tensor.py 59.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16
import six
17
from six.moves import reduce
Y
Yu Yang 已提交
18
from ..layer_helper import LayerHelper
19
from ..param_attr import ParamAttr
20
from ..initializer import Initializer
21
from ..framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator
X
xuwei06 已提交
22
from ..framework import Variable
23
from ..initializer import Constant
24
from ..core import VarDesc
25
from .. import core
26
from .layer_function_generator import templatedoc
L
Leo Chen 已提交
27
from . import utils
28
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
X
xuwei06 已提交
29
import numpy
30
import warnings
Y
Yu Yang 已提交
31 32

__all__ = [
L
li099 已提交
33 34 35
    'create_tensor', 'create_parameter', 'create_global_var', 'cast',
    'tensor_array_to_tensor', 'concat', 'sums', 'assign',
    'fill_constant_batch_size_like', 'fill_constant', 'argmin', 'argmax',
Z
zhoukunsheng 已提交
36
    'argsort', 'ones', 'zeros', 'reverse', 'has_inf', 'has_nan', 'isfinite',
37
    'range', 'linspace', 'zeros_like', 'ones_like', 'diag', 'eye'
Y
Yu Yang 已提交
38 39 40
]


X
xuwei06 已提交
41
def create_tensor(dtype, name=None, persistable=False):
42
    """
W
wangchaochaohu 已提交
43
    Create a variable, which will hold a Tensor with data type dtype.
44 45

    Args:
W
wangchaochaohu 已提交
46 47 48 49
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
50
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
51
            default value is False.
52 53

    Returns:
W
wangchaochaohu 已提交
54
        Variable: The tensor to be created according to dtype.
55 56 57 58

    Examples:
        .. code-block:: python

59
          import paddle.fluid as fluid
60 61
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
62 63 64 65
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int32',
        'int64'
    ], 'create_tensor')
Y
Yu Yang 已提交
66
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
67 68
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
69 70


71 72
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
73
                     name=None,
74 75 76 77
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
S
swtkiwi 已提交
78 79
	:api_attr: Static Graph

80
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
81 82 83 84 85
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

86 87 88 89 90 91 92
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
93 94 95
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
96
        default_initializer (Initializer, optional): Initializer for the parameter
97 98

    Returns:
99
        The created parameter.
Y
yuyang18 已提交
100 101

    Examples:
102 103
        .. code-block:: python

104
            import paddle.fluid as fluid
105 106
            import paddle.fluid.layers as layers
            W = layers.create_parameter(shape=[784, 200], dtype='float32')
107
    """
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
    check_type(shape, 'shape', (list, tuple, numpy.ndarray), 'create_parameter')
    for item in shape:
        if six.PY2:
            check_type(item, 'item of shape',
                       (int, long, numpy.uint8, numpy.int8, numpy.int16,
                        numpy.int32, numpy.int64), 'create_parameter')
        else:
            check_type(item, 'item of shape',
                       (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                        numpy.int64), 'create_parameter')

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_parameter')
    check_type(attr, 'attr', (type(None), ParamAttr), 'create_parameter')
    check_type(default_initializer, 'default_initializer',
               (type(None), Initializer), 'create_parameter')

Q
Qiao Longfei 已提交
127
    helper = LayerHelper("create_parameter", **locals())
128
    if attr is None:
X
xuwei06 已提交
129
        attr = ParamAttr(name=name)
130 131
    return helper.create_parameter(attr, shape,
                                   convert_dtype(dtype), is_bias,
132 133 134
                                   default_initializer)


135 136 137 138 139 140 141
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
142
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
143

144 145 146
    Parameters:
        shape (list of int): Shape of the variable
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
147
                      variable will be filled with it.
148 149
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
150
                           Default: False
151
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
152
                         Default: False
153 154
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
155 156

    Returns:
157
        Variable: The created Variable
F
fengjiayi 已提交
158 159 160 161

    Examples:
        .. code-block:: python

162
            import paddle.fluid as fluid
163 164
            import paddle.fluid.layers as layers
            var = layers.create_global_var(shape=[2,3], value=1.0, dtype='float32',
165
                                           persistable=True, force_cpu=True, name='new_var')
166
    """
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
    check_type(shape, 'shape', (list, tuple, numpy.ndarray),
               'create_global_var')
    for item in shape:
        if six.PY2:
            check_type(item, 'item of shape',
                       (int, long, numpy.uint8, numpy.int8, numpy.int16,
                        numpy.int32, numpy.int64), 'create_global_var')
        else:
            check_type(item, 'item of shape',
                       (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                        numpy.int64), 'create_global_var')

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_global_var')

Q
Qiao Longfei 已提交
184 185
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
186 187 188 189 190
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
191 192 193
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
194

Q
Qiao Longfei 已提交
195 196 197
    return var


198
def cast(x, dtype):
Y
Yu Yang 已提交
199
    """
S
swtkiwi 已提交
200 201 202 203
	:alias_main: paddle.cast
	:alias: paddle.cast,paddle.tensor.cast,paddle.tensor.manipulation.cast
	:old_api: paddle.fluid.layers.cast

204 205 206
    This OP takes in the Variable :attr:`x` with :attr:`x.dtype` and casts it
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
207 208

    Args:
209 210 211
        x(Variable): An input N-D Tensor with data type bool, float16,
            float32, float64, int32, int64, uint8.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output:
212
            bool, float16, float32, float64, int8, int32, int64, uint8.
Y
Yibing Liu 已提交
213 214

    Returns:
215
        Variable: A Tensor with the same shape as input's.
Y
Yibing Liu 已提交
216 217 218

