tensor.py 53.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16
from six.moves import reduce
Y
Yu Yang 已提交
17
from ..layer_helper import LayerHelper
18
from ..param_attr import ParamAttr
19
from ..framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator
X
xuwei06 已提交
20
from ..framework import Variable
21
from ..initializer import Constant, force_init_on_cpu
22
from ..core import VarDesc
23
from .. import core
24
from .layer_function_generator import templatedoc
L
Leo Chen 已提交
25
from . import utils
26
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
X
xuwei06 已提交
27
import numpy
28
import warnings
Y
Yu Yang 已提交
29 30

__all__ = [
L
li099 已提交
31 32 33
    'create_tensor', 'create_parameter', 'create_global_var', 'cast',
    'tensor_array_to_tensor', 'concat', 'sums', 'assign',
    'fill_constant_batch_size_like', 'fill_constant', 'argmin', 'argmax',
Z
zhoukunsheng 已提交
34
    'argsort', 'ones', 'zeros', 'reverse', 'has_inf', 'has_nan', 'isfinite',
35
    'range', 'linspace', 'zeros_like', 'ones_like', 'diag', 'eye'
Y
Yu Yang 已提交
36 37 38
]


X
xuwei06 已提交
39
def create_tensor(dtype, name=None, persistable=False):
40
    """
W
wangchaochaohu 已提交
41
    Create a variable, which will hold a Tensor with data type dtype.
42 43

    Args:
W
wangchaochaohu 已提交
44 45 46 47
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
48
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
49
            default value is False.
50 51

    Returns:
W
wangchaochaohu 已提交
52
        Variable: The tensor to be created according to dtype.
53 54 55 56

    Examples:
        .. code-block:: python

57
          import paddle.fluid as fluid
58 59
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
Y
Yu Yang 已提交
60
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
61 62
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
63 64


65 66
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
67
                     name=None,
68 69 70 71
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
72
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
73 74 75 76 77
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

78 79 80 81 82 83 84
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
85 86 87
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
88
        default_initializer (Initializer, optional): Initializer for the parameter
89 90

    Returns:
91
        The created parameter.
Y
yuyang18 已提交
92 93

    Examples:
94 95
        .. code-block:: python

96
            import paddle.fluid as fluid
97 98
            import paddle.fluid.layers as layers
            W = layers.create_parameter(shape=[784, 200], dtype='float32')
99
    """
Q
Qiao Longfei 已提交
100
    helper = LayerHelper("create_parameter", **locals())
101
    if attr is None:
X
xuwei06 已提交
102
        attr = ParamAttr(name=name)
103 104 105 106
    return helper.create_parameter(attr, shape, dtype, is_bias,
                                   default_initializer)


107 108 109 110 111 112 113
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
114
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
115

116 117 118
    Parameters:
        shape (list of int): Shape of the variable
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
119
                      variable will be filled with it.
120 121
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
122
                           Default: False
123
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
124
                         Default: False
125 126
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
127 128

    Returns:
129
        Variable: The created Variable
F
fengjiayi 已提交
130 131 132 133

    Examples:
        .. code-block:: python

134
            import paddle.fluid as fluid
135 136 137
            import paddle.fluid.layers as layers
            var = layers.create_global_var(shape=[2,3], value=1.0, dtype='float32',
                                          persistable=True, force_cpu=True, name='new_var')
138
    """
Q
Qiao Longfei 已提交
139 140
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
141 142 143 144 145
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
146 147 148
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
149

Q
Qiao Longfei 已提交
150 151 152
    return var


153
def cast(x, dtype):
Y
Yu Yang 已提交
154
    """
155 156 157
    This OP takes in the Variable :attr:`x` with :attr:`x.dtype` and casts it
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
158 159

    Args:
160 161 162 163
        x(Variable): An input N-D Tensor with data type bool, float16,
            float32, float64, int32, int64, uint8.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output:
            bool, float15, float32, float64, int8, int32, int64, uint8.
Y
Yibing Liu 已提交
164 165

    Returns:
166
        Variable: A Tensor with the same shape as input's.
Y
Yibing Liu 已提交
167 168 169

