeError("num_rows should be a non-negative int")
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows
    out = helper.create_variable_for_type_inference(dtype=dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='eye',
        inputs={},
        outputs={'Out': [out]},
        attrs={
            'num_rows': num_rows,
            'num_columns': num_columns,
            'dtype': c_dtype
        },
        stop_gradient=True)
    out.stop_gradient = True

    if batch_shape is not None:
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
        from .nn import stack
        for batch_val in reversed(batch_shape):
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
            else:
                stack_vars = [out for _ in numpy.arange(batch_val)]
                out = stack(stack_vars, axis=0)
    return out


Z
zhoukunsheng 已提交
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
def ones_like(x, out=None):
    """
    **ones_like**

    This function creates a ones tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1480
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """
1491 1492
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1493 1494 1495 1496

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1497 1498 1499 1500
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
            'ones_like')
Z
zhoukunsheng 已提交
1501 1502 1503 1504 1505 1506
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': 1.0},
        outputs={'Out': [out]})
    return out