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
219

220
            import paddle.fluid as fluid
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
            import numpy as np

            place = fluid.core.CPUPlace()

            x_lod = fluid.data(name="x", shape=[2,2], lod_level=0)
            cast_res1 = fluid.layers.cast(x=x_lod, dtype="uint8")
            cast_res2 = fluid.layers.cast(x=x_lod, dtype=np.int32)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())

            x_i_lod = fluid.core.LoDTensor()
            x_i_lod.set(np.array([[1.3,-2.4],[0,4]]).astype("float32"), place)
            x_i_lod.set_recursive_sequence_lengths([[0,2]])
            res1 = exe.run(fluid.default_main_program(), feed={'x':x_i_lod}, fetch_list=[cast_res1], return_numpy=False)
            res2 = exe.run(fluid.default_main_program(), feed={'x':x_i_lod}, fetch_list=[cast_res2], return_numpy=False)
            print(np.array(res1[0]), np.array(res1[0]).dtype)
            # [[  1 254]
            #  [  0   4]] uint8
            print(np.array(res2[0]), np.array(res2[0]).dtype)
            # [[ 1 -2]
            #  [ 0  4]] int32
Y
Yu Yang 已提交
243
    """
244 245
    check_variable_and_dtype(
        x, 'x',
246 247
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'cast')
248 249 250 251 252 253
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int64',
        'uint8'
    ], 'cast')

    helper = LayerHelper('cast', **locals())
X
Xin Pan 已提交
254
    out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
255 256 257 258 259 260 261 262 263
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


264
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
265
    """
S
swtkiwi 已提交
266 267 268 269
	:alias_main: paddle.concat
	:alias: paddle.concat,paddle.tensor.concat,paddle.tensor.manipulation.concat
	:old_api: paddle.fluid.layers.concat

270 271
    **Concat**

272
    This OP concatenates the input along the axis.
273 274

    Args:
275 276
        input(list): List of input Tensors with data type float32, float64, int32,
            int64.
277
        axis(int32|Variable, optional):  A scalar with type ``int32`` or a ``Tensor`` with shape [1] and type ``int32``. Axis to compute indices along. The effective range
278 279 280 281 282
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
283 284

    Returns:
285
        Variable: A Tensor with the same data type as input's.
286 287 288

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
289

290
            import paddle.fluid as fluid
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
            import numpy as np

            in1 = np.array([[1,2,3],
                            [4,5,6]])
            in2 = np.array([[11,12,13],
                            [14,15,16]])
            in3 = np.array([[21,22],
                            [23,24]])
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                x2 = fluid.dygraph.to_variable(in2)
                x3 = fluid.dygraph.to_variable(in3)
                out1 = fluid.layers.concat(input=[x1,x2,x3], axis=-1)
                out2 = fluid.layers.concat(input=[x1,x2], axis=0)
                print(out1.numpy())
                # [[ 1  2  3 11 12 13 21 22]
                #  [ 4  5  6 14 15 16 23 24]]
                print(out2.numpy())
                # [[ 1  2  3]
                #  [ 4  5  6]
                #  [11 12 13]
                #  [14 15 16]]
Y
Yu Yang 已提交
313
    """
314 315

    if in_dygraph_mode():
S
songyouwei 已提交
316 317 318 319 320
        if isinstance(axis, Variable):
            axis = axis.numpy()
            assert axis.shape == (
                1, ), "axis of type Variable should have shape [1]"
            axis = axis[0]
321
        return core.ops.concat(input, 'axis', axis)
322

323 324 325 326 327
    if not isinstance(input, list):
        warnings.warn(
            "The type of input in concat should be list, but received %s." %
            (type(input)))
        input = [input]
328
    for id, x in enumerate(input):
329 330
        check_variable_and_dtype(
            x, 'input[' + str(id) + ']',
331 332
            ['float16', 'float32', 'float64', 'int32', 'int64'], 'concat')
    check_type(axis, 'axis', (int, Variable), 'concat')
333

334
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
335
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        assert len(input) == 1, "If the elements of 'input' in concat are Variable(LoDTensorArray), " \
                            "number of the elements must be 1, but received %s." % len(x)
        out_index = helper.create_variable_for_type_inference(dtype="int32")
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': input[0]},
            outputs={'Out': [out],
                     'OutIndex': [out_index]},
            attrs={'axis': axis,
                   'use_stack': False})
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
            inputs['AxisTensor'] = axis
        else:
            attrs['axis'] = axis

        helper.append_op(
            type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs)
Y
Yu Yang 已提交
359 360 361
    return out


G
Guo Sheng 已提交
362
def tensor_array_to_tensor(input, axis=1, name=None, use_stack=False):
L
li099 已提交
363
    """
G
Guo Sheng 已提交
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]
L
li099 已提交
414 415

    Args:
G
Guo Sheng 已提交
416 417 418 419 420 421 422
        input(Variable): A LodTensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
L
li099 已提交
423 424

    Returns:
G
Guo Sheng 已提交
425 426 427
        Variable: The concatenated or stacked tensor variable.
        Variable: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.
L
li099 已提交
428 429 430 431

    Examples:
        .. code-block:: python

432
            import paddle.fluid as fluid
433
            import numpy as np
G
Guo Sheng 已提交
434 435 436 437 438 439 440
            x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0)
            array = fluid.layers.create_array(dtype='float32')
            fluid.layers.array_write(x0, i, array)
            fluid.layers.array_write(x1, i + 1, array)
            output, output_index = fluid.layers.tensor_array_to_tensor(input=array)
L
li099 已提交
441
    """
442 443 444 445 446 447 448 449 450 451 452
    if in_dygraph_mode():
        assert isinstance(
            input, list), "The 'input' in tensor_array_to_tensor must be list"
        from .nn import stack, concat
        from ..dygraph import to_variable
        op = stack if use_stack else concat
        res = op(input, axis=axis)
        sizes = to_variable(
            numpy.array(list(map(lambda x: int(x.shape[axis]), input))))
        return res, sizes