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
170

171
            import paddle.fluid as fluid
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
            import numpy as np

            place = fluid.core.CPUPlace()

            x_lod = fluid.data(name="x", shape=[2,2], lod_level=0)
            cast_res1 = fluid.layers.cast(x=x_lod, dtype="uint8")
            cast_res2 = fluid.layers.cast(x=x_lod, dtype=np.int32)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())

            x_i_lod = fluid.core.LoDTensor()
            x_i_lod.set(np.array([[1.3,-2.4],[0,4]]).astype("float32"), place)
            x_i_lod.set_recursive_sequence_lengths([[0,2]])
            res1 = exe.run(fluid.default_main_program(), feed={'x':x_i_lod}, fetch_list=[cast_res1], return_numpy=False)
            res2 = exe.run(fluid.default_main_program(), feed={'x':x_i_lod}, fetch_list=[cast_res2], return_numpy=False)
            print(np.array(res1[0]), np.array(res1[0]).dtype)
            # [[  1 254]
            #  [  0   4]] uint8
            print(np.array(res2[0]), np.array(res2[0]).dtype)
            # [[ 1 -2]
            #  [ 0  4]] int32
Y
Yu Yang 已提交
194 195
    """
    helper = LayerHelper('cast', **locals())
196 197
    check_variable_and_dtype(
        x, 'x',
198 199
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'cast')
X
Xin Pan 已提交
200
    out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
201 202 203 204 205 206 207 208 209
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


210
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
211
    """
212 213
    **Concat**

214
    This OP concatenates the input along the axis.
215 216

    Args:
217 218
        input(list): List of input Tensors with data type float32, float64, int32,
            int64.
219
        axis(int32|Variable, optional):  A scalar with type ``int32`` or a ``Tensor`` with shape [1] and type ``int32``. Axis to compute indices along. The effective range
220 221 222 223 224
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
225 226

    Returns:
227
        Variable: A Tensor with the same data type as input's.
228 229 230

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
231

232
            import paddle.fluid as fluid
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
            import numpy as np

            in1 = np.array([[1,2,3],
                            [4,5,6]])
            in2 = np.array([[11,12,13],
                            [14,15,16]])
            in3 = np.array([[21,22],
                            [23,24]])
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                x2 = fluid.dygraph.to_variable(in2)
                x3 = fluid.dygraph.to_variable(in3)
                out1 = fluid.layers.concat(input=[x1,x2,x3], axis=-1)
                out2 = fluid.layers.concat(input=[x1,x2], axis=0)
                print(out1.numpy())
                # [[ 1  2  3 11 12 13 21 22]
                #  [ 4  5  6 14 15 16 23 24]]
                print(out2.numpy())
                # [[ 1  2  3]
                #  [ 4  5  6]
                #  [11 12 13]
                #  [14 15 16]]
Y
Yu Yang 已提交
255
    """
256 257 258

    if in_dygraph_mode():
        inputs = {'X': input}
S
songyouwei 已提交
259 260 261 262 263
        if isinstance(axis, Variable):
            axis = axis.numpy()
            assert axis.shape == (
                1, ), "axis of type Variable should have shape [1]"
            axis = axis[0]
264 265 266 267
        attrs = {'axis': axis}
        outs = core.ops.concat(inputs, attrs)
        return outs['Out'][0]

268 269 270 271 272
    if not isinstance(input, list):
        warnings.warn(
            "The type of input in concat should be list, but received %s." %
            (type(input)))
        input = [input]
273
    for id, x in enumerate(input):
274 275
        check_variable_and_dtype(
            x, 'input[' + str(id) + ']',
276 277
            ['float16', 'float32', 'float64', 'int32', 'int64'], 'concat')
    check_type(axis, 'axis', (int, Variable), 'concat')
278

279
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
280
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        assert len(input) == 1, "If the elements of 'input' in concat are Variable(LoDTensorArray), " \
                            "number of the elements must be 1, but received %s." % len(x)
        out_index = helper.create_variable_for_type_inference(dtype="int32")
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': input[0]},
            outputs={'Out': [out],
                     'OutIndex': [out_index]},
            attrs={'axis': axis,
                   'use_stack': False})
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
            inputs['AxisTensor'] = axis
        else:
            attrs['axis'] = axis

        helper.append_op(
            type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs)
Y
Yu Yang 已提交
304 305 306
    return out


G
Guo Sheng 已提交
307
def tensor_array_to_tensor(input, axis=1, name=None, use_stack=False):
L
li099 已提交
308
    """
G
Guo Sheng 已提交
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]
L
li099 已提交
359 360

    Args:
G
Guo Sheng 已提交
361 362 363 364 365 366 367
        input(Variable): A LodTensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
L
li099 已提交
368 369

    Returns:
G
Guo Sheng 已提交
370 371 372
        Variable: The concatenated or stacked tensor variable.
        Variable: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.
L
li099 已提交
373 374 375 376

    Examples:
        .. code-block:: python

377
            import paddle.fluid as fluid
378
            import numpy as np
G
Guo Sheng 已提交
379 380 381 382 383 384 385
            x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0)
            array = fluid.layers.create_array(dtype='float32')
            fluid.layers.array_write(x0, i, array)
            fluid.layers.array_write(x1, i + 1, array)
            output, output_index = fluid.layers.tensor_array_to_tensor(input=array)
L
li099 已提交
386
    """
L
li099 已提交
387
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
388 389 390
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
391
        type='tensor_array_to_tensor',
L
li099 已提交
392 393 394
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
G
Guo Sheng 已提交
395 396
        attrs={'axis': axis,
               'use_stack': use_stack})
L
li099 已提交
397 398 399
    return out, out_index


400
def sums(input, out=None):
F
fengjiayi 已提交
401
    """
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
    This function computes the sum of multiple input Tensors elementwisely.