453 454 455 456 457
    check_type(input, 'input', (list, Variable), 'tensor_array_to_tensor')
    if isinstance(input, list):
        for i, input_x in enumerate(input):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'tensor_array_to_tensor')
L
li099 已提交
458
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
459 460 461
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
462
        type='tensor_array_to_tensor',
L
li099 已提交
463 464 465
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
G
Guo Sheng 已提交
466 467
        attrs={'axis': axis,
               'use_stack': use_stack})
L
li099 已提交
468 469 470
    return out, out_index


471
def sums(input, out=None):
F
fengjiayi 已提交
472
    """
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
    This function computes the sum of multiple input Tensors elementwisely.

    - Case 1, sum of 3 Tensors

    .. code-block:: text

        # Input Tensors
        x0.shape = [2, 3]
        x0.data = [[1., 2., 3.],
                   [4., 5., 6.]]
        x1.shape = [2, 3]
        x1.data = [[10., 20., 30.],
                   [40., 50., 60.]]
        x2.shape = [2, 3]
        x2.data = [[100., 200., 300.],
                   [400., 500., 600.]]

        # Output Tensor
        out.shape = [2, 3]
        out.data = [[111., 222., 333.],
                    [444., 555., 666.]]
K
kavyasrinet 已提交
494 495

    Args:
496 497 498 499
        input (list): A list of Variables which hold input Tensors with the same
            data type and shape. Optional data types are: float32, float64, int32, int64.
        out (Variable, optional): Output Tensor. It can be any existing Variable.
            The default value is None, then a new Variable will be created and returned.
K
kavyasrinet 已提交
500 501

    Returns:
502 503
        Variable: The sum of inputs. The shape and data type is the same with input. \
            If :code:`out` is not None, the returned value is :code:`out` .
K
kavyasrinet 已提交
504 505

    Examples:
F
fengjiayi 已提交
506
        .. code-block:: python
K
kavyasrinet 已提交
507

508 509 510 511 512 513 514 515 516
            import paddle.fluid as fluid

            x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1)
            x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2)
            x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3)
            x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0)

            # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum0 = fluid.layers.sums(input=[x0, x1, x2])
517

518 519
            # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3)
Y
Yu Yang 已提交
520
    """
521 522 523 524 525 526 527 528 529
    check_type(input, 'input', (Variable, tuple, list), 'sums')
    if isinstance(input, list) or isinstance(input, tuple):
        for input_section in input:
            check_variable_and_dtype(input_section, "input", \
                    ['float32', 'float64', 'int32', 'int64'], 'sums')
    else:
        check_variable_and_dtype(input, "input", \
                ['float32', 'float64', 'int32', 'int64'], 'sums')

Y
Yu Yang 已提交
530 531
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
532 533
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
534 535 536 537
    else:
        check_variable_and_dtype(
            out, "out", ['float32', 'float64', 'int32', 'int64'], 'sums')

T
tensor-tang 已提交
538 539 540 541 542
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
543 544 545
    return out


F
fengjiayi 已提交
546
def assign(input, output=None):
547
    """
S
swtkiwi 已提交
548 549 550 551
	:alias_main: paddle.nn.functional.assign
	:alias: paddle.nn.functional.assign,paddle.nn.functional.common.assign
	:old_api: paddle.fluid.layers.assign

552
    The OP copies the :attr:`input` to the :attr:`output`.
553

554 555 556 557 558
    Parameters:
        input (Variable|numpy.ndarray): A tensor or numpy ndarray, its data type supports
            float32, float64, int32 and int64.
        output (Variable, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.
559 560

    Returns:
561
        Variable: A tensor with the same shape, data type and value as :attr:`input`.
562 563 564

    Examples:
        .. code-block:: python
565

566
          import paddle.fluid as fluid
567 568 569 570 571 572
          import numpy as np
          data = fluid.layers.fill_constant(shape=[3, 2], value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result1 = fluid.layers.create_tensor(dtype='float64')
          fluid.layers.assign(data, result1) # result1 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result2 = fluid.layers.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = fluid.layers.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
573
    """
Y
Yu Yang 已提交
574
    helper = LayerHelper('assign', **locals())
575
    check_type(input, 'input', (Variable, numpy.ndarray), 'assign')
X
xuwei06 已提交
576
    if isinstance(input, Variable):
577 578 579
        check_dtype(input.dtype, 'input',
                    ['float32', 'float64', 'int32', 'int64', 'bool'], 'assign',
                    '(When the type of input in assign is Variable.)')
580 581 582
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
583
        helper.append_op(
R
robot 已提交
584
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
585 586
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
587 588 589 590
        if dtype == VarDesc.VarType.BOOL:
            value_name = "bool_values"
            values = [bool(v) for v in input.flat]
        elif dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
591
            value_name = "fp32_values"
592
            values = [float(v) for v in input.flat]
593
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
594
            value_name = "int32_values"
595
            values = [int(v) for v in input.flat]
596 597 598
        elif dtype == VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
599
        else:
600 601
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
602
                "the data type of 'input' must be bool, float32, int32 or int64, but "
603
                "received %s." % convert_dtype(dtype))
604 605 606
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
607 608 609
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
610 611 612 613 614 615
        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
616
                value_name: values
X
xuwei06 已提交
617 618
            })

Y
Yu Yang 已提交
619 620 621
    return output


Q
QI JUN 已提交
622
def fill_constant(shape, dtype, value, force_cpu=False, out=None):
Y
Yu Yang 已提交
623
    """
S
swtkiwi 已提交
624 625 626 627
	:alias_main: paddle.fill_constant
	:alias: paddle.fill_constant,paddle.tensor.fill_constant,paddle.tensor.creation.fill_constant
	:old_api: paddle.fluid.layers.fill_constant

W
wangchaochaohu 已提交
628
    This OP creates a Tensor with specified `shape` and `dtype`, and
T
tianshuo78520a 已提交
629
    initializes it with a constant specified by `value`.
K
kavyasrinet 已提交
630

T
tianshuo78520a 已提交
631
    The attribute `stop_gradient` of the created Tensor is set to True.
632 633

    Args:
634 635 636 637
        shape(list|tuple|Variable): Shape of the Tensor to be created.
                The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
                If ``shape`` is an Variable, it should be an 1-D Tensor .
W
wangchaochaohu 已提交
638 639
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output tensor which can
            be float16, float32, float64, int32, int64.
W
wangchaochaohu 已提交
640 641 642
        value(float16|float32|float64|int32|int64|Variable): The constant value used to initialize 
            the Tensor to be created. If value is an Variable, it should be an 1-D Tensor.
        force_cpu(bool): data should be on CPU if it's true, default value is False.
W
wangchaochaohu 已提交
643 644 645
        out(Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of operation.
            if out is None, a new Varibale will be create to store the result.
646 647

    Returns:
W
wangchaochaohu 已提交
648 649 650 651 652
        Variable: Tensor which is created according to shape and dtype.

    Raise:
        TypeError: The dtype must be one of bool, float16, float32, float64, int32 and int64
        and the data type of out Tensor must be the same as the dtype. 
653 654 655 656

    Examples:
        .. code-block:: python

657
          import paddle.fluid as fluid
658 659 660
          # attr shape is a list which doesn't contain Variable Tensor.
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') # data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1)
661
          # data1=[[5], [5]] data2=[[5], [5]]
662 663 664 665 666 667 668 669

          # attr shape is a list which contains Variable Tensor.
          positive_2 = fluid.layers.fill_constant([1], "int32", 2)
          data3 = fluid.layers.fill_constant(shape=[1, positive_2], dtype='float32', value=1.5) # data3=[1.5, 1.5]

          # attr shape is an Variable Tensor.
          shape = fluid.layers.fill_constant([1,2], "int32", 2) # shape=[2,2]
          data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]]
W
wangchaochaohu 已提交
670 671 672 673
          
          # attr value is an Variable Tensor.
          val = fluid.layers.fill_constant([1], "float32", 2.0) # val=[2.0]
          data5 = fluid.layers.fill_constant(shape=[2,1], value=val, dtype='float32') #data5=[[2.0],[2.0]]
Y
Yu Yang 已提交
674
    """
W
wangchaochaohu 已提交
675 676 677 678
    inputs = {}
    attrs = {'force_cpu': force_cpu}
    if isinstance(value, Variable):
        inputs['ValueTensor'] = value
679
    else:
W
wangchaochaohu 已提交
680 681 682 683 684
        attrs['value'] = float(value)
        if convert_dtype(dtype) in ['int64', 'int32']:
            attrs['str_value'] = str(int(value))
        else:
            attrs['str_value'] = str(float(value))
685 686 687

    if in_dygraph_mode():
        if isinstance(shape, (list, tuple)):
S
songyouwei 已提交
688 689 690
            shape = list(
                map(lambda x: x.numpy()[0] if isinstance(x, Variable) else x,
                    shape))
691
        else:
S
songyouwei 已提交
692
            shape = list(shape.numpy().astype(int))
693 694
        if out is None:
            out = _varbase_creator(dtype=dtype)
W
wangchaochaohu 已提交
695 696 697 698 699 700 701

        if isinstance(value, Variable):
            if convert_dtype(dtype) in ['int64', 'int32']:
                attrs['str_value'] = str(int(value.numpy()))
            else:
                attrs['str_value'] = str(float(value.numpy()))

702 703
        core.ops.fill_constant(out, 'value',
                               float(value), 'force_cpu', force_cpu, 'dtype',
704 705
                               out.dtype, 'str_value', attrs['str_value'],
                               'shape', shape)
706 707 708
        out.stop_gradient = True
        return out

709
    check_dtype(dtype, 'dtype',
710 711 712
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'fill_constant')
    check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')
713 714 715 716 717 718 719 720
    if isinstance(shape, Variable):
        check_variable_and_dtype(shape, 'shape', ['int32', 'int64'],
                                 'fill_constant')
    if out is not None:
        check_variable_and_dtype(out, 'out', [convert_dtype(dtype)],
                                 'fill_constant')

    helper = LayerHelper("fill_constant", **locals())
W
wangchaochaohu 已提交
721 722 723 724 725 726
    inputs = utils._get_shape_tensor_inputs(
        inputs=inputs,
        helper=helper,
        attrs=attrs,
        shape=shape,
        op_type='fill_constant')
L
liym27 已提交
727

Y
Yu Yang 已提交
728
    if out is None:
X
Xin Pan 已提交
729
        out = helper.create_variable_for_type_inference(dtype=dtype)
L
liym27 已提交
730
    attrs['dtype'] = out.dtype
Y
Yu Yang 已提交
731 732
    helper.append_op(
        type='fill_constant',
L
liym27 已提交
733
        inputs=inputs,
Y
Yu Yang 已提交
734
        outputs={'Out': [out]},
L
liym27 已提交
735
        attrs=attrs,
M
minqiyang 已提交
736
        stop_gradient=True)
Y
Yu Yang 已提交
737 738 739 740
    out.stop_gradient = True
    return out