    - Case 1, sum of 3 Tensors

    .. code-block:: text

        # Input Tensors
        x0.shape = [2, 3]
        x0.data = [[1., 2., 3.],
                   [4., 5., 6.]]
        x1.shape = [2, 3]
        x1.data = [[10., 20., 30.],
                   [40., 50., 60.]]
        x2.shape = [2, 3]
        x2.data = [[100., 200., 300.],
                   [400., 500., 600.]]

        # Output Tensor
        out.shape = [2, 3]
        out.data = [[111., 222., 333.],
                    [444., 555., 666.]]
K
kavyasrinet 已提交
423 424

    Args:
425 426 427 428
        input (list): A list of Variables which hold input Tensors with the same
            data type and shape. Optional data types are: float32, float64, int32, int64.
        out (Variable, optional): Output Tensor. It can be any existing Variable.
            The default value is None, then a new Variable will be created and returned.
K
kavyasrinet 已提交
429 430

    Returns:
431 432
        Variable: The sum of inputs. The shape and data type is the same with input. \
            If :code:`out` is not None, the returned value is :code:`out` .
K
kavyasrinet 已提交
433 434

    Examples:
F
fengjiayi 已提交
435
        .. code-block:: python
K
kavyasrinet 已提交
436

437 438 439 440 441 442 443 444 445
            import paddle.fluid as fluid

            x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1)
            x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2)
            x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3)
            x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0)

            # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum0 = fluid.layers.sums(input=[x0, x1, x2])
446

447 448
            # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3)
Y
Yu Yang 已提交
449 450 451
    """
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
452 453
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
T
tensor-tang 已提交
454 455 456 457 458
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
459 460 461
    return out


F
fengjiayi 已提交
462
def assign(input, output=None):
463
    """
464
    The OP copies the :attr:`input` to the :attr:`output`.
465

466 467 468 469 470
    Parameters:
        input (Variable|numpy.ndarray): A tensor or numpy ndarray, its data type supports
            float32, float64, int32 and int64.
        output (Variable, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.
471 472

    Returns:
473
        Variable: A tensor with the same shape, data type and value as :attr:`input`.
474 475 476

    Examples:
        .. code-block:: python
477

478
          import paddle.fluid as fluid
479 480 481 482 483 484
          import numpy as np
          data = fluid.layers.fill_constant(shape=[3, 2], value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result1 = fluid.layers.create_tensor(dtype='float64')
          fluid.layers.assign(data, result1) # result1 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result2 = fluid.layers.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = fluid.layers.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
485
    """
Y
Yu Yang 已提交
486
    helper = LayerHelper('assign', **locals())
487
    check_type(input, 'input', (Variable, numpy.ndarray), 'assign')
X
xuwei06 已提交
488
    if isinstance(input, Variable):
489 490 491
        check_dtype(input.dtype, 'input',
                    ['float32', 'float64', 'int32', 'int64', 'bool'], 'assign',
                    '(When the type of input in assign is Variable.)')
492 493 494
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
495
        helper.append_op(
R
robot 已提交
496
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
497 498
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
499
        if dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
500
            value_name = "fp32_values"
501
            values = [float(v) for v in input.flat]
502
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
503
            value_name = "int32_values"
504
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
505
        else:
506 507 508 509
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
                "the data type of 'input' must be float32 or int32, but "
                "received %s." % convert_dtype(dtype))
510 511 512
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
513 514 515
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
516 517 518 519 520 521
        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
522
                value_name: values
X
xuwei06 已提交
523 524
            })

Y
Yu Yang 已提交
525 526 527
    return output


Q
QI JUN 已提交
528
def fill_constant(shape, dtype, value, force_cpu=False, out=None):
Y
Yu Yang 已提交
529
    """
W
wangchaochaohu 已提交
530
    This OP creates a Tensor with specified `shape` and `dtype`, and
T
tianshuo78520a 已提交
531
    initializes it with a constant specified by `value`.
K
kavyasrinet 已提交
532

T
tianshuo78520a 已提交
533
    The attribute `stop_gradient` of the created Tensor is set to True.
534 535

    Args:
536 537 538 539
        shape(list|tuple|Variable): Shape of the Tensor to be created.
                The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
                If ``shape`` is an Variable, it should be an 1-D Tensor .
W
wangchaochaohu 已提交
540 541 542
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output tensor which can
            be float16, float32, float64, int32, int64.
        value(float): The constant value used to initialize the Tensor to be created.
T
tianshuo78520a 已提交
543
        force_cpu(True): data should be on CPU if it's true, default value is False.
W
wangchaochaohu 已提交
544 545 546
        out(Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of operation.
            if out is None, a new Varibale will be create to store the result.
547 548

    Returns:
W
wangchaochaohu 已提交
549 550 551 552 553
        Variable: Tensor which is created according to shape and dtype.