Y
yuyang18 已提交
741
@templatedoc()
Y
Yu Yang 已提交
742 743 744 745 746
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
G
Guo Sheng 已提交
747 748
                                  output_dim_idx=0,
                                  force_cpu=False):
749
    """
T
tianshuo78520a 已提交
750
    This OP creates a Tesnor according the shape and dtype, and initializes the
W
wangchaochaohu 已提交
751 752 753 754
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
755 756

    Args:
W
wangchaochaohu 已提交
757 758 759 760 761 762 763 764 765 766 767
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
        value(float|int): The constant value used to initialize the Tensor to be created. 
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
T
tianshuo78520a 已提交
768
        force_cpu(bool): data should be on CPU if it's true, default value is False.
Y
yuyang18 已提交
769 770

    Returns:
W
wangchaochaohu 已提交
771
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
772 773 774 775 776

    Examples:

        .. code-block:: python

777
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
778
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
779
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
780
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
781

782
    """
Y
Yu Yang 已提交
783
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
784
    out = helper.create_variable_for_type_inference(dtype=dtype)
785 786 787 788 789 790
    attrs = {
        'shape': shape,
        'dtype': out.dtype,
        'value': float(value),
        'input_dim_idx': input_dim_idx,
        'output_dim_idx': output_dim_idx,
791
        'force_cpu': force_cpu
792 793 794 795 796
    }
    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))
Y
Yu Yang 已提交
797 798 799 800
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
801
        attrs=attrs)
Y
Yu Yang 已提交
802 803 804 805
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
806 807
def argmin(x, axis=0):
    """
S
swtkiwi 已提交
808 809 810 811
	:alias_main: paddle.argmin
	:alias: paddle.argmin,paddle.tensor.argmin,paddle.tensor.search.argmin
	:old_api: paddle.fluid.layers.argmin

S
sneaxiy 已提交
812 813
    **argmin**

814 815
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
816 817

    Args:
818 819 820 821 822
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
823

S
sneaxiy 已提交
824
    Returns:
825
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
826

S
sneaxiy 已提交
827 828
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
829

830
            import paddle.fluid as fluid
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmin(x=x, axis=-1)
                out2 = fluid.layers.argmin(x=x, axis=0)
                out3 = fluid.layers.argmin(x=x, axis=1)
                out4 = fluid.layers.argmin(x=x, axis=2)
                print(out1.numpy())
                # [[0 0 2]
                #  [1 0 2]]
                print(out2.numpy())
                # [[0 1 1 1]
                #  [0 0 0 0]
                #  [1 1 1 0]]
                print(out3.numpy())
                # [[1 1 1 2]
                #  [2 0 2 0]]
                print(out4.numpy())
                # [[0 0 2]
                #  [1 0 2]]
S
sneaxiy 已提交
858
    """
859 860 861
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmin')
S
sneaxiy 已提交
862
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
863
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
864 865 866 867 868
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
869
    out.stop_gradient = True
S
sneaxiy 已提交
870 871 872 873 874 875 876
    return out


def argmax(x, axis=0):
    """
    **argmax**

877 878
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
879 880

    Args:
881 882 883 884 885
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
886

S
sneaxiy 已提交
887
    Returns:
888
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
889

S
sneaxiy 已提交
890 891
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
892

893
            import paddle.fluid as fluid
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmax(x=x, axis=-1)
                out2 = fluid.layers.argmax(x=x, axis=0)
                out3 = fluid.layers.argmax(x=x, axis=1)
                out4 = fluid.layers.argmax(x=x, axis=2)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
S
sneaxiy 已提交
921
    """
922 923 924
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmax')
S
sneaxiy 已提交
925
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
926
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
927 928 929 930 931
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
932
    out.stop_gradient = True
S
sneaxiy 已提交
933 934 935
    return out


936
def argsort(input, axis=-1, descending=False, name=None):
Y
Yibing Liu 已提交
937
    """
S
swtkiwi 已提交
938 939 940 941
	:alias_main: paddle.argsort
	:alias: paddle.argsort,paddle.tensor.argsort,paddle.tensor.search.argsort
	:old_api: paddle.fluid.layers.argsort

942 943 944
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
Y
Yibing Liu 已提交
945 946

    Args:
947 948 949 950 951
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
952 953 954
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
955 956 957
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
Y
Yibing Liu 已提交
958 959

    Returns:
960 961 962
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
Y
Yibing Liu 已提交
963 964 965 966

    Examples:
        .. code-block:: python

967
            import paddle.fluid as fluid
968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argsort(input=x, axis=-1)
                out2 = fluid.layers.argsort(input=x, axis=0)
                out3 = fluid.layers.argsort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
Y
Yibing Liu 已提交
1009
    """
1010 1011 1012
    check_variable_and_dtype(
        input, 'input',
        ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'], 'argsort')
Y
Yibing Liu 已提交
1013
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
1014 1015 1016 1017
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
1018 1019 1020 1021
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
1022
                 'Indices': ids},
1023 1024
        attrs={'axis': axis,
               'descending': descending})
Y
Yibing Liu 已提交
1025 1026 1027
    return out, ids


Y
Yang Yu 已提交
1028
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
1029
    """
1030 1031
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1032

1033 1034 1035 1036 1037 1038 1039
    Parameters:
        shape (tuple|list): Shape of output tensor.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of output tensor, it supports
            bool, float16, float32, float64, int32 and int64.
        force_cpu (bool, optional): Whether force to store the output tensor in CPU memory.
            If :attr:`force_cpu` is False, the output tensor will be stored in running device memory.
            Default: False.
1040 1041

    Returns:
1042
        Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
1043 1044 1045 1046