    Raise:
        TypeError: The dtype must be one of bool, float16, float32, float64, int32 and int64
        and the data type of out Tensor must be the same as the dtype. 
554 555 556 557

    Examples:
        .. code-block:: python

558
          import paddle.fluid as fluid
559 560 561 562 563 564 565 566 567 568 569 570
          # attr shape is a list which doesn't contain Variable Tensor.
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') # data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1)
          # data1=[[0], [0]] data2=[[5], [5]]

          # attr shape is a list which contains Variable Tensor.
          positive_2 = fluid.layers.fill_constant([1], "int32", 2)
          data3 = fluid.layers.fill_constant(shape=[1, positive_2], dtype='float32', value=1.5) # data3=[1.5, 1.5]

          # attr shape is an Variable Tensor.
          shape = fluid.layers.fill_constant([1,2], "int32", 2) # shape=[2,2]
          data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]]
Y
Yu Yang 已提交
571
    """
572 573 574 575 576 577 578 579 580 581 582 583
    attrs = {
        'value': float(value),
        'force_cpu': force_cpu or force_init_on_cpu()
    }

    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))

    if in_dygraph_mode():
        if isinstance(shape, (list, tuple)):
S
songyouwei 已提交
584 585 586
            shape = list(
                map(lambda x: x.numpy()[0] if isinstance(x, Variable) else x,
                    shape))
587
        else:
S
songyouwei 已提交
588 589
            shape = list(shape.numpy().astype(int))
        attrs['shape'] = shape
590 591 592 593 594 595 596 597
        if out is None:
            out = _varbase_creator(dtype=dtype)
        attrs['dtype'] = out.dtype
        outputs = {'Out': [out]}
        outs = core.ops.fill_constant({}, attrs, outputs)
        out.stop_gradient = True
        return out

Y
Yu Yang 已提交
598
    helper = LayerHelper("fill_constant", **locals())
599 600 601 602
    check_dtype(dtype, 'create data type',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'fill_constant')
    check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')
L
liym27 已提交
603 604 605 606 607 608
    inputs = {}
    attrs = {
        'value': float(value),
        'force_cpu': force_cpu or force_init_on_cpu()
    }

609 610 611 612 613
    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))

L
liym27 已提交
614 615 616 617 618 619 620 621 622 623 624
    def _get_attr_shape(list_shape):
        attr_shape = []
        for idx, dim in enumerate(list_shape):
            if isinstance(dim, Variable):
                attr_shape.append(-1)
            else:
                attr_shape.append(dim)
        return attr_shape

    def _get_shape_tensor(list_shape):
        new_shape_tensor = []
625
        for idx, dim in enumerate(list_shape):
L
liym27 已提交
626 627
            if isinstance(dim, Variable):
                dim.stop_gradient = True
628 629 630 631
                check_dtype(
                    dim.dtype, 'shape[' + str(idx) + ']', ['int32', 'int64'],
                    'fill_constant',
                    '(When type of shape in fill_constant is list or tuple.)')
632 633
                if convert_dtype(dim.dtype) == 'int64':
                    dim = cast(x=dim, dtype='int32')
L
liym27 已提交
634 635 636 637 638 639 640 641 642
                new_shape_tensor.append(dim)
            else:
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_shape_tensor.append(temp_out)
        return new_shape_tensor

    if isinstance(shape, Variable):
        shape.stop_gradient = True
643 644
        check_dtype(shape.dtype, 'shape', ['int32', 'int64'], 'fill_constant',
                    '(When type of shape in fill_constant is Variable.)')
645 646
        if (convert_dtype(shape.dtype) == 'int64'):
            shape = cast(shape, 'int32')
L
liym27 已提交
647 648 649 650 651 652
        inputs["ShapeTensor"] = shape
    elif isinstance(shape, (list, tuple)):
        assert len(shape) > 0, (
            "The size of 'shape' in fill_constant can't be zero, "
            "but received %s." % len(shape))
        attrs["shape"] = _get_attr_shape(shape)
L
Leo Chen 已提交
653
        if utils._contain_var(shape):
L
liym27 已提交
654 655
            inputs['ShapeTensorList'] = _get_shape_tensor(shape)

Y
Yu Yang 已提交
656
    if out is None:
X
Xin Pan 已提交
657
        out = helper.create_variable_for_type_inference(dtype=dtype)
658
    else:
659 660 661 662 663
        check_dtype(
            dtype, 'create data type',
            convert_dtype(out.dtype), 'fill_constant',
            '(The create data type in fill_constant must be the same with out data type.)'
        )
L
liym27 已提交
664
    attrs['dtype'] = out.dtype
Y
Yu Yang 已提交
665 666
    helper.append_op(
        type='fill_constant',
L
liym27 已提交
667
        inputs=inputs,
Y
Yu Yang 已提交
668
        outputs={'Out': [out]},
L
liym27 已提交
669
        attrs=attrs,
M
minqiyang 已提交
670
        stop_gradient=True)
Y
Yu Yang 已提交
671 672 673 674
    out.stop_gradient = True
    return out


Y
yuyang18 已提交
675
@templatedoc()
Y
Yu Yang 已提交
676 677 678 679 680
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
G
Guo Sheng 已提交
681 682
                                  output_dim_idx=0,
                                  force_cpu=False):
683
    """
T
tianshuo78520a 已提交
684
    This OP creates a Tesnor according the shape and dtype, and initializes the
W
wangchaochaohu 已提交
685 686 687 688
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
689 690

    Args:
W
wangchaochaohu 已提交
691 692 693 694 695 696 697 698 699 700 701
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
        value(float|int): The constant value used to initialize the Tensor to be created. 
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
T
tianshuo78520a 已提交
702
        force_cpu(bool): data should be on CPU if it's true, default value is False.
Y
yuyang18 已提交
703 704

    Returns:
W
wangchaochaohu 已提交
705
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
706 707 708 709 710

    Examples:

        .. code-block:: python

711
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
712
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
713
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
714
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
715

716
    """
Y
Yu Yang 已提交
717
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
718
    out = helper.create_variable_for_type_inference(dtype=dtype)
719 720 721 722 723 724 725 726 727 728 729 730
    attrs = {
        'shape': shape,
        'dtype': out.dtype,
        'value': float(value),
        'input_dim_idx': input_dim_idx,
        'output_dim_idx': output_dim_idx,
        'force_cpu': force_cpu or force_init_on_cpu()
    }
    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))
Y
Yu Yang 已提交
731 732 733 734
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
735
        attrs=attrs)
Y
Yu Yang 已提交
736 737 738 739
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
740 741 742 743
def argmin(x, axis=0):
    """
    **argmin**

744 745
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
746 747

    Args:
748 749 750 751 752
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
753

S
sneaxiy 已提交
754
    Returns:
755
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
756

S
sneaxiy 已提交
757 758
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
759

760
            import paddle.fluid as fluid
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmin(x=x, axis=-1)
                out2 = fluid.layers.argmin(x=x, axis=0)
                out3 = fluid.layers.argmin(x=x, axis=1)
                out4 = fluid.layers.argmin(x=x, axis=2)
                print(out1.numpy())
                # [[0 0 2]
                #  [1 0 2]]
                print(out2.numpy())
                # [[0 1 1 1]
                #  [0 0 0 0]
                #  [1 1 1 0]]
                print(out3.numpy())
                # [[1 1 1 2]
                #  [2 0 2 0]]
                print(out4.numpy())
                # [[0 0 2]
                #  [1 0 2]]
S
sneaxiy 已提交
788 789
    """
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
790
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
791 792 793 794 795
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
796
    out.stop_gradient = True
S
sneaxiy 已提交
797 798 799 800 801 802 803
    return out


def argmax(x, axis=0):
    """
    **argmax**

804 805
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
806 807

    Args:
808 809 810 811 812
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
813

S
sneaxiy 已提交
814
    Returns:
815
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
816

S
sneaxiy 已提交
817 818
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
819

820
            import paddle.fluid as fluid
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmax(x=x, axis=-1)
                out2 = fluid.layers.argmax(x=x, axis=0)
                out3 = fluid.layers.argmax(x=x, axis=1)
                out4 = fluid.layers.argmax(x=x, axis=2)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
S
sneaxiy 已提交
848 849
    """
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
850
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
851 852 853 854 855
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
856
    out.stop_gradient = True
S
sneaxiy 已提交
857 858 859
    return out


860
def argsort(input, axis=-1, descending=False, name=None):
Y
Yibing Liu 已提交
861
    """
862 863 864
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
Y
Yibing Liu 已提交
865 866

    Args:
867 868 869 870 871
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
872 873 874
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
875 876 877
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
Y
Yibing Liu 已提交
878 879

    Returns:
880 881 882
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
Y
Yibing Liu 已提交
883 884 885 886