    Examples:
        .. code-block:: python

1047
          import paddle.fluid as fluid
1048
          data = fluid.layers.ones(shape=[2, 4], dtype='float32') # [[1., 1., 1., 1.], [1., 1., 1., 1.]]
Y
Yu Yang 已提交
1049
    """
1050 1051 1052 1053
    check_type(shape, 'shape', (list, tuple), 'ones')
    check_dtype(dtype, 'create data type',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'ones')
C
chengduozh 已提交
1054 1055
    assert reduce(lambda x, y: x * y,
                  shape) > 0, "The shape is invalid: %s." % (str(shape))
Y
Yu Yang 已提交
1056 1057 1058
    return fill_constant(value=1.0, **locals())


Y
Yang Yu 已提交
1059
def zeros(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
1060
    """
1061 1062
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1063

1064 1065 1066 1067 1068 1069 1070
    Parameters:
        shape (tuple|list): Shape of output tensor.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of output tensor, it supports
            bool, float16, float32, float64, int32 and int64.
        force_cpu (bool, optional): Whether force to store the output tensor in CPU memory.
            If :attr:`force_cpu` is False, the output tensor will be stored in running device memory.
            Default: False.
1071 1072

    Returns:
1073
        Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
1074 1075 1076 1077

    Examples:
        .. code-block:: python

1078
          import paddle.fluid as fluid
1079
          data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
Y
Yu Yang 已提交
1080
    """
1081
    check_type(shape, 'shape', (list, tuple), 'zeros')
1082 1083 1084
    check_dtype(dtype, 'create data type',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'zeros')
Y
Yu Yang 已提交
1085
    return fill_constant(value=0.0, **locals())
1086 1087


F
fengjiayi 已提交
1088 1089
def reverse(x, axis):
    """
S
swtkiwi 已提交
1090 1091 1092 1093
	:alias_main: paddle.reverse
	:alias: paddle.reverse,paddle.tensor.reverse,paddle.tensor.manipulation.reverse
	:old_api: paddle.fluid.layers.reverse

1094
    The OP reverses the tensor :attr:`x` along the given :attr:`axis`.
F
fengjiayi 已提交
1095

1096 1097 1098 1099 1100
    Parameters:
        x (Variable): A tensor to be reversed, its data type supports bool, float32, float64, int32, int64 and uint8.
        axis (int|tuple|list): A dimension or a set of dimensions of :attr:`x` to reverse. Must be
            in the range [-rank( :attr:`x` ), rank( :attr:`x` )). If it is a tuple or a list, reversing
            will be apply on each axis in the tuple or list.
F
fengjiayi 已提交
1101 1102

    Returns:
1103
        Variable: The reversed tensor with the same shape and data type as :attr:`x`.
F
fengjiayi 已提交
1104 1105 1106 1107

    Examples:
        .. code-block:: python

1108
          import paddle.fluid as fluid
1109 1110 1111 1112
          import numpy as np
          data = fluid.layers.assign(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype='float32')) # [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]
          result1 = fluid.layers.reverse(data, 0) # [[6., 7., 8.], [3., 4., 5.], [0., 1., 2.]]
          result2 = fluid.layers.reverse(data, [0, 1]) # [[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]]
F
fengjiayi 已提交
1113
    """
1114 1115 1116
    check_variable_and_dtype(
        x, 'x', ('float32', 'float64', 'int32', 'int64', 'uint8'), 'reverse')
    check_type(axis, 'axis', (int, tuple, list), 'reverse')
F
fengjiayi 已提交
1117 1118 1119
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
1120
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
1121 1122
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
1123
        inputs={'X': x},
F
fengjiayi 已提交
1124 1125 1126 1127 1128
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


1129 1130 1131 1132 1133 1134 1135
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
1136 1137 1138
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
1154 1155
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
1156
        file_path(str): The file path where variables will be saved.
1157
        overwrite(bool): Whether or not cover the given file when it has already
1158 1159
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1160 1161 1162 1163 1164 1165 1166 1167

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

1168
            import paddle.fluid as fluid
1169 1170 1171 1172 1173 1174 1175
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
T
tianshuo78520a 已提交
1188
    Loads a list of variable from a single file.
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
1200 1201 1202 1203


def has_inf(x):
    """
S
swtkiwi 已提交
1204 1205 1206 1207
	:alias_main: paddle.has_inf
	:alias: paddle.has_inf,paddle.tensor.has_inf,paddle.tensor.search.has_inf
	:old_api: paddle.fluid.layers.has_inf

1208 1209 1210
    Test if any of x contains an infinity number

    Args:
L
liu zhengxi 已提交
1211
       x (Variable): The Tensor/LoDTensor to be checked.
1212 1213

    Returns:
L
liu zhengxi 已提交
1214
       Variable: The tensor variable storing the output, only a bool value, indicating that whether there is infinity number in x or not.
1215 1216 1217 1218 1219 1220 1221 1222
    
    Examples:
        .. code-block:: python
          
          import paddle.fluid as fluid
          data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
          res = fluid.layers.has_inf(data)

1223
    """
1224
    check_type(x, 'x', (Variable), 'has_inf')
1225
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
1226
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1227 1228 1229 1230 1231 1232
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
S
swtkiwi 已提交
1233 1234 1235 1236
	:alias_main: paddle.has_nan
	:alias: paddle.has_nan,paddle.tensor.has_nan,paddle.tensor.search.has_nan
	:old_api: paddle.fluid.layers.has_nan

1237 1238 1239
    Test if any of x contains a NAN

    Args:
L
liu zhengxi 已提交
1240
       x (Variable): The Tensor/LoDTensor to be checked.
1241 1242

    Returns:
L
liu zhengxi 已提交
1243
       Variable: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
1244 1245 1246 1247 1248 1249 1250 1251
    
    Examples:
        .. code-block:: python
    
          import paddle.fluid as fluid
          data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
          res = fluid.layers.has_nan(data)

1252
    """
1253
    check_type(x, 'x', (Variable), 'has_nan')
1254
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
1255
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1256 1257 1258 1259 1260 1261
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
S
swtkiwi 已提交
1262 1263 1264 1265
	:alias_main: paddle.isfinite
	:alias: paddle.isfinite,paddle.tensor.isfinite,paddle.tensor.logic.isfinite
	:old_api: paddle.fluid.layers.isfinite

1266 1267 1268 1269 1270 1271 1272 1273
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
       x(variable): The Tensor/LoDTensor to be checked.