    Examples:
        .. code-block:: python

887
            import paddle.fluid as fluid
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argsort(input=x, axis=-1)
                out2 = fluid.layers.argsort(input=x, axis=0)
                out3 = fluid.layers.argsort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
Y
Yibing Liu 已提交
929 930
    """
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
931 932 933 934
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
935 936 937 938
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
939
                 'Indices': ids},
940 941
        attrs={'axis': axis,
               'descending': descending})
Y
Yibing Liu 已提交
942 943 944
    return out, ids


Y
Yang Yu 已提交
945
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
946
    """
947 948
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
949

950 951 952 953 954 955 956
    Parameters:
        shape (tuple|list): Shape of output tensor.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of output tensor, it supports
            bool, float16, float32, float64, int32 and int64.
        force_cpu (bool, optional): Whether force to store the output tensor in CPU memory.
            If :attr:`force_cpu` is False, the output tensor will be stored in running device memory.
            Default: False.
957 958

    Returns:
959
        Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
960 961 962 963

    Examples:
        .. code-block:: python

964
          import paddle.fluid as fluid
965
          data = fluid.layers.ones(shape=[2, 4], dtype='float32') # [[1., 1., 1., 1.], [1., 1., 1., 1.]]
Y
Yu Yang 已提交
966
    """
C
chengduozh 已提交
967 968 969 970
    assert isinstance(shape, list) or isinstance(
        shape, tuple), "The shape's type should be list or tuple."
    assert reduce(lambda x, y: x * y,
                  shape) > 0, "The shape is invalid: %s." % (str(shape))
Y
Yu Yang 已提交
971 972 973
    return fill_constant(value=1.0, **locals())


Y
Yang Yu 已提交
974
def zeros(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
975
    """
976 977
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
978

979 980 981 982 983 984 985
    Parameters:
        shape (tuple|list): Shape of output tensor.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of output tensor, it supports
            bool, float16, float32, float64, int32 and int64.
        force_cpu (bool, optional): Whether force to store the output tensor in CPU memory.
            If :attr:`force_cpu` is False, the output tensor will be stored in running device memory.
            Default: False.
986 987

    Returns:
988
        Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
989 990 991 992

    Examples:
        .. code-block:: python

993
          import paddle.fluid as fluid
994
          data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
Y
Yu Yang 已提交
995
    """
996 997 998
    check_dtype(dtype, 'create data type',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'zeros')
Y
Yu Yang 已提交
999
    return fill_constant(value=0.0, **locals())
1000 1001


F
fengjiayi 已提交
1002 1003
def reverse(x, axis):
    """
1004
    The OP reverses the tensor :attr:`x` along the given :attr:`axis`.
F
fengjiayi 已提交
1005

1006 1007 1008 1009 1010
    Parameters:
        x (Variable): A tensor to be reversed, its data type supports bool, float32, float64, int32, int64 and uint8.
        axis (int|tuple|list): A dimension or a set of dimensions of :attr:`x` to reverse. Must be
            in the range [-rank( :attr:`x` ), rank( :attr:`x` )). If it is a tuple or a list, reversing
            will be apply on each axis in the tuple or list.
F
fengjiayi 已提交
1011 1012

    Returns:
1013
        Variable: The reversed tensor with the same shape and data type as :attr:`x`.
F
fengjiayi 已提交
1014 1015 1016 1017

    Examples:
        .. code-block:: python

1018
          import paddle.fluid as fluid
1019 1020 1021 1022
          import numpy as np
          data = fluid.layers.assign(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype='float32')) # [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]
          result1 = fluid.layers.reverse(data, 0) # [[6., 7., 8.], [3., 4., 5.], [0., 1., 2.]]
          result2 = fluid.layers.reverse(data, [0, 1]) # [[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]]
F
fengjiayi 已提交
1023 1024 1025 1026
    """
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
1027
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
1028 1029
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
1030
        inputs={'X': x},
F
fengjiayi 已提交
1031 1032 1033 1034 1035
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


1036 1037 1038 1039 1040 1041 1042
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
1043 1044 1045
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
1061 1062
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
1063
        file_path(str): The file path where variables will be saved.
1064
        overwrite(bool): Whether or not cover the given file when it has already
1065 1066
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1067 1068 1069 1070 1071 1072 1073 1074

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

1075
            import paddle.fluid as fluid
1076 1077 1078 1079 1080 1081 1082
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
T
tianshuo78520a 已提交
1095
    Loads a list of variable from a single file.
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
1107 1108 1109 1110 1111 1112 1113


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
L
liu zhengxi 已提交
1114
       x (Variable): The Tensor/LoDTensor to be checked.
1115 1116

    Returns:
L
liu zhengxi 已提交
1117
       Variable: The tensor variable storing the output, only a bool value, indicating that whether there is infinity number in x or not.
1118 1119 1120 1121 1122 1123 1124 1125
    
    Examples:
        .. code-block:: python
          
          import paddle.fluid as fluid
          data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
          res = fluid.layers.has_inf(data)

1126 1127
    """
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
1128
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1129 1130 1131 1132 1133 1134 1135 1136 1137
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
L
liu zhengxi 已提交
1138
       x (Variable): The Tensor/LoDTensor to be checked.
1139 1140

    Returns:
L
liu zhengxi 已提交
1141
       Variable: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
1142 1143 1144 1145 1146 1147 1148 1149
    
    Examples:
        .. code-block:: python
    
          import paddle.fluid as fluid
          data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
          res = fluid.layers.has_nan(data)

1150 1151
    """
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
1152
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
       x(variable): The Tensor/LoDTensor to be checked.

    Returns:
        Variable: The tensor variable storing the output, contains a bool value.
1167 1168 1169 1170 1171

    Examples:

        .. code-block:: python

1172
            import paddle.fluid as fluid
1173 1174 1175
            var = fluid.layers.data(name="data",
                                    shape=(4, 6),
                                    dtype="float32")
石晓伟 已提交
1176
            out = fluid.layers.isfinite(var)
1177 1178
    """
    helper = LayerHelper("isfinite", **locals())
X
Xin Pan 已提交
1179
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1180 1181
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
1182 1183 1184 1185 1186 1187 1188 1189 1190


def range(start, end, step, dtype):
    """
    Return evenly spaced values within a given interval.

    Values are generated within the half-open interval [start, stop) (in other words,
    the interval including start but excluding stop).

L
Liufang Sang 已提交
1191 1192 1193 1194
    Parameters:
        start(float32 | float64 | int32 | int64 | Variable): Start of interval. The interval includes this value.
            when start is Variable, it is a 1-D Tensor with shape [1].
        end(float32 | float64 | int32 | int64 | Variable): End of interval. The interval does not include this
W
whs 已提交
1195
                                 value, except in some cases where step is not an integer
L
Liufang Sang 已提交
1196 1197 1198
                                 and floating point round-off affects the length of out. When end is Variable,
                                 it is a 1-D Tensor with shape [1].
        step(float32 | float64 | int32 | int64 | Variable): Spacing between values. For any output out, this is the
W
whs 已提交
1199
                                  distance between two adjacent values, out[i+1] - out[i].
1200
        dtype(str|core.VarDesc.VarType): the data type of the output tensor, can be float32, float64, int32, int64.
W
whs 已提交
1201

L
Liufang Sang 已提交
1202 1203 1204
    Returns: a 1-D Tensor which is evenly spaced values within a given interval. Its data type is set by dtype.
    
    Return type: Variable
W
whs 已提交
1205 1206 1207 1208 1209

    examples:

        .. code-block:: python

1210
             import paddle.fluid as fluid
W
whs 已提交
1211 1212 1213 1214 1215
             data = fluid.layers.range(0, 10, 2, 'int32')

    """
    helper = LayerHelper("range", **locals())

1216 1217 1218 1219
    check_dtype(dtype, 'create data type',
                ['float32', 'float64', 'int32', 'int64'], 'range')

    dtype = convert_dtype(dtype)
W
whs 已提交
1220 1221
    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
1222 1223 1224 1225 1226
    elif convert_dtype(start.dtype) != dtype:
        # make sure that start, end, step has the same dtype as
        # `dtype`
        start = cast(x=start, dtype=dtype)

W
whs 已提交
1227 1228
    if not isinstance(end, Variable):
        end = fill_constant([1], dtype, end)
1229 1230 1231
    elif convert_dtype(end.dtype) != dtype:
        end = cast(x=end, dtype=dtype)

W
whs 已提交
1232 1233
    if not isinstance(step, Variable):
        step = fill_constant([1], dtype, step)
1234 1235
    elif convert_dtype(step.dtype) != dtype:
        step = cast(x=step, dtype=dtype)
W
whs 已提交
1236 1237 1238 1239 1240 1241 1242 1243 1244

    out = helper.create_variable_for_type_inference(dtype=start.dtype)

    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
        outputs={'Out': [out]})
1245
    out.stop_gradient = True
W
whs 已提交
1246
    return out
Z
zhoukunsheng 已提交
1247 1248


Z
zhoukunsheng 已提交
1249 1250
def linspace(start, stop, num, dtype):
    """
1251
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
1252 1253