    Returns:
        Variable: The tensor variable storing the output, contains a bool value.
1274 1275 1276 1277 1278

    Examples:

        .. code-block:: python

1279
            import paddle.fluid as fluid
1280 1281 1282
            var = fluid.layers.data(name="data",
                                    shape=(4, 6),
                                    dtype="float32")
石晓伟 已提交
1283
            out = fluid.layers.isfinite(var)
1284
    """
1285 1286
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "isfinite")
1287
    helper = LayerHelper("isfinite", **locals())
1288

1289
    out = helper.create_variable_for_type_inference(dtype='bool')
1290 1291
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
1292 1293 1294 1295 1296 1297 1298 1299 1300


def range(start, end, step, dtype):
    """
    Return evenly spaced values within a given interval.

    Values are generated within the half-open interval [start, stop) (in other words,
    the interval including start but excluding stop).

L
Liufang Sang 已提交
1301 1302 1303 1304
    Parameters:
        start(float32 | float64 | int32 | int64 | Variable): Start of interval. The interval includes this value.
            when start is Variable, it is a 1-D Tensor with shape [1].
        end(float32 | float64 | int32 | int64 | Variable): End of interval. The interval does not include this
W
whs 已提交
1305
                                 value, except in some cases where step is not an integer
L
Liufang Sang 已提交
1306 1307 1308
                                 and floating point round-off affects the length of out. When end is Variable,
                                 it is a 1-D Tensor with shape [1].
        step(float32 | float64 | int32 | int64 | Variable): Spacing between values. For any output out, this is the
W
whs 已提交
1309
                                  distance between two adjacent values, out[i+1] - out[i].
1310
        dtype(str|core.VarDesc.VarType): the data type of the output tensor, can be float32, float64, int32, int64.
W
whs 已提交
1311

L
Liufang Sang 已提交
1312 1313 1314
    Returns: a 1-D Tensor which is evenly spaced values within a given interval. Its data type is set by dtype.
    
    Return type: Variable
W
whs 已提交
1315 1316 1317 1318 1319

    examples:

        .. code-block:: python

1320
             import paddle.fluid as fluid
W
whs 已提交
1321 1322 1323
             data = fluid.layers.range(0, 10, 2, 'int32')

    """
1324 1325 1326
    check_type(start, 'start', (float, int, Variable), 'range')
    check_type(end, 'end', (float, int, Variable), 'range')
    check_type(step, 'step', (float, int, Variable), 'range')
W
whs 已提交
1327 1328
    helper = LayerHelper("range", **locals())

1329 1330 1331 1332
    check_dtype(dtype, 'create data type',
                ['float32', 'float64', 'int32', 'int64'], 'range')

    dtype = convert_dtype(dtype)
W
whs 已提交
1333 1334
    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
1335 1336 1337 1338 1339
    elif convert_dtype(start.dtype) != dtype:
        # make sure that start, end, step has the same dtype as
        # `dtype`
        start = cast(x=start, dtype=dtype)

W
whs 已提交
1340 1341
    if not isinstance(end, Variable):
        end = fill_constant([1], dtype, end)
1342 1343 1344
    elif convert_dtype(end.dtype) != dtype:
        end = cast(x=end, dtype=dtype)

W
whs 已提交
1345 1346
    if not isinstance(step, Variable):
        step = fill_constant([1], dtype, step)
1347 1348
    elif convert_dtype(step.dtype) != dtype:
        step = cast(x=step, dtype=dtype)
W
whs 已提交
1349 1350 1351 1352 1353 1354 1355 1356 1357

    out = helper.create_variable_for_type_inference(dtype=start.dtype)

    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
        outputs={'Out': [out]})
1358
    out.stop_gradient = True
W
whs 已提交
1359
    return out
Z
zhoukunsheng 已提交
1360 1361


Z
zhoukunsheng 已提交
1362 1363
def linspace(start, stop, num, dtype):
    """
1364
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
1365 1366

    Args:
1367 1368 1369 1370 1371 1372 1373
        start(float|Variable): The input :attr:`start` is start variable of range. It is a float scalar, \
            or a tensor of shape [1] with input data type float32, float64.
        stop(float|Variable): The input :attr:`stop` is start variable of range. It is a float scalar, \
            or a tensor of shape [1] with input data type float32, float64.
        num(int|Variable): The input :attr:`num` is given num of the sequence. It is an int scalar, \
            or a tensor of shape [1] with type int32.
        dtype(string): The data type of output tensor, it could be 'float32' and 'float64'.
Z
zhoukunsheng 已提交
1374 1375

    Returns:
1376 1377 1378
        Variable, the output data type will be float32, float64.: The 1-D tensor with fixed number of evenly spaced values, \
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 
Z
zhoukunsheng 已提交
1379

Z
zhoukunsheng 已提交
1380
    Examples:
Z
zhoukunsheng 已提交
1381 1382
        .. code-block:: python

1383
             import paddle.fluid as fluid
Z
zhoukunsheng 已提交
1384 1385
             data = fluid.layers.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = fluid.layers.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
1386 1387 1388 1389

    """
    helper = LayerHelper("linspace", **locals())

1390 1391 1392 1393
    check_type(start, 'start', (Variable, float, int), linspace)
    check_type(stop, 'stop', (Variable, float, int), linspace)
    check_type(num, 'num', (Variable, float, int), linspace)

Z
zhoukunsheng 已提交
1394 1395
    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
1396 1397 1398 1399
    else:
        check_variable_and_dtype(start, "start", ["float32", "float64"],
                                 "linspace")

Z
zhoukunsheng 已提交
1400 1401
    if not isinstance(stop, Variable):
        stop = fill_constant([1], dtype, stop)
1402 1403 1404
    else:
        check_variable_and_dtype(stop, "stop", ["float32", "float64"],
                                 "linspace")
Z
zhoukunsheng 已提交
1405 1406
    if not isinstance(num, Variable):
        num = fill_constant([1], 'int32', num)
1407 1408
    else:
        check_variable_and_dtype(num, "num", ["int32"], "linspace")
Z
zhoukunsheng 已提交
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418

    out = helper.create_variable_for_type_inference(dtype=start.dtype)

    helper.append_op(
        type='linspace',
        inputs={'Start': start,
                'Stop': stop,
                'Num': num},
        outputs={'Out': [out]})
    return out
1419 1420


Z
zhoukunsheng 已提交
1421 1422
def zeros_like(x, out=None):
    """
1423
    This OP creates a zeros tensor which has identical shape and dtype 
Z
zhoukunsheng 已提交
1424 1425 1426
    with `x`.

    Args:
1427 1428 1429
        x(Variable): The input tensor which specifies shape and dtype, the input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the variable as output, the data type and shape of \
            this variable will be same as input :attr:`x`. If is a tensor, the data type and shape need to be same as input :attr:`x`. 
T
tianshuo78520a 已提交
1430
            The default value is :attr:`None` .
Z
zhoukunsheng 已提交
1431 1432

    Returns:
1433 1434
        Variable: The N-D tensor, the element in tensor is related to input data type, if the input data type is bool, \
            the output value is False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
1435 1436 1437 1438

    Examples:
        .. code-block:: python

1439
          import paddle.fluid as fluid
1440
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
1441 1442
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
1443 1444
    """

1445 1446
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1447 1448 1449
    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1450 1451 1452 1453 1454
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
            'ones_like')

Z
zhoukunsheng 已提交
1455 1456 1457 1458
    helper.append_op(
        type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]})
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1459 1460 1461 1462


def diag(diagonal):
    """
S
swtkiwi 已提交
1463 1464 1465 1466
	:alias_main: paddle.diag
	:alias: paddle.diag,paddle.tensor.diag,paddle.tensor.creation.diag
	:old_api: paddle.fluid.layers.diag

1467
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
1468 1469

    Args:
1470 1471
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
1472 1473

    Returns:
1474 1475
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
1476 1477 1478 1479 1480 1481 1482

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
1483 1484 1485

          import paddle.fluid as fluid
          import numpy as np
1486 1487 1488
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1489 1490

    """
1491 1492 1493
    check_type(diagonal, 'diagonal', (Variable, numpy.ndarray), 'diag')
    check_dtype(diagonal.dtype, 'diagonal',
                ['float32', 'float64', 'int32', 'int64'], 'diag')
Z
zhoukunsheng 已提交
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

    helper.append_op(
        type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]})

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1506 1507


1508 1509
def eye(num_rows, num_columns=None, batch_shape=None, dtype='float32'):
    """
S
swtkiwi 已提交
1510 1511 1512 1513
	:alias_main: paddle.eye
	:alias: paddle.eye,paddle.tensor.eye,paddle.tensor.creation.eye
	:old_api: paddle.fluid.layers.eye

1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
    **eye**

    This function constructs an identity tensor, or a batch of tensor.

    Args:
        num_rows(int): the number of rows in each batch tensor.
        num_columns(int): the number of columns in each batch tensor.
                          If None, default: num_rows.
        batch_shape(list(int)): If provided, the returned tensor will have a leading
                                batch size of this shape.
1524 1525
        dtype(string): The data type of the returned tensor.
                       It should be int32, int64, float16, float32, float64.
1526 1527

    Returns:
1528
        Variable: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1529 1530 1531 1532 1533

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1534 1535
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1536
          #  [0, 1, 0]
1537 1538
          #  [0, 0, 1]]

1539
          data = fluid.layers.eye(2, 3, dtype='int32')
1540
          # [[1, 0, 0]
1541
          #  [0, 1, 0]]
1542 1543

          data = fluid.layers.eye(2, batch_shape=[3])
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

    helper = LayerHelper("eye", **locals())
    if not isinstance(num_rows, int) or num_rows < 0:
        raise TypeError("num_rows should be a non-negative int")
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows
    out = helper.create_variable_for_type_inference(dtype=dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='eye',
        inputs={},
        outputs={'Out': [out]},
        attrs={
            'num_rows': num_rows,
            'num_columns': num_columns,
            'dtype': c_dtype
        },
        stop_gradient=True)
    out.stop_gradient = True

    if batch_shape is not None:
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
        from .nn import stack
        for batch_val in reversed(batch_shape):
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
            else:
                stack_vars = [out for _ in numpy.arange(batch_val)]
                out = stack(stack_vars, axis=0)
    return out


Z
zhoukunsheng 已提交
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
def ones_like(x, out=None):
    """
    **ones_like**

    This function creates a ones tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1596
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """
1607 1608
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1609 1610 1611 1612

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1613 1614 1615 1616
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
            'ones_like')
Z
zhoukunsheng 已提交
1617 1618 1619 1620 1621 1622
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': 1.0},
        outputs={'Out': [out]})
    return out