    Args:
1254 1255 1256 1257 1258 1259 1260
        start(float|Variable): The input :attr:`start` is start variable of range. It is a float scalar, \
            or a tensor of shape [1] with input data type float32, float64.
        stop(float|Variable): The input :attr:`stop` is start variable of range. It is a float scalar, \
            or a tensor of shape [1] with input data type float32, float64.
        num(int|Variable): The input :attr:`num` is given num of the sequence. It is an int scalar, \
            or a tensor of shape [1] with type int32.
        dtype(string): The data type of output tensor, it could be 'float32' and 'float64'.
Z
zhoukunsheng 已提交
1261 1262

    Returns:
1263 1264 1265
        Variable, the output data type will be float32, float64.: The 1-D tensor with fixed number of evenly spaced values, \
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 
Z
zhoukunsheng 已提交
1266

Z
zhoukunsheng 已提交
1267
    Examples:
Z
zhoukunsheng 已提交
1268 1269
        .. code-block:: python

1270
             import paddle.fluid as fluid
Z
zhoukunsheng 已提交
1271 1272
             data = fluid.layers.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = fluid.layers.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292

    """
    helper = LayerHelper("linspace", **locals())

    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
    if not isinstance(stop, Variable):
        stop = fill_constant([1], dtype, stop)
    if not isinstance(num, Variable):
        num = fill_constant([1], 'int32', num)

    out = helper.create_variable_for_type_inference(dtype=start.dtype)

    helper.append_op(
        type='linspace',
        inputs={'Start': start,
                'Stop': stop,
                'Num': num},
        outputs={'Out': [out]})
    return out
1293 1294


Z
zhoukunsheng 已提交
1295 1296
def zeros_like(x, out=None):
    """
1297
    This OP creates a zeros tensor which has identical shape and dtype 
Z
zhoukunsheng 已提交
1298 1299 1300
    with `x`.

    Args:
1301 1302 1303
        x(Variable): The input tensor which specifies shape and dtype, the input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the variable as output, the data type and shape of \
            this variable will be same as input :attr:`x`. If is a tensor, the data type and shape need to be same as input :attr:`x`. 
T
tianshuo78520a 已提交
1304
            The default value is :attr:`None` .
Z
zhoukunsheng 已提交
1305 1306

    Returns:
1307 1308
        Variable: The N-D tensor, the element in tensor is related to input data type, if the input data type is bool, \
            the output value is False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
1309 1310 1311 1312

    Examples:
        .. code-block:: python

1313
          import paddle.fluid as fluid
1314
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
1315 1316
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
1317 1318 1319 1320 1321 1322 1323 1324 1325
    """

    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]})
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1326 1327 1328 1329


def diag(diagonal):
    """
1330
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
1331 1332

    Args:
1333 1334
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
1335 1336

    Returns:
1337 1338
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
1339 1340 1341 1342 1343 1344 1345

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
1346 1347 1348

          import paddle.fluid as fluid
          import numpy as np
1349 1350 1351
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366

    """

    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

    helper.append_op(
        type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]})

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1367 1368


1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
def eye(num_rows, num_columns=None, batch_shape=None, dtype='float32'):
    """
    **eye**

    This function constructs an identity tensor, or a batch of tensor.

    Args:
        num_rows(int): the number of rows in each batch tensor.
        num_columns(int): the number of columns in each batch tensor.
                          If None, default: num_rows.
        batch_shape(list(int)): If provided, the returned tensor will have a leading
                                batch size of this shape.
1381 1382
        dtype(string): The data type of the returned tensor.
                       It should be int32, int64, float16, float32, float64.
1383 1384

    Returns:
1385
        Variable: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1386 1387 1388 1389 1390

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1391 1392
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1393
          #  [0, 1, 0]
1394 1395
          #  [0, 0, 1]]

1396
          data = fluid.layers.eye(2, 3, dtype='int32')
1397
          # [[1, 0, 0]
1398
          #  [0, 1, 0]]
1399 1400

          data = fluid.layers.eye(2, batch_shape=[3])
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

    helper = LayerHelper("eye", **locals())
    if not isinstance(num_rows, int) or num_rows < 0:
        raise TypeError("num_rows should be a non-negative int")
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows
    out = helper.create_variable_for_type_inference(dtype=dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='eye',
        inputs={},
        outputs={'Out': [out]},
        attrs={
            'num_rows': num_rows,
            'num_columns': num_columns,
            'dtype': c_dtype
        },
        stop_gradient=True)
    out.stop_gradient = True

    if batch_shape is not None:
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
        from .nn import stack
        for batch_val in reversed(batch_shape):
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
            else:
                stack_vars = [out for _ in numpy.arange(batch_val)]
                out = stack(stack_vars, axis=0)
    return out


Z
zhoukunsheng 已提交
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
def ones_like(x, out=None):
    """
    **ones_like**

    This function creates a ones tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1453
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': 1.0},
        outputs={'Out': [out]})
    return out